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On Singular Interval-Valued Iteration
Groups

Marek C. Zdun*

Institute of Mathematics, Pedagogical University of Cracow, Kraków, Poland

Let I = (a,b) and L be a nowhere dense perfect set containing the ends of the interval I

and let ϕ : I → R be a non-increasing continuous surjection constant on the components

of I \ L and the closures of these components be the maximal intervals of constancy

of . The family F t t R of the interval-valued functions F t 1ϕ { , ∈ } (x): = ϕ− [t + ϕ(x)], x ∈ I

forms a set-valued iteration group. We determine a maximal dense subgroup T ( R

such that the set-valued subgroup {F t, t ∈ T} has some regular properties. In particular,

the mappings T � t → F t(x) for t ∈ T possess selections f t(x) ∈ F t(x), which are disjoint

group of continuous functions.

Keywords: iteration group, set-valued functions, simultaneous functional equations, Cantor set, singular Lebesgue

function

1. INTRODUCTION

A family of functions {f t : I → I, t ∈ R} such that f t ◦ f s = f t+s, t, s ∈ R is said to be
an iteration group, however a family of set-valued functions {Ft : I → 2I, t ∈ R} such that
Ft ◦ Fs = Ft+s , t, s ∈ R is said to be a set-valued iteration group (abbreviated to s-v iteration
group). The notion of an iteration semigroup of set-valued functions was introduced and studied by
Smajdor [1] and then studied in some classes of set-valued functions (see e.g., [2], [3], [4], [5]). The
fundamental problem in the theory of multivalued iteration semigroups is the problem of existence
and regularity properties of continuous selections. In this note we considered particular set-valued
iteration groups whose values are the intervals or singletons. The presented results complete and
generalize some of the topics from Zdun [6]. The considered s-v iteration groups have the very
irregular properties. For every such s-v iteration group {Ft : I → 2I, t ∈ R} we find a special
maximal additive subgroup T ⊂ R such that group {Ft : I → 2I, t ∈ T} has several “regular”
properties.

2. MATERIALS AND METHODS

Let I = (a, b) and ϕ : I → R be a surjection. Define the set-valued functions

Ft(x): = ϕ−1[ϕ(x)+ t], t ∈ R, x ∈ I. (1)

The surjection ϕ is said to be the generating function of the family {Ft}.

THEOREM 1
The family {Ft : I → 2I} is a set-valued iteration group, i.e.,

Ft ◦ Fs = Ft+s, t, s ∈ R,
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where

Ft ◦ Fs(x) =
⋃

y∈Fs(x)

Ft(y) x ∈ I.

Moreover, x /∈ Ft(x) for t 6= 0.

Proof. Fix an x ∈ I. Let z ∈ Ft ◦ Fs(x). Then there exists a
y ∈ Fs(x) such that z ∈ Ft(y). This means that ϕ(y) = ϕ(x) + s
and ϕ(z) = ϕ(y)+ t, which gives that ϕ(z) = ϕ(x)+ t+ s. Hence
z ∈ Ft+s(x). Similarly we prove the converse inclusion. �

If ϕ is a homeomorphism then Equation (1) defines the general
form of continuous iteration groups such that F1(x) 6= x for
x ∈ I.

If ϕ is non-injective then s-v iteration group generated by ϕ

has very irregular properties and we will call this group singular.
The purpose of this paper is the study of these “singularities.”

Obviously the set-valued functions Ft, t ∈ R pairwise
commute. This property is not transferible on the continuous
selections of these set-valued mappings.

Let us assume that there exist Fu, Fv with u
v /∈ Qwhich possess

homeomorphic commuting selections f and g, that is f (x) ∈

Fu(x) and g(x) ∈ Fv(x) for x ∈ (a, b) and f ◦ g = g ◦ f . Then the
generating function ϕ satisfies the equations ϕ(f (x)) = ϕ(x) + u
and ϕ(g(x)) = ϕ(x) + v. Note that then f , g are iteratively
incommensurable, i.e.,

f n(x) 6= gm(x), n,m ∈ Z, |n| + |m| > 0, x ∈ I,

where f n denotes the n-th iterate of function f and f 0 = id. Define

Lf ,g : = {f n ◦ gm(x), n,m ∈ Z}d.

