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Optimal control problems for finite-strain elasticity are considered. An inner pressure

or an inner fiber tension is acting as a driving force. Such internal forces are typical,

for instance, for the motion of heliotropic plants, and for muscle tissue. Non-standard

objective functions relevant for elasticity problems are introduced. Optimality conditions

are derived on a formal basis, and a limited-memory quasi-Newton algorithm for their

solution is formulated in function space. Numerical experiments confirm the expected

mesh-independent performance.

Keywords: partial differential equations, optimal control, finite-strain elasticity, quasi-Newton method, multigrid

preconditioning

1. INTRODUCTION

We consider optimization problems for fully 3D non-linear (finite-strain) stationary elasticity
models. The novelty of the proposed approach is that we use an inner pressure or an inner fiber
tension as a driving force. Such internal forces are typical, for instance, for the motion of heliotropic
plants, and formuscle tissue, respectively. Moreover, we consider non-standard objective functions,
which describe either a preferred normal direction of part of the boundary in the deformed state,
or which cause the deformed body to avoid a virtual obstacle.

To date, there are relatively few papers dealing with the optimal control of finite-strain elasticity
problems. Apparently the first is Szefer [1], where a sensitivity analysis for the displacement
and eigenvalues is presented for an abstract control-in-the-coefficients problem, based on formal
calculations. Paper Givoli and Patlashenko [2] presents a problem setting in two dimensions with a
standard tracking-type objective and volume loads as control. The authors of Ibrahimbegovic et al.
[3] consider optimization problems for a non-linear beam model with a finite number of control
variables, viz. forces and moments. The work closest to ours is Lubkoll et al. [4], where the authors
consider the computation of optimal boundary forces together with a tracking-type objective for
the displacement. Compared to their work, we use novel control loads andmore elaborate objective
functions.

The solution approach we pursue in this paper is based on an optimize–then–discretize
paradigm. That is, we derive first-order optimality conditions and design our solution algorithm
in a function space setting. Discretization by finite elements is carried out only to perform the
individual steps inside the algorithm. Specifically, we employ a function-space limited-memory
quasi-Newton method to tackle the optimization problem. The advantage of such an approach,
which is another novelty in the context of optimal control of elasticity models, is that we can
expect a mesh-independent performance of the algorithm. This is confirmed by our numerical
experiments.
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Let us emphasize that the rigorous analysis of the finite-
strain forward problem, let alone the corresponding optimality
conditions, is rather demanding, see for instance [4–6].
We therefore base our development of first-order optimality
conditions on formal calculations. In the much simpler case of
infinitesimal strain models, rigorous analytical results have been
achieved in Manservisi [7], Lovíšek [8], Lovíšek and Králik [9],
and Nestler [10].

Notation
We summarize here the notational conventions used throughout
the paper. Generally, we denote vector-valued quantities by
bold-face letters. As customary for finite-strain problems, we
distinguish between the undeformed (reference) and deformed
(current) domains, � and �̂. Quantities defined on the
deformed domain are likewise denoted by thê symbol. Table 1
summarizes the notations used.

2. THE FORWARD PROBLEM OF
FINITE-STRAIN ELASTICITY

The modeling follows the approach of Ciarlet [6]. An
undeformed mechanical body is defined by a bounded domain
� ⊂ R

3, whereas the deformed body is described by the domain
�̂ ⊂ R

3. Material points in the undeformed body (the reference

TABLE 1 | Notations used throughout the paper.

Symbol Meaning

�, �̂ Undeformed and deformed domains

ŴD, Ŵ̂D Undeformed and deformed Dirichlet boundaries

x, x̂ Spatial coordinates in � and �̂

X̂ : � → �̂ Material point mapping from undeformed to deformed domain

X : �̂ → � Inverse of X

U Displacement field on �

D, D̂ Derivative (Jacobian) operator w.r.t. x and x̂

F = id+ DU Deformation gradient (Equation 1)

T, T̂ First Piola-Kirchhoff and Cauchy stress tensors (Equations 8

and 10)

w, w′ Polyconvex energy density and its derivative (w.r.t. F)

c, t, m Generic control variable, inner pressure and fiber tension

control variables

W (c) (U, c) Integrated energy density for a control c (Equation 17), where c

can be t (Equation 15) or m (Equation 16)

W
(c)
,U

(U, c)[V] Partial derivative of W (c) at (U, c) in the direction V

W
(c)
,UU

(U, c)[V1, V2 ]Second-order partial derivative of W (c) at (U, c) in the

directions (V1, V2 )

C, U Control and displacement spaces

C∗, U∗ Their dual spaces

S : C → U Solution operator (Equation 31)

S,c (c) : C → U Its linearization at c

S∗,c (c) : U∗ → C∗ Its adjoint

I, Q, P Objective functional, its quality and control cost components

(Equation 21)

configuration) are denoted by x ∈ � and their corresponding
counterparts in the deformed body (the current configuration)
by x̂ ∈ �̂, see Figure 1. The two configurations are linked by
a sufficiently smooth, bijective function X̂ : � → �̂ such that
x̂ = X̂(x). Its inverse is denoted by X : �̂ → �.

