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The closedness type regularity conditions have proven during the last decade to be

viable alternatives to their more restrictive interiority type counterparts, in both convex

optimization and different areas where it was successfully applied. In this review article

we de- and reconstruct some closedness type regularity conditions formulated by means

of epigraphs and subdifferentials, respectively, for general optimization problems in order

to stress that they arise naturally when dealing with such problems. The results are then

specialized for constrained and unconstrained convex optimization problems. We also

hint toward other classes of optimization problems where closedness type regularity

conditions were successfully employed and discuss other possible applications of them.

Keywords: convex optimization, duality, closedness type regularity conditions, conjugate functions, epigraphs,

subdifferentials
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1. INTRODUCTION AND PRELIMINARIES

Regularity conditions play a key role in optimization and nonsmooth analysis, as additional
hypotheses that guarantee the fulfillment of strong or converse duality, necessary and/or optimality
conditions and various formulae, respectively. In convex optimization there have been proposed
a number of regularity conditions (also called constraint qualification when they involve only the
constraints of the considered problem), depending on the initial assumptions. For instance, in the
differentiable case one employs the regularity conditions due to Abadie, Guignard, orMangasarian-
Fromowitz, while for nondifferentiable constrained optimization problems one has the Slater
constraint qualification. However, the latter is a priori violated for many classes of problems where
the constraint cone has an empty interior, and several generalizations were proposed for it, the so-
called interiority type regularity conditions, that involve notions of generalized interior of a set.
But even these fail for large classes of problems and, inspired by Precupanu’s pioneering work [1],
Burachik, Jeyakumar and their coauthors, and on the other hand Boţ, Wanka and their coauthors
have proposed in [2–9] a new class of regularity conditions, the closedness type ones. They have
proven first to be sufficient conditions for guaranteeing duality statements in optimization and
subdifferential formulae in convex analysis, delivering in the meantime results and formulae in
some related research fields as well. They have proven thus to be viable alternatives to their more
restrictive interiority type counterparts. In this review paper, that enhances and completes a similar
study provided in the book [10], we provide a general look on the usage of the closedness type
regularity conditions in the literature until now, showing that they arise naturally while dealing
with optimization problems and pointing toward different assertions from the literature that can
be rediscovered as special cases of the mentioned general results. To this end we deconstruct
and then reconstruct closedness type regularity conditions formulated by means of epigraphs
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and subdifferentials, respectively, for general optimization
problems, showing afterwards how to particularize them for
constrained and unconstrained optimization problems.

As mentioned above, the first papers dealing with closedness
type regularity conditions for convex optimization problems
were [2–7], having as a starting point earlier statements from
Precupanu [1]. Afterwards, it was noticed that other regularity
conditions from the literature such as the Basic Constraint
Qualification (see for instance, [11–13]) or the Farkas-Minkowski
Constraint Qualification (cf. [14–16]) can be recovered as special
cases of some general closedness type regularity conditions.

Let X and Y be locally convex Hausdorff vector spaces, whose
topological dual spaces are denoted by X∗ and Y∗, respectively.
The dual spaces can be endowed with different topologies among
which the weak∗ ones, denoted by ω(·∗, ·) or shortly ω∗, will be
considered for formulating closedness type regularity conditions.
The natural topology on R is denoted by R. By 〈x∗, x〉 = x∗(x)
we denote the value at x ∈ X of the linear continuous functional
x∗ ∈ X∗. A cone K ⊆ X is a nonempty subset of X which fulfills
αK ⊆ K for all α ≥ 0. A convex cone K ⊆ X induces on X the
partial ordering “≦K” defined by x ≦K y whenever y − x ∈ K,
where x, y ∈ X. If x ≦K y and x 6= y we write x ≤K y. To
X a greatest element with respect to “≦K” denoted ∞K /∈ X
can be attached and we define X• = X ∪ {∞K}. Then for any
x ∈ X one has x ≤K ∞K and we consider on X• the operations
x + ∞K = ∞K + x = ∞K for all x ∈ X and α · ∞K = ∞K

for all α ≥ 0. The dual cone of K is K∗ = {x∗ ∈ X∗
: 〈x∗, x〉 ≥ 0

∀x ∈ K}. By convention, 〈x∗,∞K〉 = +∞ for all x∗ ∈ K∗.
Given a subset U of X, by clU, intU and coneU we denote

its closure, interior and conical hull, respectively. Moreover,
if U is convex, by sqriU =

{

x ∈ U : cone(U −

x) is a closed linear subspace
}

we denote its strong quasi-relative
interior. When U ⊆ R

n we denote by riU its relative interior,
which coincides in this case with sqriU. The indicator function of
U is δU :X → R = R∪{±∞}, defined as δU(x) = 0 if x ∈ U and
δU(x) = +∞ otherwise, while its support function σU :X∗ → R is
given by σU(x

∗) = supx∈U〈x
∗, x〉. The normal cone associated to

the setU at x ∈ U isNU(x) =
{

x∗ ∈ X∗
: 〈x∗, y− x〉 ≤ 0 ∀y ∈ U

}

and, for ε ≥ 0, the ε-normal set of U at x ∈ U is Nε
U(x) =

{

x∗ ∈

X∗
: 〈x∗, y − x〉 ≤ −ε ∀y ∈ U}. The projection function of X is

PrX :X × Y → X, defined by PrX(x, y) = x for (x, y) ∈ X × Y ,
the identity function of X is id :X → X, id(x) = x for x ∈ X and,
for n ∈ N, we use the notation 1Xn = {(x, . . . , x) : x ∈ X} ⊆ Xn.

For being able to deliver by means of duality very general
regularity conditions for the problem of guaranteeing the
maximal monotonicity of the sum of two maximal monotone
operators defined in reflexive Banach spaces, we introduced in
Boţ et al. [17] the notion of a set closed regarding a subspace
(see also [18–20]). For the investigations in this study even more
general closedness notions are necessary, that were first proposed
in Boncea and Grad [21] (and when Z = X × R, in [22]; see
also [10]).

Definition 1.1. Given ε ≥ 0, a set U ⊆ X × R is said to be
(0, ε)-vertically closed regarding the set Z ⊆ X × R if (clU) ∩
Z ⊆ (U ∩ Z) − (0, ε), while when Z = X × R, U is called
simply (0, ε)-vertically closed. Moreover, a set U ⊆ X that fulfills

(clU)∩W = U∩W, whereW ⊆ X, is said to be closed regarding
the set W.

Remark 1. A set U ⊆ X is closed if and only if it is closed
regarding the whole space X. Each closed set U ⊆ X is
closed regarding any other set W ⊆ X, but a set U ⊆ X that is
closed regarding someW ⊆ X is not necessarily closed, as shown
below in Example 1.

Example 1. The interval [0, 1) ⊆ R is closed regarding the set
{0}, but not closed.

Example 2. The set {0} × (0,+∞) ⊆ R
2 is (0, ε)-vertically

closed regarding the set [−1, 1] × (−1,+∞) for all ε > 0, but
there is no ε ≥ 0 for it to be (0, ε)-vertically closed regarding
the set [−1, 1] × (−∞, 0]. On the other hand, the set [0, 1] ×
(0,+∞) ⊆ R

2 is (0, ε)-vertically closed for all ε > 0, while the
set [0, 1]×(0, 1) ⊆ R

2 is not (0, ε)-vertically closed for any ε ≥ 0.

Remark 2. In the literature one can find other definitions of ε-
closed (see for instance [23, 24]) and vertically closed (see [25])
sets, respectively, introduced for purposes that have basically
nothing in common with our present investigations.

Let us present now some preliminary notions and results
involving functions. Given a function f : X → R, its domain is
dom f = {x ∈ X : f (x) < +∞}, its epigraph epi f = {(x, r) ∈

X × R : f (x) ≤ r} and conjugate function f ∗ : X∗ → R, f ∗(x∗) =
sup{〈x∗, x〉 − f (x) : x ∈ X}. If U ⊆ X, the conjugate function of
f regarding U ⊆ X is f ∗U : X → R, f ∗U = (f + δU)

∗. We call f
proper when f (x) > −∞ for all x ∈ X and dom f 6= ∅. When
f is proper and ε ≥ 0, if f (x) ∈ R the (convex) ε-subdifferential
of f at x is ∂εf (x) = {x∗ ∈ X∗

: f (y) − f (x) ≥ 〈x∗, y − x〉 − ε

∀y ∈ X}, while if f (x) = +∞ we take by convention ∂εf (x) = ∅.
The ε-subdifferential of f becomes in case ε = 0 its classical
(convex) subdifferential denoted by ∂f . When U ⊆ X and ε ≥ 0
one has ∂εδU = Nε

U . The Young-Fenchel inequality says that
f ∗U(x

∗) + f (x) ≥ 〈x∗, x〉 for all x ∈ U and x∗ ∈ X∗. If U = X,
this inequality is fulfilled as equality if and only if x∗ ∈ ∂f (x)
and in general one has f ∗(x∗) + f (x) ≤ 〈x∗, x〉 + ε if and only
if x∗ ∈ ∂εf (x). When f , g : X → R are proper, their infimal
convolution is f�g : X → R, f�g(a) = infx∈X[f (x) + g(a − x)],
that is called exact at a ∈ X when there exists an x ∈ X such
that f�g(a) = f (x)+ g(a− x). For α ∈ R, defining the function
αf :X → R, (αf )(x) = αf (x) for x ∈ X, we take 0f = δdom f when
α = 0. Given a linear continuous mapping A :X → Y , its adjoint
is A∗

: Y∗ → X∗, 〈A∗y∗, x〉 = 〈y∗,Ax〉 for any (x, y∗) ∈ X × Y∗,
while ImA = {Ax : x ∈ X} denotes its image.