The set Lf ,g does not depend on x and either this set is the interval
cl I or Lf ,g is a nowhere dense perfect set in I (see Zdun [7]). If the
generating function ϕ is continuous at least at one point of Lf ,g
then it is continuous and it is monotonic (see [8]).

We have more

THEOREM 2
If f and g are commuting iteratively incommensurable
homeomorphisms, then there exist infinitely many s-v iteration
groups {Ft, t ∈ R} of type (1) such that f (x) ∈ F1(x) and
g(x) ∈ Fs(x) for an s /∈ Q, but the only one of them has a
monotonic generating function ϕ. Then the generating function ϕ

is continuous and ϕ[Lf ,g] = R.

The proof is a simple consequence of Theorem 2 and Corollary 1
in Zdun [8].

The family {Ft, t ∈ R} is a single-valued iteration group if and
only if Lf ,g = [a, b]. Then ϕ is strictly monotonic (see Zdun [8]).

In this paper we consider the case where Lf ,g 6= [a, b], that is
{Ft : t ∈ R} is a proper set-valued iteration group.

In the next section we will consider the more general case.

3. RESULTS

Assume the following general hypothesis:

(H) ϕ : I → R is a non-decreasing and non-injective surjection.

Then the function ϕ is continuous and the values of Ft are closed
intervals or singletons. Denote by {Iα, α ∈ A} a family of the
intervals of constancy of ϕ. These intervals are closed. Put

L∗: = I \
⋃

α∈A

Iα

and

L: = I \
⋃

α∈A

Int Iα . (2)

Note that ϕ|L∗ is strictly increasing, ϕ[Iα] are singletons and if
Iα < Iβ then ϕ[Iα] < ϕ[Iβ ].

It is easy to verify that the s-v iteration group {Ft : I →

cc[I], t ∈ R} generated by ϕ has the following properties.

PROPOSITION 1
(i) For every x ∈ I Ft(x) either is a closed proper interval Iα or a

singleton belonging to L∗;
(ii) for every x ∈ I the s-v function t → Ft(x) is strictly decreasing,

i.e., if s < t then for every u ∈ Fs(x) and v ∈ Ft(x), u < v;
(iii) for every x ∈ I

⋃

t∈R Ft(x) = I;
(iv) every s-v function Ft is constant on the intervals Iα;
(v) if s 6= t then Ft(x) ∩ Fs(x) = ∅ for x ∈ I, that is the group

{Ft, t ∈ R} is disjoint.

The conditions (i), (ii), (iii) characterize the interval-valued
iteration groups. We have the following.

PROPOSITION 2
If an s-v iteration group {Ft, t ∈ R} satisfies conditions (i), (ii), and
(iii), where {Iα, α ∈ A} is a given family of closed disjoint proper
intervals, then there exists a function ϕ satisfying (H) such that Ft

are given by the formula (1).

Proof. Define

X : = {{x}, x ∈ L∗} ∪ {Iα, α ∈ A}.

Let x0 ∈ I and put h(t): = Ft(x0). Note that h is a bijection from
R onto X . Define ϕ by the following way: if x ∈ Iα for an α ∈ A
then ϕ(x): = h−1(Iα), if x ∈ L∗ then ϕ(x): = h({x}). It is easy to
see that ϕ is a non-decreasing surjection of I onto R constant on
the intervals Iα and

ϕ[h(t)] = t, t ∈ R.

Since Ft ◦ Fs(x0) = Ft+s(x0) we have

Ft[h(s)] = Ft+s(x0) = h(s+ t), s, t ∈ R.
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Hence

ϕ[Ft(h(s))] = ϕ[h(s+ t)] = s+ t.