The displacement U : � → R
3 is defined as U(x): = X̂(x)− x

and the deformation gradient F : � → R
3×3 is

F: = DX̂ = id+ DU, (1)

or

F(x): = DX̂(x) = id+ DU(x).

Herein, DU denotes the Jacobian (material derivative) with
respect to x. By the chain rule, the material derivative of Û =
U ◦ X with respect to x̂ is given by

D̂Û(̂x) = D̂(U ◦ X)(̂x) =
[
(DU) ◦ X(̂x)

][
D̂X(̂x)

]
. (2)

By the derivative of the inverse formula, and by writing x in place
of X(̂x), we obtain

D̂Û(X̂(x)) = DU(x) F−1(x). (3)

2.1. Modeling of Loads and Variational
Formulation
A deformation caused by applied loads can be modeled by a
balance of forces in the deformed body. Commonly volume and
boundary loads (e.g., gravitational forces) are considered in the
literature. By contrast, we regard here two types of inner loads,
namely an inner pressure and the tension of unidirectional fibers.
For simplicity, gravitational and boundary forces are neglected
here but they may be added to the formulation.

In this work, we consider the example from Figure 1with hard
clamping on a part ŴD ⊂ ∂� of the boundary. This part of the
boundary is identical in the undeformed and deformed bodies,
i.e., ŴD = Ŵ̂D holds. The clamping is expressed through the
Dirichlet boundary condition

U = 0 on ŴD and Û = 0 on Ŵ̂D, (4)

FIGURE 1 | The undeformed body � (right) and the deformed body �̂

(left). Both have in common the portion of the boundary ŴD = Ŵ̂D where the

body is clamped.
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respectively. The function spaces U and Û denote the vector
spaces of sufficiently smooth functions U : � → R

3 or Û : �̂ →
R
3, respectively, which satisfy Equation (4). In addition, natural

(stress-free) boundary conditions are applied on the Neumann
boundary Ŵ̂N

: = ∂�̂\ Ŵ̂D. Naturally, the boundary stresses could
be chosen non-zero as well.

2.1.1. Loads Modeling Turgor Pressure

Considering the pressure inside the body as a driving force
is motivated by the turgor pressure occurring in so-called
heliotropic plants. This pressure causes a deformation which
allows these plants to follow the movement of the sun. The cause
of the inner pressure is an osmotic potential inside the cells of the
plant. This potential induces a local hydrostatic pressure, which
can be written as the isotropic stress tensor t̂(̂x) id in the current
configuration. The scalar field t̂ : �̂ → R describes the pressure
value. The balance of forces in the current configuration then
reads (cf. [6, pg. 69])

d̂iv
(
T̂ (̂x)− t̂(̂x) id

)
= 0 in �̂. (5)

The Cauchy stress tensor T̂ (̂x) ∈ R
3×3 will be introduced below

in Equation (8).
By multiplication of Equation (5) with an test function V̂ ∈ U

and integration by parts we obtain the variational equation (a.k.a.
principle of virtual work),

∫

�̂

T̂ (̂x) : D̂V̂(̂x) d̂x =
∫

�̂

t̂(̂x) id : D̂V̂(̂x) d̂x for all V̂ ∈ Û. (6)

The matrix inner product “:” is defined by A :B: = tr(A⊤B). Note
that the boundary condition

(
T̂ (̂x) − t̂(̂x) id

)
n̂(̂x) = 0, which

models the total stress normal to the surface Ŵ̂N being equal
to zero, has been incorporated into Equation (6). Moreover, we
recall V̂ = 0 on Ŵ̂D. As a consequence, all boundary integrals
vanish.

In order to transform the variational equation (Equation 6)
to the reference configuration �, we apply the following rules:
the current derivative D̂ is transformed using the chain rule
(Equation 3), i.e.,

D̂V̂(X̂(x)) = DV(x) F−1(x). (7)

The Cauchy stress tensor T̂ ∈ R
3×3 is related to the first Piola-

Kirchhoff stress tensor T ∈ R
3×3, see Equation (10) below, by the

Piola transform

T(x) =
(
det F(x)

)
T̂(X̂(x)) F(x)−⊤, (8a)

T̂ (̂x) =
(
det F(X(̂x))

)−1
T(X(̂x)) F(X(̂x))⊤, (8b)

cf. [6, Ch. 2.5]. We finally assume that the pressure of a cell does
not depend on the current displacement but rather only on the
material point itself, and hence we have t(x) = t̂(X̂(x)).