Let K ⊆ X be a convex cone f : X → R is said to be
K-increasing if f (x) ≤ f (y) for all x, y ∈ X such that x ≦K y.
A vector function F : Y → X• is said to be proper if its domain
dom F = {y ∈ Y : F(y) ∈ X} is nonempty and K-convex if
F(tx + (1 − t)y) ≦K tF(x) + (1 − t)F(y) for all x, y ∈ Y and
all t ∈ [0, 1]. When K is closed, it is called K-epi-closed if its
K-epigraph epiK F = {(y, x) ∈ Y × X : x ∈ F(y) + K} is
closed. For x∗ ∈ K∗ the function (x∗F) : Y → R is defined by
(x∗F)(y) = 〈x∗, F(y)〉, y ∈ Y .
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For an attained infimum (supremum) instead of inf (sup)
we write min (max), while the optimal objective value of the
optimization problem (P) is denoted by v(P).

2. GENERAL PERTURBED SCALAR

OPTIMIZATION PROBLEMS

The two main classical duality approaches in convex
optimization, the Lagrange type for the constrained optimization
problems and the Fenchel type for the unconstrained ones, have
been unified in the general theory of conjugate duality by means
of perturbations that can be found, for instance, in Rockafellar
[26], Zălinescu [27], Ekeland and Temam [28], and Boţ et al.
[29]. Note that also other duality concepts from the literature can
be reconsidered in the framework of this general theory, as we
have done for the Wolfe and Mond-Weir duality concepts in Boţ
et al. [29], Boţ and Grad [30, 31], and Grad and Pop [32] and the
geometric duality in Boţ et al. [33]. In the following we present
briefly this general duality scheme before proceeding with the
ε-duality investigations that lead to constructing closedness type
regularity conditions for guaranteeing strong and stable duality,
respectively.

Consider two locally convex Hausdorff vector spaces X and Y
and the proper function F : X → R. Let the general optimization
problem

(PG) inf
x∈X

F(x).

Using a proper perturbation function 8 : X × Y → R, fulfilling
8(x, 0) = F(x) for all x ∈ X, a hypothesis that guarantees that
0 ∈ PrY dom8, the problem (PG) can be rewritten as

(PG) inf
x∈X

8(x, 0).

We call Y the perturbation space and its elements perturbation
variables. Note that the way 8 is defined guarantees that
0 ∈ PrY (dom8). To (PG) one attaches the following conjugate
dual problem (cf., for instance, [19, 26, 27, 29])

(DG) sup
y∗∈Y∗

{−8∗(0, y∗)},

and for this primal-dual pair of optimization problems weak
duality always holds, i.e., v(DG) ≤ v(PG). In order to investigate
further duality properties of these optimization problems, for
each x∗ ∈ X∗ we consider the following problem

(PGx∗ ) inf
x∈X

[

8(x, 0)− 〈x∗, x〉
]

,

obtained by linearly perturbing the objective function of
(PG). Thus (PG) is embedded in the family of optimization
problems {(PGx∗ ) : x∗ ∈ X∗}, where it coincides with (PG0).
To each problem in the mentioned family one can attach the
corresponding conjugate dual problem, namely, for x∗ ∈ X∗,

(DGx∗ ) sup
y∗∈Y∗

{−8∗(x∗, y∗)}.

By construction, whenever x∗ ∈ X∗ one has v(DGx∗ ) ≤ v(PGx∗ ),
but more important is to find out when the optimal objective
values of the primal and its corresponding dual problem coincide
or they are different with less than a given small ε ≥ 0.

Definition 2.1. Let ε ≥ 0. We say that there is ε-duality gap
for the problems (PG) and (DG) if v(PG) − v(DG) ≤ ε. If
v(PGx∗ ) − v(DGx∗ ) ≤ ε for all x∗ ∈ X∗, we say that for (PG)
and (DG) one has stable ε-duality gap.

Definition 2.2. We say that there is strong duality for the
problems (PG) and (DG) if v(PG) = v(DG) and (DG) has an
optimal solution. When there is strong duality for (PG) and
(DG) and (PG) has an optimal solution, too, one speaks about
total duality. If v(PGx∗ ) = v(DGx∗ ) and (DGx∗ ) has an optimal
solution for all x∗ ∈ X∗, we say that for (PG) and (DG) one has
stable strong duality.

Definition 2.3. Let ε ≥ 0. An element x ∈ X is said to be an
ε-optimal solution to (PG) if 0 ∈ ∂ε8(·, 0)(x).

In order to ensure strong duality for (PG) and (DG) one
usually assumes that 8 is convex and a certain regularity
condition is fulfilled. Various such additional hypotheses were
considered in the literature (some of which are mentioned
later in Remark 8), the most relevant being the interiority
type ones (mentioned in [19, 27]) and the closedness type
ones (cf. [3, 4, 6, 7, 10, 19, 29]). Moreover, the situation of
total duality is closely related to some subdifferential formulae
and the regularity conditions can be used to guarantee these,
too. However, in some situations one can only show that the
difference between the optimal objective values of the primal
and dual problem is less than an ε ≥ 0, situation coined in
Boncea and Grad [21, 22] as ε-duality gap. Using as a basis
our investigations in these articles, where the ε-duality gap for
composed and constrained optimization problems, respectively,
were characterized via epigraph and subdifferential inclusions,
we provide in the following section characterizations via epigraph
inclusions of stable ε-duality gap (for an ε ≥ 0) for very
general optimization problems, with the involved functions not
necessary convex, only proper. Endowing then the functions
with the classical convexity and topological properties, we derive
new important equivalences as well as sufficient conditions,
from which when ε = 0 closedness type regularity conditions
are derived. These can then be employed, for instance, for
subdifferential formulae, as done in Boţ et al. [18], Hiriart-Urruty
[34], and Boţ and Grad [35] or, like in Boţ and Grad [36] and
Grad and Wanka [37], for providing formulae for biconjugates
of combinations of functions.

After presenting these investigations for general optimization
problems, we deal with both constrained and unconstrained
optimization problems, showing how the mentioned results can
be specialized for them, too, by means of the perturbation theory
(cf. [26, 27]). In this way some of our results from Grad [10], Boţ
et al. [18, 20, 29, 38, 39], Boncea and Grad [21, 22], and Boţ and
Grad [35] as well as different others from the literature (e.g., from
[2–4, 6, 7, 19]) can be obtained as special cases of the general
statements presented below.
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Before proceeding, we recall a statement that will play
an important role later in our investigations when additional
convexity and topological hypotheses will be considered on
the function 8 in order to derive closedness type regularity
conditions for various duality situations.

Lemma 2.1. (cf. [40, Theorem 2.2 and Theorem 2.3], see also [19,
Theorem 5.1 and Theorem 5.2] and [1]) Let the function 8 be
also convex and lower semicontinuous. Then one has (8(·, 0))∗ =

clω∗ infy∗∈Y∗ 8∗(·, y∗) and

epi((8(·, 0))∗) = clω∗

⋃

y∗∈Y∗

epi(8∗(·, y∗)) = clω∗PrX∗×R epi8∗.

To make this review paper as self-contained as possible, we recall
the definition of the Lagrangian function for the pair of primal-
dual problems (PGx∗ ) − (DGx∗ ), where x∗ ∈ X∗, and a nice
connection between it and the optimal objective values of the
mentioned problems (cf. [26, 27, 29]).

Definition 2.4. Let x∗ ∈ X∗. The function L(PGx∗ ) :X×Y∗ → R

defined by

L(PGx∗ )(x, y∗) = inf
y∈Y

[

8(x, y)− 〈x∗, x〉 − 〈y∗, y〉
]

is called the Lagrangian function of the pair of primal-
dual problems (PGx∗ ) − (DGx∗ ) relative to the perturbation
function 8.

Remark 3. Given x∗ ∈ X∗, one can rewrite the primal-
dual pair of problems (PGx∗ ) − (DGx∗ ) by means of the
Lagrangian L(PGx∗ ) as follows. The dual problem (DGx∗ ) is
equivalent to supy∗∈Y∗ infx∈X L(PGx∗ ), while if for any x ∈ X the
function 8(x, ·) is convex, lower semicontinuous and nowhere
equal to −∞, (PGx∗ ) actually means infx∈X supy∗∈Y∗ L(PGx∗ ).
Note that even without the additional hypotheses, v(PGx∗ ) ≥

infx∈X supy∗∈Y∗ L(PGx∗ ).

3. CHARACTERIZATIONS INVOLVING

EPIGRAPHS

Most of the closedness type regularity conditions that can be
found in the literature are constructed by means of epigraphs and
this section is dedicated to them.