Let x ∈ I. Then, by (iii), there exists an s ∈ R such that x ∈ h(s).
Hence ϕ(x) ∈ ϕ[h(s)] = s, thus ϕ(x) = s. This gives that
ϕ[Ft(x)] ⊂ ϕ[Ft(h(s)] = ϕ(x)+ t, so

ϕ[Ft(x)] = ϕ(x)+ t. (3)

Since Ft(x) ⊂ ϕ−1[ϕ[Ft(x)]] we have Ft(x) ⊂ ϕ−1[ϕ(x) + t].
Note that ϕ−1[ϕ(x) + t] is a singleton or equals to one of the
intervals Iα . If F

t(x) is a singleton then, by (i), Ft(x) /∈ Iα for any
α ∈ A. Thus ϕ−1[ϕ(x) + t] is not any of the intervals Iα , so it is
a singleton. If Ft(x) is an interval Iα, then ϕ−1[ϕ(x+ t)] must be
also the same interval. This gives equality Ft(x) = ϕ−1[ϕ(x+ t)].

�

PROPOSITION 3
Let a family of set-valued function Ft be given by (1), where ϕ

satisfies (H). Define

f t−(x): = inf Ft(x), f t+(x): = sup Ft(x)

for t ∈ R, x ∈ I. Then

(i) the families {f t−, t ∈ R} and {f t+, t ∈ R} are iteration groups;
(ii) f t− and f t+ for t ∈ R are non-decreasing discontinuous

functions constant on the intervals of constancy of ϕ;
(iii) the mappings t → f t±(x) are strictly decreasing;
(iv) f t−[I] ⊂ L, f t+[I] ⊂ L, t ∈ R;
(v) Ft(x) = [f t−(x), f

t
+(x)], t ∈ R.

Proof. (i) Fix an x ∈ I. Note that f t−(x), f t+(x) ∈ Ft(x) since
the sets Ft(x) are closed. Hence, by Equation (1),

ϕ(f t±(x)) = ϕ(x)+ t, (4)

so ϕ(f t±(f
s
±(x))) = ϕ(x)+ t + s = ϕ(f t+s

± (x)). This implies that

f t±(f
s
±(x)) ∈ Iα and f t+s

± (x) ∈ Iα = Ft+s(x)

for an α ∈ A or both belong to L∗, since Iα for α ∈ A are the
intervals of constancy of ϕ. Obviously, in the second case, both
values are equal. However, at the first case, f t+(f

s
+(x)) ≤ sup Iα =

f t+s
+ (x) and f t+s

− (x) = inf Iα ≤ f t−(f
s
−(x)). On the other hand,

putting f s+(x) = :y we have that f t+(y) ∈ Iα and f t+(y) ∈ Ft(y).
Hence Ft(y) = Iα and f t+(y) = sup Iα ≥ f t+s

+ (x). This gives that

f s+(f
t
+(x)) = f t+s

+ (x).

Similarly we prove that

f s−(f
t
−(x)) = f t+s

− (x).

(iv) Proving (i) we have shown that f t±(x) either belong to L∗ or
equals to one of the ends of the interval Iα which belong to L.
Both cases give that f t±(x) ∈ L.

The remaining assertions are the simple consequences of
formula (Equation 1). �

Let ϕ be non-decreasing and non-injective surjection. Define
the following family of functions

Realm(ϕ): = {f : I → I : ∃cf ∀x∈I ϕ(f (x)) = ϕ(x)+ cf }.

The index cf is uniquely determined. This allows us to define

ind f : = cf .

As a particular case of Proposition 2.2 in Farzadfard and Zdun [9]
we get the following

LEMMA 1
If f ∈ Realm(ϕ) then the following conditions are equivalent:

(i) ϕ[L∗] = ϕ[L∗]+ ind f ;
(ii) ϕ[I \ L∗] = ϕ[I \ L∗]+ ind f ;
(iii) f [L∗] = L∗;
(iv) f maps each Iα into another one; moreover for every Iβ there

exists Iα such that f [Iα] ⊂ Iβ .

Let ϕ satisfy (H) and define

T: = {t ∈ R : ϕ[I \ L∗]+ t = ϕ[I \ L∗]}. (5)

If T 6= {0}, then T is a countable Abelian subgroup of group
(R,+).