Using the transformation (Equation 8b) and the chain rule
(Equations 7 and 6) becomes

∫

�

T(x) : DV(x) dx =
∫

�

t(x) cof F(x) : DV(x) dx for all V ∈ U

(9)

with the cofactor matrix cof F: = (det F) F−⊤.
The first Piola-Kirchhoff stress tensor T can be modeled with

the help of an energy density w. A specific example will follow in
Section 5. The relationship between T and the displacement U is
eventually given by

T(x) = w′(F(x)): =
dw

dF
(F(x)) with F = id+ DU. (10)

Plugging Equation (10) into Equation (9) yields the final form
of the variational formulation of the forward problem with inner
pressure field t as applied load:

Find U ∈ U such that
∫

�

w′(F(x)) : DV(x) dx =
∫

�

t(x) cof F(x) : DV(x) dx

for all V ∈ U .

(11)

2.1.2. Loads Modeling Fiber Tension

The second load presented in this paper is a spatially varying
tension field m which acts on fibers along a given direction.
The fiber direction a is a vector of unit Euclidean length, i.e.,
‖a‖2 = 1, which may also vary in space. Loads of this type are
motivated for example by the tension of amuscle cell in a smooth,
unidirectional muscle tissue. The tension m along the fiber
direction a induces a principal stress in the direction a, which
results in a stress tensor m̂(̂x) â(̂x) â(̂x)⊤ at the material point x̂
in the deformed configuration �̂, see for instance Odegard et al.
[11]. Therefore, in this case the balance of forces reads

d̂iv
(
T̂ (̂x)− m̂(̂x) â(̂x) â(̂x)⊤

)
= 0 in �̂. (12)

Note that in contrast to the turgor pressure (Equation 5), the
loads give rise to a stress component which is not of hydrostatic
type.

Proceeding similarly as before in Equation (6), we construct
the variational formulation in the current configuration, i.e.,

∫

�̂

T̂ (̂x) : D̂V̂(̂x) dx =
∫

�̂

m̂(̂x) â(̂x)⊤D̂V̂(̂x) â(̂x) dx for all V̂ ∈ Û .

(13)
Next we transform this stress tensor to the reference
configuration. First of all, we note that the fiber direction
may have been rotated during the deformation which can be
modeled by setting â = Fa

‖Fa‖2 . To see this, consider a point

x1 ∈ � and a second point x2 = x1 + ta(x1) with t > 0 in the
direction of the fiber a(x1). After the deformation the two points
are moved to x̂1 = x1 +U(x1) and x̂2 = x2 +U(x2). The current
(deformed) fiber direction â(̂x1) then is

lim
t→0

1
t (̂x2 − x̂1) = lim

t→0

1
t

(
x2 + U(x2)− x1 − U(x1)

)

= lim
t→0

1
t

(
ta(x1)+ U(x1 + ta(x1))− U(x1)

)

= a(x1)+ DU(x1)a(x1) =
(
id+ DU(x1)

)
a(x1)

= F(x1)a(x1).

Finally the current fiber direction is normalized and we obtain
â = Fa

‖Fa‖2 .
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Secondly, we assume that the tension m̂ scales such that any
volume retains its total tension, i.e.„ it is independent of the
volume change det F. The total tension along the fibers in an
arbitrary volume ω ⊂ � is

∫

ω

a⊤
(
m a a⊤

)
a dx =

∫

ω

m(x) dx.

Analogously, the total tension along the fibers in the current
configuration is

∫

ω̂

â⊤
(
m̂ â â⊤

)
â d̂x =

∫

ω̂

m̂ d̂x =
∫

ω

m̂
(
X̂(x)

)
det F(x) dx,

with ω̂ = X̂(ω). As the volume ω was arbitrary and both integrals
are assumed to be equal, we have m(x) = m̂

(
X̂(x)

)
det F(x),

or m̂ = (det F)−1m. Using these transformation rules for the
stress tensor m̂ â â⊤ and the Piola transform (Equation 8a) for
T̂ eventually yields the variational formulation on the reference
domain,

Find U ∈ U such that
∫

�

w′(F(x)) : DV(x) dx =
∫

�

m(x)
a(x)⊤F⊤(x)DV(x)a(x)

‖F(x)a(x)‖22
dx

for all V ∈ U .
(14)

Remark 1. It is worthwhile noting that both variational problems
(Equations 11 and 14) can also be obtained as the (formal) first-
order necessary optimality condition of an energy minimization
problem. That is, the forcing terms on the right hand sides
of Equation (11) and Equation (14) can be attributed to
a conservative force field. In the case of Equation (11), the
appropriate energy minimization problem reads

Find U ∈ U which minimizes

W(t)(U, t): =
∫

�

w(id+ DU(x)) dx

−
∫

�

t(x) det(id+ DU(x)) dx.

(15)

Indeed, one easily verifies that Equation (11) coincides with

W
(t)
,U (U, t)[V] = 0 for all V ∈ U,

i.e., the partial derivative of W(t) at (U, t) w.r.t. U is equal to zero
in all admissible directions V ∈ U .