Let ε ≥ 0. We begin our presentation with a characterization
via epigraph inclusions of a situation of partial stable ε-duality
gap for the problems (PG) and (DG) that holds for very general
proper functions, no convexity or topological assumptions being
necessary in order to derive it. Despite its simple formulation
and proof, this statement is a key result for the following
presentation and one shall see that using it virtually all the
statements involving closedness type regularity conditions from
the literature on duality for convex optimization problems, some
of which have quite involved proofs in the original sources, can
be rediscovered.

Theorem 3.1. Given a subset W of X∗, one has

epi(8(·, 0))∗ ∩(W×R) ⊆ PrX∗×R epi8∗ ∩(W×R)−(0, ε) (1)

if and only if for each x∗ ∈ W there exists a ȳ∗ ∈ Y∗ such that

(8(·, 0))∗(x∗) ≥ 8∗(x∗, ȳ∗)− ε. (2)

PROOF. If W is empty or for x∗ ∈ W it holds (8(·, 0))∗(x∗) =
+∞, there is nothing to prove, since subtracting anything
from an empty set gives again the empty set and (8(·, 0))∗ ≤

infy∗∈Y∗ 8∗(·, y∗), respectively.
Let x∗ ∈ W such that (8(·, 0))∗(x∗) ∈ R. Then

(x∗, (8(·, 0))∗(x∗)) ∈ epi(8(·, 0))∗. For ȳ∗ ∈ Y∗ one
has (x∗, ȳ∗, (8(·, 0))∗(x∗)) ∈ epi8∗ − (0, 0, ε) if and only
if 8∗(x∗, ȳ∗) ≤ (8(·, 0))∗(x∗) + ε, hence the desired
equivalence.

Remark 4. One can rewrite the inequality (Equation 2) as
−(8(·, 0))∗(x∗) ≤ −8∗(x∗, ȳ∗) + ε, where in the left-hand side
there is actually v(PGx∗ ). However, in the right-hand side one
does not necessarily have v(DGx∗ )+ε, since there is no guarantee
that the supremum in (DGx∗ ) is attained at ȳ∗. Consequently,
Equation (2) implies v(PGx∗ ) ≤ v(DGx∗ ) + ε, i.e., condition (1)
implies that there is a partial (because x∗ ∈ W ⊆ X∗) stable
ε-duality gap for the problems (PG) and (DG). Note also that
employing (Equation 2), one can characterize the stable ε-duality
gap for the primal-dual pair (PG) − −(DG) via the epigraph
inclusion

epi(8(·, 0))∗ ⊆ epi inf
y∗∈Y∗

8∗(·, y∗)− (0, ε). (3)

When ε = 0 the epigraph inclusion and the inequality from
Theorem 3.1 collapse both into equalities.

Corollary 3.2. Given a subset W of X∗, one has

epi(8(·, 0))∗ ∩ (W × R) = PrX∗×R epi8∗ ∩ (W × R) (4)

if and only if for each x∗ ∈ W there exists a ȳ∗ ∈ Y∗ such that

(8(·, 0))∗(x∗) = 8∗(x∗, ȳ∗).

Taking W = X∗, one obtains an epigraph inclusion that ensures
the stable ε-duality gap for (PG) and (DG), that (taking into
consideration Corollary 3.2) becomes stable strong duality when
ε = 0.

Corollary 3.3. It holds

epi(8(·, 0))∗ ⊆ PrX∗×R epi8∗ − (0, ε) (5)

if and only if for each x∗ ∈ X∗ there exists a ȳ∗ ∈ Y∗ such that

(8(·, 0))∗(x∗) ≥ 8∗(x∗, ȳ∗)− ε.
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Corollary 3.4. It holds

epi(8(·, 0))∗ = PrX∗×R epi8∗

if and only if for each x∗ ∈ X∗ there exists a ȳ∗ ∈ Y∗ such that

(8(·, 0))∗(x∗) = 8∗(x∗, ȳ∗) = min
y∗∈Y∗

8∗(x∗, y∗).

Using Theorem 3.1, one can derive necessary and sufficient ε-
optimality conditions for primal-dual pairs (PGx∗ ) − (DGx∗ ),
where x∗ ∈ X∗.

Theorem 3.5. Let W be a subset of X∗ and x∗ ∈ W.

(a) If x̄ ∈ X is an optimal solution to (PGx∗ ) and Equation (1) is
satisfied, then there exists an ε-optimal solution ȳ∗ ∈ Y∗ to
(DGx∗ ), such that

8(x̄, 0)+ 8∗(x∗, ȳ∗) ≤ 〈x∗, x̄〉 + ε, (6)

or, equivalently,

(x∗, ȳ∗) ∈ ∂ε8(x̄, 0). (7)

(b) Assume that x̄ ∈ X and ȳ∗ ∈ Y∗ fulfill (Equations 6 or 7).
Then x̄ is an ε-optimal solution to (PGx∗ ), ȳ

∗ is an ε-optimal
solution to (DGx∗ ) and v(PGx∗ ) ≤ v(DGx∗ )+ ε.

PROOF. (a) From Theorem 3.1 and Remark 4 one obtains
8(x̄, 0) + 8∗(x∗, ȳ∗) ≤ 〈x∗, x̄〉 + ε. The weak duality for
(PGx∗ ) and (DGx∗ ) yields v(DGx∗ ) ≤ −8∗(x∗, ȳ∗) + ε, i.e.,
ȳ is an ε-optimal solution to (DGx∗ ).

(b) From Equation (6) one gets 8(x̄, 0) − 〈x∗, x̄〉 ≤ ε −

8∗(0, ȳ∗), that, employing also the weak duality, implies
v(DGx∗ ) ≤ v(PGx∗ ) ≤ 8(x̄, 0) − 〈x∗, x̄〉 ≤ ε − 8∗(0, ȳ∗) ≤
v(DGx∗ ) + ε ≤ v(PGx∗ ) + ε. Then x̄ is an ε-optimal solution
to (PGx∗ ) and ȳ∗ one to (DGx∗ ).

Remark 5. Note that in Theorem 3.5 one does not obtain the
kind of equivalence usually delivered in optimality conditions
statements as in a) one assumes x̄ to be an optimal solution to
(PGx∗ ), while in b) x̄ turns out to be only an ε-optimal solution
to (PGx∗ ).

When ε = 0, relations (Equations 6 and 7) become optimality
conditions for (PGx∗ ) and (DGx∗ ).

Corollary 3.6. Let W be a subset of X∗ and x∗ ∈ W.

(a) If x̄ ∈ X is an optimal solution to (PGx∗ ) and the condition
(4) is satisfied, then there exists an optimal solution ȳ∗ ∈ Y∗

to (DGx∗ ), such that

8(x̄, 0)+ 8∗(x∗, ȳ∗) = 〈x∗, x̄〉, (8)

or, equivalently,

(x∗, ȳ∗) ∈ ∂8(x̄, 0). (9)

(b) Assume that x̄ ∈ X and ȳ∗ ∈ Y∗ fulfill (Equations 8 or 9).
Then x̄ is an optimal solution to (PGx∗ ), ȳ

∗ is an optimal
solution to (DGx∗ ) and v(PGx∗ ) = v(DGx∗ ).

Remark 6. When W = X∗, Corollary 3.6 delivers stable
optimality conditions for (PG) and (DG).

Remark 7. Taking x∗ = 0 in Theorem 3.5 one obtains ε-
optimality conditions for the primal-dual pair of optimization
problems (PG) − (DG) and, moreover, (or, alternatively, directly
from Corollary 3.3) that the satisfaction of the condition (5)
guarantees that there is ε-duality gap for these problems.

So far we have deconstructed the closedness type regularity
conditions formulated by means of epigraph inclusions, showing
that such inclusions are intimately connected to ε-duality gap
statements. In the following we will reconstruct them and for this
we add convexity and topological properties to the function 8.

We begin with an characterization of Equation (2) by means
of the notion of the (0, ε)-vertical closedness of the conjugate of
8 regarding a product set that can be obtained via Lemma 2.1
and Theorem 3.1.

Theorem 3.7. Let W be a subset of X∗ and take the function 8

also convex and lower semicontinuous. Then the set PrX∗×R epi8∗

is (0, ε)-vertically closed regarding W × R in the topology
ω(X∗,X)×R if and only if for every x∗ ∈ W there exists a ȳ∗ ∈ Y∗

such that Equation (2) holds.

When ε = 0 Theorem 3.7 collapses to Boţ [19, Theorem 9.1].

Corollary 3.8. Let W be a subset of X∗ and the function 8 be also
convex and lower semicontinuous. Then the set PrX∗×R epi8∗ is
closed regarding the set W × R in the topology ω(X∗,X) × R if
and only if for each x∗ ∈ W there exists a ȳ∗ ∈ Y∗ such that

(8(·, 0))∗(x∗) = 8∗(x∗, ȳ∗) = min
y∗∈Y∗

8∗(x∗, y∗).

Taking in Theorem 3.7 W = X∗ one gets the following
statement.

Corollary 3.9. Let the function 8 be also convex and lower
semicontinuous. Then the set PrX∗×R epi8∗ is (0, ε)-vertically
closed in the topology ω(X∗,X)×R if and only if for each x∗ ∈ X∗

there exists a ȳ∗ ∈ Y∗ such that

(8(·, 0))∗(x∗) ≥ 8∗(x∗, ȳ∗)− ε.