In fact, since ϕ is constant in the intervals Iα, we have ϕ[I \
L∗] = {ϕ[Iα], α ∈ A}. It is easy to see that this set is unbounded
above and below thus it is infinite and, consequently, countable
since the intervals {Iα, α ∈ A} are pairwise disjoint.

DEFINITION 1
A subgroup T given by Equation (5) is said to be a supporting
group of the s-v iteration group {Ft : t ∈ R}.

THEOREM 3
Let T 6= {0} be a supporting group of s-v iteration group {Ft :t ∈ R}

generated by a function ϕ satisfying (H). Then

(i) if t ∈ T then for every x ∈ L∗ Ft(x) is a single point and
Ft(x) ∈ L∗;

(ii) if t ∈ T then for every α ∈ A there exists β ∈ A such that
Ft(x) = Iβ for x ∈ Iα;

(iii) if t ∈ T then for every β ∈ A there exists α ∈ A such that
Ft(x) = Iβ for x ∈ Iα ;

(iv) if Ft[L∗] = L∗ then t ∈ T.

Proof. (i) By Equation (2) f t−, f t+ ∈ Realm(ϕ), ind f t± = t for
t ∈ R and ϕ(f t−(x)) = ϕ(f t+(x)). By Lemma 1 f t±(x) ∈ L∗ for
x ∈ L∗. Since ϕ|Iα is injective f t−(x) = f t+(x) for x ∈ L∗. Thus, by
Proposition 3 (v), Ft(x) is a singleton belonging to L∗.

(ii) Let x ∈ Iα . By Lemma 1 f t±(x) ∈ Iβ for a β ∈ A. Thus
Ft(x) ⊂ Iβ . If F

t(x) is a singleton then, by Proposition 1 (i), Ft(x)
belongs to L∗, so f t±(x) ∈ L∗, but this is a contradiction. Thus
Ft(x) is a proper interval, so Ft(x) = Iβ .

(iii) Fix a β ∈ A. Since ϕ[Iβ ] is a singleton and ϕ is a surjection
from I ontoR there exists an x ∈ I such that ϕ[Iβ ] = t+ϕ(x), that
is Ft(x) = Iβ . Suppose x ∈ L∗. Then, by Lemma 1, f t±(x) ∈ L∗, but
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this is a contradiction since f t±(x) ∈ Ft(x) = Iβ , so there exists an
α ∈ A such that x ∈ Iα .

(iv) Since ϕ satisfies relation Equation (3) we have ϕ[L∗] =

ϕ[Ft[L∗]] = ϕ[L∗]+ t, so, by Lemma 1, t ∈ T. �

Directly by Theorem 3 we get the following

COROLLARY 1
Let T 6= {0} be the supporting group of the s-v group {Ft : t ∈ R}

with generating function satisfying (H). Then

(i) T = {t ∈ R : ∀ω∈A ∃ω∈A Ft[Iω] = Iω};
(ii) T = {t ∈ R : ∀x∈L∗ F

t(x) is a singleton};
(iii) T = {t ∈ R : Ft[L∗] = L∗}.

DEFINITION 2
A family of continuous mappings {f t : I → I, t ∈ T} such that
f t ◦ f s = f t+s for t, s ∈ T is said to be a T-iteration group.

Now we consider the problems connected with continuous
selections of s-v iteration groups. The iteration groups {f t−, t ∈

R} and {f t+, t ∈ R} are the monotonic selections of s-v group
{Ft, t ∈ R} that is f t±(x) ∈ Ft(x), but they are discontinuous.

Let ϕ satisfies (H) and Iα = :[aα, bα] for α ∈ A be the
intervals of constancy of ϕ. For t ∈ T define the affine mappings
qt,α : [aα, bα] → I such that

qt,α(aα) = f t−(aω) and qt,α(bα) = f t+(bα).

For every t ∈ T define the following mapping

qt(x): =

{

qt,α(x), x ∈ Iα
f t+(x), x ∈ L∗.