In the case of fiber tension, one can verify in the same way that
Equation (14) coincides with the first-order optimality condition
of the energy minimization problem

Find U ∈ U which minimizes

W(m)(U,m) : =
∫

�

w(id+ DU(x)) dx

−
∫

�

m(x) ln‖(id+ DU(x))a(x)‖2 dx. (16)

We shall utilize this observation in the solution of the forward
problems, as detailed next.

2.2. Solution of the Forward Problem
The forward problems Equation (15) and Equation (16) will be
jointly denoted by

min
U∈U

W(U, c) (17)

The given load c is either the inner pressure t or the fiber tension
m. A common method to solve this non-linear problem is a
globalized Newton’s method applied to the first-order optimality
conditions. At iterate Uℓ, the search direction δUℓ is obtained
from

W,UU(Uℓ, c)[V, δU] = −W,U(Uℓ, c)[V] for all V ∈ U . (18)

and a subsequent update Uℓ+1 = Uℓ + αℓ δUℓ is performed. The
number αℓ > 0 is the step length from a line search procedure
for globalization. For the sake of completeness, we specify the
concrete form of the derivatives in Equation (18) for our two
examples. In case of the inner pressure t, we have

W(t)(U, t) =
∫

�

w(F) dx−
∫

�

t det F dx (19a)

W
(t)
,U (U, t)[V] =

∫

�

w′(F) : DV dx−
∫

�

tcof F : DV dx

(19b)

W
(t)
,UU(U, t)[V, δU] =

∫

�

w′′(F)[DV,DδU] dx

−
∫

�

t
(
F−⊤ : DδU

)(
cof F : DV

)

−
(
F−1DδU

)
:
(
DV⊤ cof F

)
dx (19c)

and in case of the fiber tensionm, we get

W(m)(U,m) =
∫

�

w(F) dx−
∫

�

m ln‖F a‖2 dx (20a)

W
(m)
,U (U,m)[V]=

∫

�

w′(F) : DV dx−
∫

�

m
a⊤F⊤DVa

‖Fa‖22
dx,

(20b)

W
(m)
,UU(U,m)[V, δU] =

∫

�

w′′(F)[DV,DδU] dx

−
∫

�

m

(
a⊤DV⊤DδUa

)

‖Fa‖22

− 2m

(
a⊤F⊤DδUa

) (
a⊤F⊤DVa

)

‖Fa‖42
dx.

(20c)

The spatial argument (x) was omitted here. Recall that F = id+
DU holds.

It is well known that Newton’s method for Equation (17)
needs to be globalized, otherwise large Newton steps may lead to
deformed bodies �̂ with regions of locally negative volume, i.e.,
det F(x) < 0. Globalization can be carried out by an incremental
method [6, Ch. 6.10] which can be expanded with homotopy
techniques. As an alternative, we use here a backtracking line
search with an Armijo rule, applied to the energyW in Equation
(17). This procedure ensures det F > 0.
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3. SETTING OF THE OPTIMAL CONTROL
PROBLEM

The goal of our optimal control problem is to determine a load
(control) which affects a given desired deformation (state) of the
work piece. The objective functions considered are of the form

I(U, c) = Q(U)+ γP(c) (21)

and they consist of a quality term Q for the state U and a penalty
or cost term P for the control c. We consider the two types of
control c that were mentioned in subsection 2.1:

• inner pressure c = t : � → R with the cost term P(t) =
1
2

∫
�
t(x)2 dx

• fiber tension c = m : � → R with the cost term P(m) =
1
2

∫
�
m(x)2 dx

For the quality part Q we discuss three options, a standard
tracking type functional and two new functionals, which are
termed regional penalization and desired direction. In each case,
we formulate the functional in the reference configuration and
give its derivative with respect to the displacement field U, which
is required for the numerical implementation.

Standard Tracking Type Objective
Functional
The stateU is matched against a desired stateUdes :� → R

3. The
difference is measured in terms of

Qtrack(U) =
1

2

∫

�

∥∥U(x)− Udes(x)
∥∥2
2
dx. (22)

For later reference we note that the first derivative of Q with
respect to U is

Qtrack
,U (U)[δU] =

∫

�

δU(x)⊤
(
U(x)− Udes(x)

)
dx. (23)

The tracking type functional Equation (22) is popular due to
its simplicity but it has a drawback when used for deformation
problems. Often it is not the displacement field which is the
desired quantity but rather the deformed body �̂ itself, which can
be achieved by many different displacement fields, and there is
no natural candidate Udes among them. The following two new
functionals can partly overcome these drawbacks.