Taking in Corollary 3.8 moreover W = X∗ (or ε = 0 in
Corollary 3.9, noticing also the comment preceding Corollary
3.2), one obtains a characterization of the stable strong duality
for (PG) and (DG), rediscovering thus [29, Theorem 3.2.2] and
[4, Theorem 3.1].

Corollary 3.10. Let the function 8 be also convex and lower
semicontinuous. Then the set PrX∗×R epi8∗ is closed in the
topology ω(X∗,X)×R if and only if for each x∗ ∈ X∗ there exists
a ȳ∗ ∈ Y∗ such that

(8(·, 0))∗(x∗) = 8∗(x∗, ȳ∗) = min
y∗∈Y∗

8∗(x∗, y∗).
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A crucial consequence of Theorem 3.7, via Corollary 3.10, is the
strong duality statement for (PG) and (DG) that follows (see
also [1, 3, 4, 19, 29]) and contains the weakest hypotheses that
guarantee this outcome.

Corollary 3.11. Assume that 8 is convex and lower
semicontinuous. If PrX∗×R epi8∗ is a closed set in the topology
ω(X∗,X) × R, then v(PG) = v(DG) and the dual problem (DG)
has an optimal solution ȳ∗ ∈ Y∗.

Remark 8. Several regularity conditions were proposed in the
literature in order to achieve strong duality for (PG) and (DG).
We list in the following the most important of those considered
when the function 8 is convex (cf. [19, 27, 29]), namely the one
involving continuity

(RCG
1 ) ∃x′ ∈ X such that (x′, 0) ∈ dom8 and 8(x′, ·)

is continuous at 0,

a weak generalized interiority type one,

(RCG
2 ) X and Y are Fréchet spaces, 8 is lower

semicontinuous and 0 ∈ sqri PrY (dom8),

another one applicable when the dimension of the linear hull of
PrY (dom8) is finite,

(RCG
3 ) 0 ∈ ri PrY (dom8),

and finally the closedness type regularity condition already
mentioned in Corollary 3.11,

(RCG
4 ) 8 is lower semicontinuous and PrX∗×R(epi8

∗) is
closed in the topology ω(X∗,X)×R.

Worth noticing is that that all these four regularity conditions
ensure actually stable strong duality for the primal-dual pair of
optimization problems (PG) − −(DG). One can thus notice that
(RCG

i ), i = 1, 2, 3, imply (RCG
4 ), which is equivalent to the stable

strong duality for (PG) and (DG). An example to show that the
closedness type regularity condition (RCG

4 ) is indeed weaker than
its counterparts of continuity or interiority type follows, others
being available for instance in Boţ et al. [18, 20].

Example 3. (cf. [6]) Let X = Y = R and 8 : R × R → R,
8(x, y) = δR+

(x)+ δR−
(x+y). Then PrX∗×R epi8∗ = R×R+ is

closed, thus (RCG
4 ) is satisfied, while neither is 8(0, ·) continuous

at 0 nor is 0 ∈ ri PrY (dom8) = (−∞, 0) fulfilled, hence (RCG
i ),

i = 1, 2, 3, fail in this case.

Necessary and sufficient optimality conditions for (PGx∗ ) and
(DGx∗ ), where x

∗ ∈ W ⊆ X∗ follow by means of Theorem 3.5 via
Corollary 3.10 (see also [19, 27, 29]).

Corollary 3.12. Let W be a subset of X∗ and x∗ ∈ W.

(a) Assume that 8 is convex. Let x̄ ∈ X be an optimal solution
to (PGx∗ ) and assume that one of the regularity conditions
(RCG

i ), i ∈ {1, 2, 3, 4}, is fulfilled. Then there exists a ȳ∗ ∈ Y∗,
an optimal solution to (DGx∗ ), such that one has

8(x̄, 0)+ 8∗(x∗, ȳ∗) = 〈x∗, x̄〉, (10)

or, equivalently,

(x∗, ȳ∗) ∈ ∂8(x̄, 0). (11)

(b) Assume that x̄ ∈ X and ȳ∗ ∈ Y∗ fulfill (Equation 10) or
(Equation 11). Then x̄ is an optimal solution to (PGx∗ ), ȳ

∗ is
an optimal solution to (DGx∗ ) and v(PGx∗ ) = v(DGx∗ ).

Remark 9. When W = X∗, Corollary 3.12 delivers what may
be called stable optimality conditions for (PG) and (DG). Taking
there x∗ = 0 one obtains necessary and sufficient optimality
conditions for (PG) and (DG) (see also [19, 27, 29]).

As byproducts of the duality investigations presented in this
subsection one can also derive ε-Farkas statements and results
involving (η, ε)-saddle points, inspired for instance by Boţ and
Wanka [41], as follows. We begin with the ε-Farkas type results
for (PGx∗ ) and (DGx∗ ), where x

∗ ∈ W ⊆ X∗. They extend some
recent Farkas type statements from the literature that generalize
the classical Farkas Lemma. For more on the latest developments
in the literature on Farkas type statements we refer the reader
to the survey [42] together with the references therein and the
additional discussion from the same issue of the journal.

Theorem 3.13. Let W be a subset of X∗.

(a) Suppose the validity of Equation (1). For x∗ ∈ W, if one has
8(x, 0) − 〈x∗, x〉 ≥ ε/2 for all x ∈ X, then there exists a
ȳ∗ ∈ Y∗ such that 8∗(x∗, ȳ∗) ≤ ε/2.

(b) For x∗ ∈ W, if there exists a ȳ∗ ∈ Y∗ such that 8∗(x∗, ȳ∗) ≤
−ε/2, then 8(x, 0)− 〈x∗, x〉 ≥ ε/2 for all x ∈ X.

PROOF. (a) The existence of ȳ∗ ∈ Y∗ such that −(8(·, 0))∗

(x∗) ≤ ε − 8∗(x∗, ȳ∗) is guaranteed by Theorem 3.1. Then
ε/2 ≤ ε − 8∗(x∗, ȳ∗) and the conclusion follows.

(b) The weak duality for (PGx∗ ) and (DGx∗ ) yields 8(x, 0) −
〈x∗, x〉 ≥ −8∗(x∗, ȳ∗) ≥ ε/2.

Using Equation (3) as a regularity condition other ε-Farkas type
results for (PGx∗ ) and (DGx∗ ), where x∗ ∈ W ⊆ X∗, can be
formulated and proven analogously to the ones in Theorem 3.13.

Theorem 3.14. Let W be a subset of X∗.

(a) Suppose that Equation (3) holds. For x∗ ∈ W, if 8(x, 0) −
〈x∗, x〉 ≥ ε/2 for all x ∈ X then infy∗∈Y∗ 8∗(x∗, y∗) ≤ ε/2.

(b) Given x∗ ∈ W, if infy∗∈Y∗ 8∗(x∗, y∗) ≤ −ε/2, then8(x, 0)−
〈x∗, x〉 ≥ ε/2 for all x ∈ X.

If ε = 0, the ε-Farkas type results become equivalences, as
follows.

Corollary 3.15. Let W be a subset of X∗ and suppose that
Equation (4) holds. Given x∗ ∈ W, one has 8(x, 0)− 〈x∗, x〉 ≥ 0
for all x ∈ X if and only if there exists a ȳ∗ ∈ Y∗ such that
8∗(x∗, ȳ∗) ≤ 0.

In the following statement we assume that Equation (3) holds
as an equality for ε = 0.
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Corollary 3.16. Let W be a subset of X∗ and suppose that
epi(8(·, 0))∗ = epi infy∗∈Y∗ 8∗(·, y∗). Given x∗ ∈ W, one
has 8(x, 0) − 〈x∗, x〉 ≥ 0 for all x ∈ X if and only if
infy∗∈Y∗ 8∗(x∗, y∗) ≤ 0.

In order to deal with statements involving (η, ε)-saddle points,
we generalize the classical notion of a saddle point (cf. [10, 21]).

Definition 3.1. Let η ≥ 0 and x∗ ∈ X∗. We say that (x̄, ȳ∗) ∈

X × Y∗ is an (η, ε)-saddle point of the Lagrangian L(PGx∗ ) if

L(PGx∗ )(x̄, y∗)− η ≤ L(PGx∗ )(x̄, ȳ∗) ≤ L(PGx∗ )(x, ȳ∗)

+ ε ∀(x, y∗) ∈ X × Y∗.

Remark 10. The notion of an ε-saddle point of a function with
two variables was already considered in the literature, see for
instance [43, 44].

Slightly weakening the properness hypothesis imposed on 8

and adding to it convexity and topological assumptions, one
obtains the following statement connecting the (η, ε)-saddle
points of L(PGx∗ ) with the (ε + η)-duality gap for the problems
(PGx∗ ) and (DGx∗ ), and the existence of some (ε + η)-optimal
solutions to them.

Theorem 3.17. Let η ≥ 0 and x∗ ∈ X∗.

(a) If (x̄, ȳ∗) ∈ X × Y∗ is an (η, ε)-saddle point of L(PGx∗ ) and
8(x̄, ·) is convex, lower semicontinuous and nowhere equal to
−∞, then x̄ is an (ε + η)-optimal solution to (PGx∗ ), ȳ

∗ is an
(ε+η)-optimal solution to (DGx∗ ) and there is (ε+η)-duality
gap for the primal-dual pair of problems (PGx∗ )− (DGx∗ ).