(6)

LEMMA 2
If T 6= {0} is the supporting group of s-v group {Ft:t ∈ R} generated
by a function satisfying condition (H), then {qt : I → I, t ∈ T} is a
T-iteration group of continuous functions. Moreover, qt(x) ∈ Ft(x)
for t ∈ T and x ∈ I.

Proof. Note that qt,α[Iα] = Ft[Iα] and Ft[Iα1 ] < Ft[Iα2 ] if
Iα1 < Iα2 . Hence, by Theorem 3, it follows that the mappings
qt are strictly increasing surjections and, consequently, they are
continuous.

It follows that for every t, s ∈ T, qt ◦ qs[Iα] = qt[Fs[Iα]] =

Ft[Fs[Iα]] = Ft+s[Iα] = qt+s[Iα]. Since the composition of
affine functions is an affine function and there exists a unique
increasing affine function mapping Iα onto the interval Ft+s[Iα]
we get that qt ◦ qs = qt+s on Iα . Now it is easy to see that
Proposition 3 implies our assertion. �

THEOREM 4
If s-v group {Ft : t ∈ R} generated by a function satisfying
condition (H) has a non trivial supporting group T, then there
exists infinitely many disjoint T-iteration groups {f t, t ∈ T} of
continuous functions such that f t(x) ∈ Ft(x) for t ∈ T and x ∈ I.
T is a maximal additive group with this property.

Proof. Let γ :I → I be a homeomorphism such that γ (x) = x
for x ∈ L and for every α ∈ A γ [Iα] = Iα . Put

f t: = γ−1 ◦ qt ◦ γ, t ∈ T.

It follows, by Lemma 2, that {f t, t ∈ T} is a T-iteration group and
f t(x) ∈ Ft(x).

Let Ft have a continuous and strictly increasing selection f .
Since for every α ∈ A, f [Iα] is a proper interval, F

t[Iα] is also an
interval. Thus, by Corollary 1, t ∈ T. �

Let us make the following assumptions.

(i) Let L be a Cantor set in I, that is L is a nowhere dense perfect
set in I = (a, b) and a, b ∈ L.

(ii) Let Iω , ω ∈ Q be open pairwise disjoint intervals such that

I \ L = :

⋃

ω∈Q

Iω.

(iii) Let ϕ : I → R be a Lebesgue function which lives on a set
L that is ϕ is a continuous non-increasing surjection constant
on cl Iω and, let cl Iω be the maximal intervals of constancy of
ϕ.

The conditions (i), (ii), and (iii) imply that ϕ is continuous and

ϕ[L] = R.

THEOREM 5
Let T be the supporting group of s-v group {Ft : t ∈ R} generated by
a function ϕ satisfying condition (H). If the group T is acyclic then
the set L defined by (2) is a Cantor set and ϕ is a Lebesgue function
which lives on L.

Proof. By Lemma 2 the family of mappings {qt, t ∈ T}
defined by Equation (6) is a disjoint T-iteration group. Denote by
LT the set of limit points of the orbits O(x) = {qt(x) : t ∈ T},
i.e., LT = O(x)d. In Zdun [10] (see Th.1) it is proved that
the set LT does not depend on x and LT is either a Cantor
set in I or LT = [a, b] or LT = {a, b}. Moreover, LT =

{a, b} if and only if {qt, t ∈ T} is a cyclic group (see [10]
Theorem 2).

Since qt(x) ∈ Ft(x) we have ϕ(qt(x)) = ϕ(x) + t for x ∈ I.
LT 6= [a, b]. In fact, suppose that LT = [a, b]. Fix an x ∈ I
and an interval Iα . By the density of the orbit O(x) there exist
u, v ∈ R such that u 6= v and qu(x), qv(x) ∈ Iα . Hence ϕ(x)+u =

ϕ(qu(x)) = ϕ(qv(x)) = ϕ(x)+ v what is a contradiction.
By Proposition 1 (ii) and Lemma 2 the mapping 8(t): = qt

is an isomorphism of T onto the group {qt, t ∈ T}. Thus T is
cyclic if and only if {qt, t ∈ T} is cyclic, so T is cyclic if and
only if LT = {a, b}. Hence T is acyclic if and only if LT is a
Cantor set.