Regional Penalization Functional
This quality functional can be used to avoid the deformed body
to enter certain areas. To this end, every point in R

3 is assigned a
penalty value given bymeans of a differentiable function q:R

3 →
[0,∞). Hence each material point X̂(x) = x + U(x) ∈ �̂ of the
deformed body carries the penalty value q(̂x), and the total quality
function can be formulated as

Qpen(U) =
∫

�̂

q(̂x) d�̂ =
∫

�

q
(
x+ U(x)

)
det

(
id+ DU(x)

)
dx.

(24)
This formula could be differentiated directly to obtain the formal
first-order derivative Q′

pen, but a simpler representation without

the derivative of q can be obtained with the help of Hadamard
shape calculus (see for instance [12] and [13]), as provided by
the following lemma. Note that the direction of differentiation
δU takes the role of the perturbation vector field of the current
configuration �̂ in the perturbation of identity approach.

Lemma 2. The derivative of Equation (24) in the direction of an
admissible displacement field δU ∈ U is given by

Q
pen
,U (U)[δU] =

∫

Ŵ

q
(
x+ U(x)

)
δU(x)⊤ cof F(x) n(x) dS. (25)

Proof. Let δU ∈ U be an arbitrary admissible perturbation
of the deformation U. We seek a representation of the
directional derivative Q

pen
,U (U)[δU]. The perturbation

δU can be viewed as a perturbation of the deformed
domain �̂ =

{
x̂ = x+ U(x), x ∈ �

}
, that is �̂t: ={

x+ U(x)+ t δU(x), x ∈ �
}
. Written in terms of the current

configuration, that is �̂t =
{
x̂+ t δÛ(̂x), x̂ ∈ �̂

}
, with the

transformed perturbation δÛ(̂x): = δU(X(̂x)). Following [12,
Proposition 2.46], the shape derivative for a volume integral

∫

�̂

q(̂x)d̂x

is given by
∫

∂�̂

q(̂x) δÛ(̂x)⊤n̂(̂x) d̂S, (26)

with the outer normal n̂ on the boundary ∂�̂. The next
step is the transformation of Equation (26) back to the
reference configuration �. The surface element becomes d̂S =
det F(x) ‖F(x)−⊤n(x)‖2 dS and the outer normal n̂(X̂(x)) is
F(x)−⊤n(x)

‖F(x)−⊤n(x)‖2
, see [6, Theorem 1.7-1]. Inserting all of these and

recalling cof F = (det F) F−⊤, we obtain

Q
pen
,U (U)[δU] =

∫

Ŵ

q
(
x+ U(x)

)
δU(x)⊤ cof F(x) n(x) dS

as claimed.

Desired Direction Functional
This quality term is motivated by the behavior of heliotropic
flowers which point their flower heads toward the sun. Suppose
that s ∈ R

3 is a normalized reference direction in the reference
domain, e.g., the longitudinal direction of the stem below the
flower head. Due to the deformation, this direction is rotated
(and may be stretched) into the current direction ŝ : �̂ → R

3.
Thus, we have

ŝ(X̂(x)) = F(x) s(x), x ∈ �. (27)

This current direction ŝ is now matched against a desired
direction sdes(x) : � → R

3, which leads to the quality term

Qdir(U) =
1

2

∫

�

‖F(x) s(x)− sdes(x)‖22 dx. (28)

Applying the chain rule and using F(x) = id+DU(x), we obtain
the following representation of directional derivatives:
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Lemma 3. The derivative of Equation (28) in the direction of an
admissible displacement field δU ∈ U is given by

Qdir
,U (U)[δU] =

∫

�

s(x)⊤DδU(x)⊤
(
F(x) s(x)− sdes(x)

)
dx. (29)

The optimal control problems we are considering are of the form

min
(U,c)

I(U, c) = Q(U)+ P(c)

s.t. U ∈ U

(30)

and the state equation W
( t)
,U (U, t)[V] = 0 is satisfied for all

V ∈ U .
The specific problem depends on the choice of the control c

(either inner pressure c = t, or fiber tension c = m), and the
choice of the quality term (tracking type Qtrack, desired direction
Qdir, or regional penalization Qpen).

4. SOLUTION OF THE OPTIMAL CONTROL
PROBLEM BY A REDUCED
QUASI-NEWTON METHOD

We pursue here a so-called black-box approach to solve the
optimal control problem (Equation 30), see Herzog and Kunisch
[14] for a general overview. To this end, the state equation is
eliminated by means of the control-to-state operator S : C → U ,
which assigns a solution U of the state equation for a given c, i.e.,

U = S(c) ⇔ W,U(U, c)[V] = 0 for all V ∈ U . (31)

C and U are suitable function spaces for the control and
admissible displacements, i.e., incorporating the Dirichlet
boundary condition (Equation 4). We note that the solution
U may not be unique, cf. [6, Section 5.8] for examples. In
practice, we evaluate S(c) using the globalized Newton procedure
outlined in Section 2.2, and starting from a previous state for
“neighboring” data c provides some control which solution is
returned.