(b) If ν ≥ 0, x̄ ∈ X is an ε-optimal solution to (PGx∗ ), ȳ
∗ ∈ Y∗ is

an η-optimal solution to (DGx∗ ) and v(PGx∗ ) ≤ v(DGx∗ )+ ν,

then (x̄, ȳ∗) ∈ X×Y∗ is an (η+ε+ν, η+ε+ν)-saddle point
of L(PGx∗ ).

PROOF. (a) From Definition 3.1 one gets via Remark 3 that

8(x̄, 0) − 〈x∗, x̄〉 − η = sup
y∗∈Y∗

L(PGx∗ )(x̄, y∗)− η ≤ L(PGx∗ )

(x̄, ȳ∗) ≤ inf
x∈X

L(PGx∗ )(x, ȳ∗)+ ε = ε − 8∗(x∗, ȳ∗). (12)

Using the weak duality for the problems (PGx∗ ) and (DGx∗ ),
Equation (12) yields v(DGx∗ ) − η ≤ ε − 8∗(x∗, ȳ∗) and
8(x̄, 0) − 〈x∗, x̄〉 − η ≤ ε − v(PGx∗ ), hence x̄ is an (ε + η)-
optimal solution to (PGx∗ ) and ȳ∗ is an (ε + η)-optimal
solution to (DGx∗ ). Relation Equation (12) implies also that
8(x̄, 0) − 〈x∗, x̄〉 − η ≤ ε − 8∗(x∗, ȳ∗), consequently
v(PGx∗ ) ≤ v(DGx∗ )+ η + ε.

(b) Using again Remark 3, one obtains that 8(x̄, 0) − 〈x∗, x̄〉 ≥
supy∗∈Y∗ L(PGx∗ )(x̄, y∗) ≥ L(PGx∗ )(x̄, ȳ∗) and −8∗(0, ȳ∗) =

infx∈X L(PGx∗ )(x, ȳ∗) ≤ L(PGx∗ )(x̄, ȳ∗). But x̄ is an ε-optimal
solution to (PGx∗ ) and ȳ

∗ is an η-optimal solution to (DGx∗ ),
consequently

v(DGx∗ )− η ≤ −8∗(0, ȳ∗) ≤ L(PGx∗ )(x̄, ȳ∗) ≤ 8(x̄, 0)

−〈x∗, x̄〉 ≤ v(PGx∗ )+ ε.

Recalling that v(PGx∗ ) ≤ v(DGx∗ )+ν, one obtains from here

v(PGx∗ )− η − ν ≤ L(PGx∗ )(x̄, ȳ∗) ≤ v(DGx∗ )+ ε + ν,

followed by

8(x̄, 0)− 〈x∗, x̄〉 − ε − η − ν ≤ L(PGx∗ )(x̄, ȳ∗)

≤ −8∗(x∗, ȳ∗)+ η + ε + ν.

Employing again the formulae derived above via Remark 3
one obtains that (x̄, ȳ∗) ∈ X × Y∗ is an (η + ε + ν, η + ε +

ν)-saddle point of L(PGx∗ ).

If one takes in Theorem 3.17 η = ε = ν = 0, the two assertions
become equivalent, rediscovering [29, Theorem 3.3.2].

Corollary 3.18. Let x∗ ∈ X∗ and assume that 8 is a convex
and lower semicontinuous function taking nowhere the value−∞.
Then (x̄, ȳ∗) ∈ X×Y∗ is a saddle point of L(PGx∗ ) if and only if x̄ is
an optimal solution to (PGx∗ ), ȳ

∗ is an optimal solution to (DGx∗ )
and v(PGx∗ ) = v(DGx∗ ).

The general scalar optimization problem (PG) encompasses
as special cases different classes of scalar optimization problems.
We dedicate the next subsections to writing constrained and
unconstrained optimization problems as special cases of (PG)
and dual problems will be assigned to them by employing
carefully chosen perturbation functions (see [19, 29] for more
details).

3.1. Constrained Scalar Optimization

Problems
Consider the nonempty set S ⊆ X and let the convex cone
C ⊆ Y induce a partial ordering on Y . Take the proper functions
f : X → R and h : X → Y•, fulfilling the feasibility condition
dom f ∩ S∩ h−1(−C) 6= ∅. The general primal constrained scalar
optimization problem is

(PC) inf
x∈A

f (x),

whose feasible set is

A = {x ∈ S : h(x) ∈ −C}.

One can find several perturbation functions for which (PC) turns
out to be a special case of (PG). We consider in our presentation
two of them, each assigning another dual problem to (PC) that
arises from (DG) (cf. [19, 29]).

The classical Lagrange dual problem to (PC),

(DCL) sup
z∗∈C∗

inf
x∈S

[

f (x)+ (z∗h)(x)
]

,

can be seen as a special case of (DG) via the perturbation function

8L
: X × Y → R, 8L(x, z) =

{

f (x), if x ∈ S, h(x) ∈ z − C,

+∞, otherwise,
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that is proper as f and h are proper and the feasibility condition
is satisfied, and whose conjugate is

(8L)∗ : X∗ × Y∗ → R, (8L)∗(x∗, z∗) = (f − (z∗h) + δS)
∗(x∗)

+ δC∗ (−z∗).

We begin with a characterization via epigraph inclusions of a
situation of stable ε-duality gap for the problems (PC) and (DCL)
that is a special case of Theorem 3.1.

Theorem 3.19. Let W be a subset of X∗. Then it holds

epi(f +δA)∗∩(W×R) ⊆
⋃

z∗∈C∗

epi(f +(z∗h))∗S∩(W×R)−(0, ε)

if and only if for each x∗ ∈ W there exists a z̄∗ ∈ C∗ such that

(f + δA)∗(x∗) ≥ (f + (z̄∗h))∗S(x
∗)− ε.

Remark 11. Analogously, one can particularize the other
statements regarding pairs of primal-dual problems (PGx∗ ) −
(DGx∗ ), x∗ ∈ X∗, for constrained optimization problems
and their Lagrange duals, rediscovering or improving different
statements from Boţ et al. [20, 39], Boncea and Grad [22],
and Jeyakumar and Li [45, 46]. Under additional assumptions
which guarantee the convexity of the perturbation function 8L

(e.g., take S and f convex and h C-convex), the strong duality
statement for the problems (PC) and (DCL) can be derived
directly from Corollary 3.11 or Remark 8 by particularizing
(RCG

i ), i ∈ {1, 2, 3, 4} to (cf. [19, 29])

(RCL
1 ) ∃x′ ∈ dom f ∩ S such that h(x′) ∈ − intC,

that is actually the classical Slater constraint qualification,

(RCL
2 ) X and Y are Fréchet spaces, S is closed, f is lower

semicontinuous, h is C-epi-closed

and 0 ∈ sqri
(

h(dom f ∩ S ∩ dom h)+ C
)

,

then, when the linear hull of h(dom f ∩ S∩ dom h)+C is finitely
dimensional,

(RCL
3 ) 0 ∈ ri

(

h(dom f ∩ S ∩ dom h)+ C
)

,

and

(RCL
4 ) S is closed, f is lower semicontinuous, h is

C-epi-closed and
⋃

z∗∈C∗

epi(f + (z∗h)+ δS)
∗ is closed

in the topology ω(X∗,X)×R.

Another perturbation function employed to assign a conjugate
dual problem to (PC) as a special case of (DG) is (cf. [19, 29])

8FL
: X × X × Y → R,

8FL(x, y, z) =

{

f (x+ y), if x ∈ S, h(x) ∈ z − C,

+∞, otherwise,

that is proper as well because f and h are proper and due to
the fulfillment of the mentioned feasibility condition, and has as
conjugate the function (8FL)∗ : X∗ × X∗ × Y∗ → R,

(8FL)∗(x∗, y∗, z∗) = f ∗(y∗)+(−(z∗h)+δS)
∗(x∗−y∗)+δ−C∗ (z∗).

The dual problem it assigns to (PC) is the Fenchel-Lagrange dual
problem

(DCFL) sup
y∗∈X∗,z∗∈C∗

{

− f ∗(y∗)− ((z∗h)+ δS)
∗(−y∗)

}

.

For reader’s convenience we give the characterization via
epigraph inclusions of a situation of stable ε-duality gap for the
problems (PC) and (DCFL), that is a special case of Theorem 3.1.

Theorem 3.20. Let W be a subset of X∗. Then it holds

epi(f + δA)∗ ∩ (W × R) ⊆
(

epi f ∗ +
⋃

z∗∈C∗

epi(z∗h)∗S

)

∩ (W × R)− (0, ε)

if and only if for each x∗ ∈ W there exist ȳ∗ ∈ X∗ and z̄∗ ∈ C∗

such that

(f + δA)∗(x∗) ≥ f ∗(ȳ∗)+ (z̄∗h)∗S(x
∗ − ȳ∗)− ε.