If T is acyclic then ϕ lives on LT . Let x ∈ LT and t ∈ T. Then
qt(x) = f t+(x) ∈ L. Thus O(x) ⊂ L and, consequently, LT ⊂ L, so
L is also a Cantor set. By the assumption ϕ lives on L, however by
the definition of qt ϕ lives on LF . Thus we get LF = L. �
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THEOREM 6
If f , g are commuting, iteratively incommensurable
homeomorphisms and Lf ,g 6= cl I, then f and g are embeddable in
a non-extensible disjoint T-iteration group {f t, t ∈ T}, where T is
a dense, countable subgroup of R.

Proof. By Theorem 2 there exists an s-v iteration group {Ft :

t ∈ R} with continuous non-decreasing generating function ϕ

such that f (x) ∈ F1(x) and g(x) ∈ Fs(x) for an s /∈ Q and
ϕ[Lf ,g] = R. Since Lf ,g 6= cl I, ϕ is a Lebesgue function which
lives on Lf ,g . Define T by Equation (5). By Theorem 5 f and g are
embeddable in a T-iteration group {f t, t ∈ T}. Since 1, s ∈ T the
group T is dense. �

4. DISCUSSION

In this note we consider the relation between the iteration groups
of monotonic functions and the interval-valued iteration groups.
These groups are still poorly investigated.

In Section 2 we indicate a desirability of the generalization of
classical iteration groups in the real case. It is known that not all
commutable iteratively incommensurable homeomorphisms are
embeddable in an iteration group. However, Theorem 2 shows
that the embeddabilty is always possible for s-v iteration groups.

Propositions 1 and 2 characterize s-v iteration groups of the
form Equation (1). It is shown that, in our investigations, the

form Equation (1) of s-v iteration groups are quite natural.
Proposition 3 shows how s-v iteration groups of the form
Equation (1) determine iterations groups of non-decreasing
functions which are not injective.

A key concept of the paper is the supporting group T defined
by Equation (5). If T is non-trivial additive group then it
is countable and the set of all intervals of constancy of the
generating function ϕ is also countable. Theorem 3 and Corollary
1 explain the meaning of the supporting group T. The restricted
s-v group {Ft : t ∈ T} has a property that s-v functions Ft

transform the intervals of constancy of the generating function
ϕ onto itself and the points from its complement, that is the set
L∗, onto singletons in L∗. Moreover, Theorem 4 and Corollary 1
show that each s-v function Ft for t ∈ T has continuous selection
f t such that family {f t : t ∈ T} forms a group. Moreover, any Ft

for t /∈ T has no continuous selection.
We have also proved that supporting group T is acyclic if and

only if the generating function ϕ is a Lebesgue function which
lives in a Cantor set.

The presented results may be helpful in the
constructions of different iteration groups of non-decreasing
functions.
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4. Łydzińska G. On lower semicontinuity of some set-valued

iteration semigroups. Nonlinear Anal. (2009) 71:5644–54. doi:

10.1016/j.na.2009.04.051

5. Piszczek M. On multivalued iteration semigroup. Aequat Math. (2011) 81:97–

108. doi: 10.1007/s00010-010-0034-1

6. ZdunMC. On set-valued iteration groups generated by commuting functions.

J Math Anal Appl. (2013) 398:638–48. doi: 10.1016/j.jmaa.2012.09.016

7. Zdun MC. Note on commutable functions. Aequat Math. (1988) 36:153–64.

8. Zdun MC. On simultaneous Abel equations. Aequat Math. (1989) 38:163–77.

9. FarzadfardH, ZdunMC.On a limit formula for regular iterations. J Math Anal

Appl. (2016) 443:947–58. doi: 10.1016/j.jmaa.2016.05.068

10. Zdun MC. On the orbits of disjoint groups of continuous functions. Rad Mat.

(1992) 8:95–104.

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Zdun. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 September 2016 | Volume 2 | Article 13

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

	On Singular Interval-Valued Iteration Groups
	1. Introduction
	2. Materials and Methods
	3. Results
	4. Discussion
	Author Contributions
	References