By means of the control-to-state operator, the optimal control
problem Equation (30) reduces to the unconstrained problem

min
c

Ired(c) with Ired(c): = I(S(c), c) = Q(S(c))+ P(c). (32)

Next we state an adjoint-based representation of the derivative
Ired,c (c) ∈ C

∗. First of all, an application of the chain rule yields

Ired,c (c)[δc] = Q,U(U)
[
S,c(c)[δc]

]
+ P,c(c)[δc]. (33)

Here S,c(c) : C → U is the linearized control-to-state operator,
and through total differentiation of Equation (31), we see that
δU = S,c(c)[δc] is defined by

W,UU(U, c)[V, δU]+W,Uc(U, c)[V, δc] = 0 for all V ∈ U,

(34)

whereU = S(c). We define the adjoint state Z ∈ U as the solution
of the adjoint equation

W,UU(U, c)[Z,V]+ Q,U(U)[V] = 0 for all V ∈ U . (35)

Testing Equation (34) with V = Z and Equation (35) with
V = δU, we get

W,UU(U, c)[Z, δU]+W,Uc(U, c)[Z, δc] = 0,

W,UU(U, c)[Z, δU]+ Q,U(U)[δU] = 0,

and hence

Q,U(U)[δU] = W,Uc(U, c)[Z, δc].

With this identity and δU = S,c(c)[δc], we reformulate the
derivative (Equation 33) of Ired as

Ired,c (c)[δc] = W,Uc(U, c)[Z, δc]+ P,c(c)[δc]. (36)

The representation (Equation 36) of the reduced derivative Ired,c

can be used in derivative-based optimization algorithms. We
employ here a quasi-Newton method with an inverse limited-
memory BFGS-update shown in Algorithm 1 and Algorithm 2,
compare, e.g., [15, ch. 7.2] or [16, ch. 4]. These methods are
standard apart from their formulation in function space, which
is why we state them here.

Algorithm 1 Quasi-Newton method

input: routines to evaluate S(c), Ired(c), Ired,c (c); initial control c0
output: approximate solution c of Equation (32)
1: set k: = 0
2: calculate initial state U0: = S(c0) (see subsection 2.2)

and corresponding adjoint state Z0 from Equation (35) and
evaluate Equation (36) to obtain Ired,c (c0)

3: while (‖Ired,c (ck)‖C∗ is too large) do

4: evaluate δck: = −HkI
red
,c (ck) by means of Algorithm 2

5: determine a step size α by a Wolfe-Powell type line search,
which requires additional evaluations of state, adjoint state
and derivatives

6: set ck+1: = ck + α δck
7: store auxiliary functions sk: = ck+1 − ck and

yk: = Ired,c (ck+1)− Ired,c (ck) (for usage in Algorithm 2)
8: set k: = k+ 1
9: end while

For more details on the Wolfe-Powell line search method,
see Nocedal and Wright [15, Alg. 3.5, p. 60]. Verification of the
stopping criterion involves the evaluation of the norm of the
derivative Ired,c (ck) of the reduced objective in its native norm, i.e.,
the norm of the dual space C∗. We provide more details on this in
the discretized context in Section 5. The limited-memory BFGS
method in function space is detailed in Algorithm 2. Note that
only the m most recent pairs of data (sk, yk) are being used, and
hence older data can be dropped upon storing sk and yk in step 7
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of Algorithm 1, see Nocedal and Wright [15, ch. 6.1] for details.
For a practical Wolfe-Powell line search procedure we refer to
Nocedal and Wright [15, Algorithm 3.5].

Algorithm 2 Inverse Limited-Memory BFGS procedure to
evaluate Hk v ∈ C

input: initial inverse Hessian H0 : C
∗ → C, si ∈ C, yi ∈ C

∗,
i = k−m, . . . , k− 1, and direction v ∈ C

∗

output: Hk v ∈ C

1: set q: = v ∈ C
∗

2: for i: = k− 1, k− 2, . . . , k−m do

3: set ρi: = 1/〈si, yi〉C∗,C

4: set αi: = ρi 〈q, si〉C∗,C

5: set q: = q− αi yi ∈ C
∗

6: end for

7: set p: = H0 q ∈ C

8: for i: = k−m, 1, . . . , k− 1 do
9: set β: = ρi 〈yi, p〉C∗,C

10: set p: = p+ (αi − β) si ∈ C

11: end for

12: return p ∈ C

4.1. Discretization and Linear Solver
We discretize our problem by a finite element method (FEM)
on a hierarchy of uniformly refined tetrahedral meshes. We use
continuous, piecewise linear ansatz functions (P1) which satisfy
the boundary conditions (Equation 4) for the displacement U
and test functions, and piecewise constant functions (DG0) for
the control c, which may be either the inner pressure or the fiber
tension. This defines discrete versions of the spaces U and C.