Remark 12. Analogously, one can particularize the other
statements regarding pairs of primal-dual problems (PGx∗ ) −
(DGx∗ ), x∗ ∈ X∗, for constrained optimization problems
and their Fenchel-Lagrange duals, rediscovering or improving
different statements from Grad [10], Boţ et al. [20, 38], and
Boncea and Grad [22]. Under additional assumptions which
guarantee the convexity of the perturbation function 8L (e.g.,
take S and f convex and h C-convex), the strong duality statement
for the problems (PC) and (DCFL) can be derived directly
from Corollary 3.11 or Remark 8 by particularizing (RCG

i ), i ∈

{1, 2, 3, 4} to (cf. [19, 29])

(RCFL
1 ) ∃x′ ∈ dom f ∩ S such that f is continuous at x′ and

h(x′) ∈ − intC,

(RCFL
2 ) X and Y are Fréchet spaces, S is closed, f is lower

semicontinuous, h is C-epi-closed
and 0 ∈ sqri

(

dom f × C − epi−C(−h) ∩ (S× Y)
)

,

then, when dom f×C− epi−C(−h)∩(S×Z if finitely dimensional,

(RCFL
3 ) 0 ∈ ri

(

dom f × C − epi−C(−h) ∩ (S× Z)
)

,

and

(RCFL
4 ) S is closed, f is lower semicontinuous, h is

C-epi-closed and epi f ∗ +
⋃

z∗∈C∗

epi((z∗h)+ δS)
∗ is

closed in the topology ω(X∗,X)×R.

One can employ other perturbation functions for proposing
conjugate dual problems to (PC) as special cases of (DG), too.
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For instance, using the perturbation function8EFL
:X×X×X×

Y → R,

8EFL(x, y, t, z) =

{

f (x+ y), if x ∈ S, h(x+ t) ∈ z − C,

+∞, otherwise,

that is proper as well because f and h are proper and due to
the fulfillment of the mentioned feasibility condition and has as
conjugate the function (8EFL)∗ : X∗ × X∗ × X∗ × Y∗ → R,

(8EFL)∗(x∗, y∗, t∗, z∗) = f ∗(y∗)+ (−z∗h)∗(t∗)

+ σS(x
∗ − y∗ − t∗)+ δ−C∗ (z∗),

one can attach to (PC) is the extended Fenchel-Lagrange dual
problem (cf. [22, 38])

(DCEFL) sup
y∗,t∗∈X∗,

z∗∈C∗

{

− f ∗(y∗)− (z∗h)∗(t∗)− σS(−y∗ − t∗)
}

,

which will not be mentioned further (see [22, 38] for similar
statements regarding this dual problem to (PC) that can be
rediscovered as special cases of the main ones from this paper).

Remark 13. To give stable ε-duality statements for (PC) and
the dual problems we assigned to it within this subsection one
can introduce like in Boncea and Grad [22] and Jeyakumar and
Li [45, 46] the functions h⋄, h⋄S : X∗ → R, defined by h⋄ =

infz∗∈C∗ (z∗h)∗ and h⋄S = infz∗∈C∗ (z∗h)∗S , respectively. Then, for
instance, the stable ε-duality gap for the problems (PC) and
(DCFL) is characterized by the epigraph inclusion

epi(f + δA)∗ ⊆ epi(f ∗�h⋄S )− (0, ε).

Remark 14. One can obtain other significant results from the
statements presented in this subsection by taking the function
f to be identically zero, when characterizations via epigraph
inclusions of relations involving the (indicator function of the)
feasible set A and, on the other hand, the constraint function h
and the constraint set S can be derived, as done in Jeyakumar et
al. [8, 9], Grad [10], Boncea and Grad [22], and Boţ et al. [38, 39].

3.2. Unconstrained Scalar Optimization

Problems
Let the primal unconstrained optimization problem

(PU) inf
x∈X

[f (x)+ g(Ax)],

where A : X → Y is a linear continuous mapping and f : X → R

and g : Y → R are proper functions fulfilling the feasibility
condition dom f ∩ A−1(dom g) 6= ∅. The perturbation function
considered for assigning to (PU) the classical Fenchel dual
problem

(DU) sup
y∗∈Y∗

{−f ∗(A∗y∗)− g∗(−y∗)},

is (cf. [19, 27])

8U
: X × Y → R, 8U(x, y) = f (x)+ g(Ax+ y),

which is proper because f and g are proper and due to the
fulfillment of the mentioned feasibility condition, and has as
conjugate the function

(8U)∗ :X∗ ×Y∗ → R, (8U)∗(x∗, y∗) = f ∗(x∗ −A∗y∗)+ g∗(y∗).

Like in the previous subsection, we give only a characterization
via epigraph inclusions of a situation of stable ε-duality gap for
the problems (PU) and (DU), that is a special case of Theorem
3.1, where the notation (A∗ × idR)(epi g

∗) = {(x∗, r) ∈ X∗ × R :

∃y∗ ∈ Y∗ such that A∗y∗ = x∗ and (y∗, r) ∈ epi g∗} is used.

Theorem 3.21. Let W be a subset of X∗. Then it holds

epi(f + g ◦ A)∗ ∩ (W × R) ⊆
(

epi f ∗ + (A∗ × idR)(epi g
∗)

)

∩ (W × R)− (0, ε)

if and only if for each x∗ ∈ W there exists a ȳ∗ ∈ Y∗ such that

(f + g ◦ A)∗(x∗) ≥ f ∗(A∗ȳ∗)+ g∗(x̄∗ − ȳ∗)− ε.

Remark 15. Analogously, one can particularize the other
statements regarding pairs of primal-dual problems (PGx∗ ) −
(DGx∗ ), x

∗ ∈ X∗, for unconstrained optimization problems
and their Fenchel duals, rediscovering or improving different
statements from Boţ and Wanka [6, 7], Grad [10], Boţ et al. [18,
20], and Boncea and Grad [21]. Under additional assumptions
which guarantee the convexity of the perturbation function 8U

(e.g., take f and g convex), the strong duality statement for the
problems (PU) and (DU) can be derived directly from Corollary
3.11 or Remark 8 by particularizing (RCG

i ), i ∈ {1, 2, 3, 4} to (cf.
[19, 29])

(RCU
1 ) ∃x′ ∈ dom f ∩ A−1(dom g) such that g is

continuous at Ax′,

(RCU
2 ) X and Y are Fréchet spaces, f and g are lower

semicontinuous and 0 ∈ sqri(dom g − A(dom f )),

then, when the linear hull of dom g − A(dom f ) is finitely
dimensional,

(RCU
3 ) riA(dom f ) ∩ ri dom g 6= ∅,

condition employed also in the framework of generalized convex
optimization, for instance in [47, 48] and

(RCU
4 )

f and g are lower semicontinuous and epi f ∗

+ (A∗ × idR)(epi g
∗)

is closed in the topology ω(X∗,X)×R.

Remark 16. Significant particular instances of (PU) can be
derived by taking X = Y and A to be the identity mapping
on X or f to be identically zero, respectively. The dual problem
(DU) and the corresponding duality and optimality conditions
statements can be then specialized for these problems, too.
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Remark 17. One can alternatively write (PC) as an
unconstrained optimization problem

(PC) inf
x∈X

[f (x)+ δA(x)],

where the notations are consistent with the ones in the previous
subsection. Taking A: = idX , f : = f and g: = δA, a
Fenchel dual problem can be attached to (PC) and different
duality statements can be obtained for this primal-dual pair of
optimization problems as special cases of the ones regarding
pairs of primal-dual problems (PGx∗ ) − (DGx∗ ), x

∗ ∈ X∗. When
necessary, the convexity of the feasible setA is ensured by taking
S convex and h C-convex, while when S is a closed set and h a
C-epi-closed vector function, the setA is closed, too.

Remark 18. The investigations on ε-duality regarding
unconstrained problems can be extended for problems
consisting in the minimization of a sum of a function with
a cone-increasing function composed with a vector function.
Considering a convex cone C ⊆ Y , a proper function f : X → R,
a proper and C-increasing function g : Y → R and a proper
vector function h : X → Y• fulfilling the feasibility condition
dom g ∩ (h(dom f ) + C) 6= ∅, to the unconstrained composed
optimization problem

(PO) inf
x∈X

[f (x)+ g(h(x))],

different dual problems that are special cases of (DG) can be
attached via perturbation theory. The statements regarding the
pairs of primal-dual problems (PGx∗ )− (DGx∗ ), x

∗ ∈ X∗, can be
adapted for (PO) and its duals, too, in some instances results from
Grad [10], Boţ et al. [18], Boţ [19], and Boncea and Grad [21]
being rediscovered. Alternatively, the assertions for (PU) and
(DU) can be used for the same purpose by carefully constructing
two functions of two variables, say F and G, such that (F +

G)∗(·, 0) = (f + g ◦ h)∗, as done in Boţ et al. [18] and Boţ [19].

4. CHARACTERIZATIONS INVOLVING

SUBDIFFERENTIALS

A second large class of closedness type regularity conditions
makes use of (ε-)subdifferential inclusions instead of epigraphs.
They were initially developed in connection to the notion of
total duality for convex optimization problems (see for instance,
[8, 38, 39] and some references therein) and in the following we
present the most important issues concerning them available up
to this moment.

Like in the previous section, we take an ε ≥ 0. The first
statement we give presents connections between situations of
stable ε-duality gap for the problems (PG) and (DG) and ε-
subdifferential inclusions. Note that in this case there is no
equivalence.