In order to solve the linear systems (Equation 18) during
Newton’s method for the forward problem (Equation 17), we use
a preconditioned truncated conjugate gradient method (tCG).
Making use of the mesh hierarchy, we may employ a multigrid
V-cycle with symmetric pre- and post-smoothing for the stiffness
matrix of the linear elasticity model with Lamé constants λ,µ

as a preconditioner. As an experimental (and faster) alternative,
we applied in all numerical experiments below the multigrid V-
cycle to the current Newton matrix in Equation (18), which is
symmetric, but not necessarily positive definite. To overcome
this potential problem, we terminate the tCG method in case
the ’preconditioned norm’ of the residual becomes negative. This
safety occasionally became active in our numerical examples.
Despite possible truncation, the search direction obtained in
this way provides a greater reduction of the objective than the
direction of steepest descent.

The (linear) adjoint system (Equation 35) is also solved with
the tCG method with the same preconditioner as the forward
problem. Note that, if the solution U of the forward problem was
exact, then due to the energyminimization property, the operator
W,UU(U, c) is necessarily positive semi-definite. Consequently,
even for slightly inexact forward solutions, the truncation safeties
in the tCG method are unlikely to become active during the
solution of adjoint systems, and in fact they never did in our
numerical experiments.

5. NUMERICAL EXPERIMENTS

In this section we provide two examples which illustrate the use
of the objective functionals Equation (24) and Equation (28), as
well as the two control mechanisms by inner pressure and fiber
tension introduced above. In both examples, we work with the
polyconvex energy density w from Ciarlet [6, Ch. 4.10], i.e.,

w(F) = a ‖F‖2F + b ‖cof F‖2F + c (det F)2 − d ln(det F)+ e, (37)

where ‖A‖F = (A : A)1/2 denotes the Frobenius norm, and
a, b, c, d > 0 and e ∈ R are material constants. The term
ln(detF) can be viewed as a barrier term for the constraint
det F > 0, which avoids local self-penetration. When considered
a generalization of the energy density associated with a linear
elastic material, which is described by the Lamé parameters
λ,µ > 0, the parameters can be chosen according to

a =
µ

2
−

λ

8
, b =

λ

8
, c =

λ

8
, d = µ +

λ

2
,

e = −
3µ

2
−

λ

8
,

see Ciarlet [6, Ch. 4.10]. In the following numerical examples, we
use the parameters (all in N mm−2)

λ =
15

26
, µ =

5

13
, i.e.,, a =

25

208
, b =

15

208
, c =

15

208
,

d =
35

52
, e = −

135

208
,

which corresponds to a Young’s modulus of E = 1 N mm−2 and
a Poisson’s ratio of ν = 0.3 in the linear elasticity model obtained
by a linearization of Equation (37). All lengths in the subsequent
examples are given in mm as well. While the energy density
(Equation 37) characterizes an isotropic material behavior, i.e.,
w(QF) = w(F) for rotation matrices Q, our approach applies to
anisotropic materials as well.

Both our example problems are solved using the quasi-
Newton method Algorithm 1. As initial inverse Hessian
approximation H0 in Algorithm 2, we use the inverse of the L2

mass matrix in the control space, which is diagonal due to the
choice of DG0 elements. The relative stopping criterion for the
quasi-Newton loop (with iteration counter k) is chosen to be

‖Ired,c (ck)‖C∗ ≤ 10−4 ‖Ired,c (c0)‖C∗ ,

see step 3 of Algorithm 1, where the norm ‖·‖C∗ is computed
using the inverse of the diagonal L2 mass matrix in the control
space. The relative stopping criterion in Newton’s method (with
iteration counter ℓ) for the forward problem is

‖W,U(Uℓ, ck)‖P−1 ≤ 10−6 ‖W,U(U0, ck)‖P−1 ,

with the norm introduced by the multigrid preconditioner. As
mentioned before, we used a multigrid V-cycle applied to the
current Newton matrix W,UU(U0, ck) as preconditioner. The
initial iterate U0 is identical to the final iterate from the previous
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((k − 1)-st) quasi-Newton step, or U0 in case k = 0. The relative
stopping criterion for the residual in the tCG method (with
iteration counter j) is implemented as

‖W,U(Uℓ, ck)−W,UU(Uℓ, ck) δU
(j)‖P−1 ≤ 10−6 ‖W,U(Uℓ, ck)‖P−1 .

We use δU(0) = 0 as initial guess.

5.1. Desired Direction with Inner Pressure
Control
Example 6 (Part of a Heliotropic Flower Stem).We consider part
of a hollow stem, i.e, a tube with an inner radius r1 = 0.7,
an outer radius r2 = 1 and height h = 5. Dirichlet boundary
conditions are applied at the bottom surface x3 = 0. The control
is the inner pressure t as in Equation (15) and it acts between

the heights h = 0.5 and h = 4.5. We seek to align the top
part of the stem, which has a reference direction s = (0, 0, 1)⊤,
with a desired direction sdes = (0, sin 30◦, cos 30◦)⊤, which might
represent the direction toward the sun, see Figure 2. Our objective
is I(U, t) = Qdir(U)+ γP(t) with γ = 0.1.