Theorem 4.1. Let x ∈ X and ν ≥ 0. If

(8(·, 0))∗(x∗) ≥ inf
y∗∈Y∗

8∗(x∗, y∗)− ε (13)

holds for all x∗ ∈ ∂ν8(·, 0)(x), one has

∂ν8(·, 0)(x) ⊆
⋂

η>0

PrX∗∂ε+η+ν8(x, 0). (14)

Viceversa, Equation (14) yields for any x∗ ∈ ∂ν8(·, 0)(x) that

(8(·, 0))∗(x∗) ≥ inf
y∗∈Y∗

8∗(x∗, y∗)− ε − ν. (15)

PROOF. When ∂ν8(·, 0)(x) = ∅ there is nothing to prove.
Assume Equation (13) valid for an x∗ ∈ ∂ν8(·, 0)(x). This

means that for each η > 0 there exists a y∗η ∈ Y∗ such that
(8(·, 0))∗(x∗) ≥ 8∗(x∗, y∗η) − η − ν − ε, which, using that
x∗ ∈ ∂ν8(·, 0)(x), yields 〈x∗, x〉 + η + ε + ν ≥ 8(x, 0) +
8∗(x∗, y∗η), i.e., (x∗, y∗η) ∈ ∂ε+η+ν8(x, 0). Therefore x∗ ∈
⋂

η>0 PrX∗∂ε+η+ν8(x, 0), and because x∗ was arbitrarily chosen
in ∂8ν(·, 0)(x), (14) follows.

Assume Equation (14) true and let x∗ ∈ ∂ν8(·, 0)(x). Then
for each η > 0 there exists a y∗η ∈ Y∗ such that (x∗, y∗η) ∈

∂ε+η+ν8(x, 0). Fixing an x∗ ∈ ∂ν8(·, 0)(x) and η > 0, it
follows that 8(x, 0) + 8∗(x∗, y∗η) ≤ 〈x∗, x〉 + ε + η + ν, that
is equivalent to 8∗(x∗, y∗η) − ε − ν ≤ 〈x∗, x〉 − 8(x, 0) + η,
which yields infy∗∈Y∗ 8∗(x∗, y∗) − ε − ν ≤ (8(·, 0))∗(x∗) + η.
The latter inequality holds for any η > 0, so letting η tend toward
0 we obtain Equation (15) because x∗ was arbitrarily chosen in
∂ν8(·, 0)(x).

In case ν = 0, Theorem 4.1 turns into an equivalence,
providing a characterization via subdifferential inclusions of a
situation of stable ε-duality gap for the problems (PG) and (DG).

Corollary 4.2. Let x ∈ X. Then

∂8(·, 0)(x) ⊆
⋂

η>0

PrX∗∂ε+η8(x, 0) (16)

holds if and only if Equation (13) is valid for all x∗ ∈ ∂8(·, 0)(x).

Remark 19. Let x ∈ X. Employing the weak duality statements
for (PGx∗ ) and (DGx∗ ), x

∗ ∈ X∗, one can show that for any ν ≥ 0
it holds ∂ε+ν8(·, 0)(x) ⊇

⋂

η>0 PrX∗ ∂ν+ε+η8(x, 0). Thus, when
ε = 0 Equations (14) and (16) turn into equalities and so does
also Equation (13), while Theorem 4.1 yields that if for all ν > 0
one has

∂ν8(·, 0)(x) =
⋂

η>0

PrX∗∂η+ν8(x, 0), (17)

then whenever µ > 0 one has (8(·, 0))∗(x∗) ≥

infy∗∈Y∗ 8∗(x∗, y∗) − µ for all x∗ ∈ ∂µ8(·, 0)(x). Consequently,
for all x∗ ∈ ∩µ>0∂µ8(·, 0)(x) = ∂8(·, 0)(x) (here we
have used the fact that the intersection regarding µ > 0
of the ε + µ-subdifferentials of a function at a point
coincides with its ε-subdifferential at that point) it holds
(8(·, 0))∗(x∗) ≥ infy∗∈Y∗ 8∗(x∗, y∗), which actually turns into
an equality since the opposite inequality holds in general and, via
Theorem 4.1, yields Equation (17) for all ν > 0. Note also that
in Theorem 4.1 and Corollary 4.2 we correct [10, Theorem 2.11
and Theorem 2.12] where Equations (14) and (16) were given as
equalities, respectively.
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Remark 20. The inequality (Equation 13) can be rewritten as
v(PGx∗ ) ≤ v(DGx∗ ) + ε, i.e., in Corollary 4.2 an equivalent
characterization via subdifferential inclusions of the ε-duality gap
for (PGx∗ ) and (DGx∗ ), when x

∗ ∈ ∂8(·, 0)(x), i.e., x is an optimal
solution to the problem (PGx∗ ), is provided.

One can develop Remark 19 even further as follows.

Theorem 4.3. One has

∂ν8(·, 0)(x) =
⋂

η>0

PrX∗∂η+ν8(x, 0),

for all x ∈ X and all ν > 0 if and only if for all x∗ ∈ X∗ it holds
(8(·, 0))∗(x∗) = infy∗∈Y∗ 8∗(x∗, y∗).

PROOF. Let x ∈ X. If (x, 0) /∈ dom8, there is nothing to
prove, so we consider the case 8(x, 0) ∈ R. Take now x∗ ∈ X∗.
If (8(·, 0))∗(x∗) = +∞ there is nothing to prove, as x∗ /∈

∂8(·, 0)(x), otherwise x∗ ∈ ∂µ8(·, 0)(x) for all µ ≥ 8(x, 0) +
(8(·, 0))∗(x∗)− 〈x∗, x〉.

The validity of Equation (17) for ν = 8(x, 0) +

(8(·, 0))∗(x∗) − 〈x∗, x〉 implies like in the proof of Theorem 4.1
that infy∗∈Y∗ 8∗(x∗, y∗)−ν ≤ 〈x∗, x〉−8(x, 0)+η for all η > 0.
Letting η tend toward 0 and replacing ν with its value, it follows
infy∗∈Y∗ 8∗(x∗, y∗) ≤ (8(·, 0))∗(x∗), which, due to the general
validity of the opposite inequality proves the sufficiency.

To show the necessity, let ν > 0 and x∗ ∈ ∂ν8(·, 0)(x). Then
the hypothesis yields8(x, 0)+ infy∗∈Y∗ 8∗(x∗, y∗) ≤ 〈x∗, x〉+ν.
If η > 0, there exists a y∗η ∈ Y∗ such that 8(x, 0)+ 8∗(x∗, y∗η) ≤
〈x∗, x〉 + ν + η, i.e., x∗ ∈ PrX∗∂η+ν8(x, 0). As η, x and ν were
arbitrarily chosen, the conclusion follows via Remark 19.

A characterization via subdifferential inclusions of a situation
of ε-duality gap for (PG) and (DG) follows.

Theorem 4.4. Let x ∈ X. Then

∂ε8(·, 0)(x) =
⋂

η>0

PrX∗∂ε+η8(x, 0)

holds if and only if for each x∗ ∈ ∂ε8(·, 0)(x) one has

8(x, 0)− 〈x∗, x〉 ≤ sup
y∗∈Y∗

{

− 8∗(x∗, y∗)
}

+ ε. (18)

PROOF. Let x ∈ X. If (x, 0) /∈ dom8, there is nothing to prove,
so we consider the case 8(x, 0) ∈ R.

To show the necessity, let x∗ ∈ ∂ε8(·, 0)(x). Then for each
η > 0 there exists a y∗η ∈ Y∗ such that (x∗, y∗η) ∈ ∂ε+η8(x, 0),
i.e., 8(x, 0)+8∗(x∗, y∗η) ≤ 〈x∗, x〉+ ε+ η. This yields 8(x, 0)+
infy∗∈Y∗ 8∗(x∗, y∗) ≤ 〈x∗, x〉 + ε + η for any η > 0. Letting η

tend toward 0, Equation (18) follows.
To show the opposite implication let x∗ ∈ ∂ε8(·, 0)(x). By

Equation (18), for each η > 0 there exists a y∗η ∈ Y∗ such that
8(x, 0)+8∗(x∗, y∗η) ≤ 〈x∗, x〉+ε+η, i.e., (x∗, y∗η) ∈ ∂ε+η8(x, 0).
Therefore x∗ ∈

⋂

η>0 PrX∗∂ε+η8(x, 0). The reverse inclusion
follows by Remark 19.

Remark 21. For an x∗ ∈ ∂ε8(·, 0)(x), the right-hand side of
Equation (18) is actually v(DGx∗ )+ ε, while in the left-hand side
we have a quantity that can be larger than or equal to (PGx∗ ).
Thus, Equation (18) guarantees ε-duality gap for (PGx∗ ) and
(DGx∗ ) and Theorem 4.4 provides a sufficient condition based on
ε-subdifferential inclusions that guarantees it.

Other characterizations via subdifferential inclusions of ε-
duality gap situations for (PG) and (DG) follow.