The solution is shown in Figure 2 and it illustrates the
asymmetry in the frontal and rear regions of the stem. The
positive turgor pressure (that is a high osmotic potential) expands
the cells in the rear region while the negative turgor pressure
(that is a low osmotic potential) shrinks the cells in the frontal
region. As a consequence, the stem bends forward. The smooth
distribution of the turgor pressure seems plausibel to occur in
heliotropic flowers.

As for the numerical computation, the total number of
iterations of the outer quasi-Newton and the inner tCG loops
along with the number L of total mesh refinements can be found
in Figure 3. We start the iteration with U = 0 and c = 0 on all
meshes in order to observe the dependence of the method on the
level of refinement. The truncation safeties in the tCG method
with the experimental preconditioner occasionally became active
during the solution of the forward system for all examples,
but, as expected, only in early iterations of the quasi-Newton
loop.

The numerical experiment indicates that the number of
iterations of the quasi-Newton method does not increase on finer
meshes, and neither does the total number of tCG iterations.
Also the overall convergence behavior is similar across the
mesh refinement levels L = 0, 1, . . . , 4. This observed mesh-
independent behavior is a result of the proper choice of norms
and inner products (induced by the state and control function
spaces), especially in the limited memory-BFGS update formula.

Mesh State Objective QN Total
level L dofs U value I⋆ its tCG its

0 891 5408.17 16 59
1 5355 4253.06 16 1551
2 36,531 3993.53 19 1984
3 268,515 3929.27 18 1942
4 2,056,131 3914.72 17 1912

FIGURE 3 | Numerical results from the quasi-Newton method for

Example 6. Top: Number of iterations for various mesh refinement levels L.

Bottom: Convergence behavior of the quasi-Newton method for various

levels L.

FIGURE 2 | Left: Front and back view of a triangulation (on mesh level L = 0) of half of the hollow stem. The yellow arrow represents the desired direction

s
des, which points toward the sun. Right: The solution of the optimal control problem. The inner pressure t is illustrated in the blue/red scale and the deformation is

applied to the stem.
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FIGURE 4 | Left: The undeformed body � and the half plane H from Example 7. The colored scaling indicates the value of the penalization function q. Right:

The deformed body with the fiber tension in red (shorting of fibers) and blue (elongation) for γ = 0.1,1,10,100.

FIGURE 5 | The values of the quality term Q and the penalty term P for

various values of the penalty parameter γ.

5.2. Regional Penalization with Fiber
Tension Control
Example 7 (Bar and Plane). Consider a bar � = (0, 5) ×
(0, 1) × (0, 1) which is clamped at the left boundary ŴD

: =
{0} × (0, 1) × (0, 1). We use as control the fiber tension m along
the fiber direction a = (1, 0, 0)⊤ in the undeformed body. We seek
a control m such that the deformed body avoids the half space

H: =
{
x ∈ R

3
: x1 − x3 − 2 ≥ 0

}
.

We penalize the intrusion into this region by the quality functional
Qpen from Equation (24) with the penalty kernel

q(̂x) = [̂x1 − x̂3 − 2]+ε ,

where [·]+ε is the smoothed positive part function

[x]+ε : = 1
2

(√
x2 + ε2 + x

)
. We choose the smoothing parameter

ε = 10−4 and our objective is I(U,m) = Qpen(U) + γP(m). The
penalty kernel q is a smoothed version of [̂x1 − x̂3 − 2]+ which
helps avoid numerical integration problems in the volume integral
(Equation 24).

We considered several values for the penalty parameter γ

in the numerical experiments. Figure 4 shows that an increase
in γ puts more weight on the size of the control, which results
in a more pronounced intrusion into the obstacle H. In case of
γ = 0.1, the deformed body �̂ completely avoids the obstacle.

Note that also the region near the obstacle is slightly penalized
due to the use of [·]+ε . Figure 5 shows the variation of the two
parts in the objective w.r.t. γ.

6. CONCLUSIONS

In this manuscript we introduced two novel interior forces,
inner pressure and fiber tension, which are integrated into the
variational formulation of a non-linear elasticity problem. It has
been shown that there exist corresponding energy potentials for
these forces and thus we can employ a globally convergent line-
search Newton method, which avoids local self penetration. We
formulated an optimal control framework with two non-standard
objective functionals, regional penalization and desired direction.
Formal derivatives of these functionals are obtained partly by
shape calculus.

As an optimization algorithm, we described a quasi-
Newton method Algorithm 1 in a function space setting.
Numerical experiments suggest that this method provides
a mesh-independent convergence behavior, that is, there
is an upper bound to the iteration numbers across all
mesh sizes. The same applies to the Newton solver for
the forward problem as well as the truncated CG method
inside.
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