Theorem 4.5. Let x ∈ X. Then

∂8(·, 0)(x) ⊆ PrX∗∂ε8(x, 0) (19)

holds if and only if for each x∗ ∈ ∂8(·, 0)(x) there exists a y∗ ∈ Y∗

such that

(8(·, 0))∗(x∗) ≥ 8∗(x∗, y∗)− ε. (20)

PROOF. Inclusion Equation (19) holds if and only if for each
x∗ ∈ ∂8(·, 0)(x) there exists a y∗ ∈ Y∗ such that (x∗, y∗) ∈

∂ε8(x, 0), i.e., 8(x, 0) + 8∗(x∗, y∗) ≤ 〈x∗, x〉 + ε. But x∗ ∈

∂8(·, 0)(x) if and only if (8(·, 0))∗(x∗) = 〈x∗, x〉 − 8(x, 0) and
the desired equivalence follows.

Theorem 4.6. One has

∂ν8(·, 0)(x) = PrX∗∂ν8(x, 0) (21)

for all x ∈ X and all ν > 0 if and only if for all x∗ ∈ X∗ it holds
(8(·, 0))∗(x∗) = miny∗∈Y∗ 8∗(x∗, y∗).

PROOF. Let x ∈ X. If (x, 0) /∈ dom8, there is nothing to prove,
so we consider the case 8(x, 0) ∈ R. Take now x∗ ∈ X∗. If
(8(·, 0))∗(x∗) = +∞ there is nothing to prove, so we consider
further that (8(·, 0))∗(x∗) ∈ R.

The validity of Equation (21) for ν = 8(x, 0) +

(8(·, 0))∗(x∗) − 〈x∗, x〉 implies the existence of a ȳ∗ ∈ Y∗ such
that 8∗(x∗, ȳ∗) ≤ 〈x∗, x〉 − 8(x, 0) + ν, which actually means
8∗(x∗, ȳ∗) ≤ 〈x∗, x〉 − 8(x, 0) + 8(x, 0) + (8(·, 0))∗(x∗) −
〈x∗, x〉. Consequently, 8∗(x∗, ȳ∗) ≤ (8(·, 0))∗(x∗), which,
combined with the always valid inequality infy∗∈Y∗ 8∗(x∗, y∗) ≥
(8(·, 0))∗(x∗), yields the sufficiency.

To show the necessity, let ν > 0 and x∗ ∈ ∂ν8(·, 0)(x). This
yields 8(x, 0) + (8(·, 0))∗(x∗) ≤ 〈x∗, x〉 + ν. The hypothesis
guarantees the existence of a ȳ∗ ∈ Y∗ such that 8∗(x∗, ȳ∗) =

(8(·, 0))∗(x∗), consequently 8(x, 0)+ 8∗(x∗, ȳ∗) ≤ 〈x∗, x〉 + ν,
i.e., x∗ ∈ PrX∗∂ν8(x, 0). Since one always has ∂ν8(·, 0)(x) ⊇

PrX∗∂ν8(x, 0), Equation (21) follows.

The following statement can be shown in a similar manner.

Theorem 4.7. Let x ∈ X. Then

∂ε8(·, 0)(x) = PrX∗∂ε8(x, 0)

holds if and only if for each x∗ ∈ ∂ε8(·, 0)(x) there exists a ȳ∗ ∈ Y∗

such that

8(x, 0)− 〈x∗, x〉 ≤ −8∗(x∗, ȳ∗)+ ε.
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Adding to the function 8 also the classical convexity and
topological properties, another characterization of Equation (17)
(for an alternative proof by means of epigraph inclusions consult
[35, Theorem 3.1]) as well as a consequence of Corollary 4.2 can
be delivered.

Theorem 4.8. Let the function 8 be also convex and lower
semicontinuous. The formula (17) is valid for all x ∈ X and all ν >

0 if and only if the function infy∗∈Y∗ 8∗(·, y∗) is ω(X∗,X)-lower
semicontinuous.

PROOF. By Lemma 2.1, the hypotheses yield that the function
(8(·, 0))∗ is actually the ω(X∗,X)-lower semicontinuous hull
of infy∗∈Y∗ 8∗(·, y∗). The conclusion is then a consequence of
Theorem 4.3.

Corollary 4.9. If the function 8 is also convex and lower
semicontinuous and the function infy∗∈Y∗ 8∗(·, y∗) is ω(X∗,X)-
lower semicontinuous, then for all x ∈ X it holds

∂8(·, 0)(x) =
⋂

η>0

PrX∗∂η8(x, 0).

Under the same additional assumptions for the function 8, one
can deliver another characterization of Equation (21) that follows
via Corollary 3.11 (see also [35]), by means of a closedness type
regularity condition this time.

Theorem 4.10. Let the function 8 be also convex and lower
semicontinuous. The formula (21) is valid for all x ∈ X and all
ν > 0 if and only if the set PrX∗×R epi8∗ is closed in the topology
ω(X∗,X)×R.

Using Theorem 4.5 and Corollary 3.11 one can provide the
following statement (see also [35]).

Corollary 4.11. If8 is also convex and lower semicontinuous and
the set PrX∗×R epi8∗ is closed in the topology ω(X∗,X)×R, then
for all x ∈ X one has

∂8(·, 0)(x) = PrX∗∂8(x, 0).

Remark 22. One can clearer notice the differences between the
closedness type regularity conditions considered in Corollary
4.9 and Corollary 4.11 when comparing the way these can be
equivalently written as formulae for the conjugate of 8(·, 0). The
first of them consists of an infimum, thus it characterizes the
stable zero duality gap for (PG) and (DG), while the other one
means that the same infimum is also attained, i.e., there is stable
strong duality for (PG) and (DG), being thus obviously stronger
than its counterpart. An example to underline this fact can be
found in Boţ and Wanka [6]. The difference between these two
conditions can be seen also when we equivalently characterize
them as formulae for the ε-subdifferential of 8(·, 0) in Theorem
4.8 and Theorem 4.10, respectively.

One can employ the results from this subsection for providing
ε-optimality conditions for the primal-dual pair (PG) − −(DG),
too. We begin with a consequence of Theorem 4.1.

Theorem 4.12. (a) If Equation (3) holds and x̄ ∈ X is an ε-
optimal solution to (PG), for each η > 0 there exists a ȳ∗η ∈ Y∗

such that (0, ȳ∗η) ∈ ∂η+ε8(x̄, 0), i.e., 8(x̄, 0) + 8∗(0, ȳ∗η) ≤
η + ε. Moreover, ȳ∗η is an η + ε-optimal solution to (DG).

(b) If x̄ ∈ X and for each η > 0 there exists a ȳ∗η ∈ Y∗ such
that (0, ȳ∗η) ∈ ∂η+ε8(x̄, 0), then x̄ is an ε-optimal solution to
(PG), each ȳ∗η is an η + ε-optimal solution to (DG) and there
is η + ε-duality gap for (PG) and (DG).

Analogously one can employ Theorem 4.7 in order to achieve
ε-optimality conditions for (PG) and (DG), as follows.

Theorem 4.13. (a) Assuming that the regularity condition (21)
is fulfilled and that x̄ ∈ X is an ε-optimal solution to (PG),
there exists a ȳ∗ ∈ Y∗ such that (0, ȳ∗) ∈ ∂ε8(x̄, 0), i.e.,
8(x̄, 0)+8∗(0, ȳ∗) ≤ ε. Moreover, ȳ∗ is an ε-optimal solution
to (DG).

(b) If x̄ ∈ X and ȳ∗ ∈ Y∗ fulfill (0, ȳ∗) ∈ ∂ε8(x̄, 0), then x̄ is an
ε-optimal solution to (PG), ȳ∗ an ε-optimal solution to (DG)
and there is ε-duality gap for (PG) and (DG).

Remark 23. The other statements given in this subsection can
be employed for delivering ε-optimality conditions for (PG)
and (DG), too. Taking ε = 0 in Theorem 4.13 or in the
corresponding statements following from Theorem 4.5, Theorem
4.6 or Theorem 4.10 one rediscovers the optimality condition
given in Corollary 3.6.

In the following we particularize the primal problem to be
constrained and unconstrained, respectively, as done in the
previous section, too.

4.1. Constrained Scalar Optimization

Problems
Consider again the framework of Section 3.1. Using first the
Lagrange perturbation function 8L, one obtains from Theorem
4.4 the following statement where a subdifferential inclusion
characterizes a situation of ε-duality gap for (PC) and (DCL).

Theorem 4.14. Let x ∈ X. Then

∂ε(f + δA)(x) =
⋂

η>0

⋃

z∗∈C∗

∂ε+η+(z∗h)(x)(f + δS + (z∗h))(x)

if and only if for each x∗ ∈ ∂ε(f + δA)(x) one has

f (x)− 〈x∗, x〉 ≤ sup
z∗∈C∗

{

− (f + (z̄∗h))∗S(x
∗)

}

+ ε.

Analogously one can particularize the other statements involving
the (ε-)subdifferential of 8(·, 0)(x) to the present framework,
too. For instance, Theorem 4.7 turns into the following
assertion.

Theorem 4.15. Let x ∈ X. Then

∂ε(f + δA)(x) =
⋃

z∗∈C∗

∂ε+(z∗h)(x)(f + δS + (z∗h))(x)
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if and only if for each x∗ ∈ ∂ε(f + δA)(x) there exists a z∗ ∈ C∗

such that

f (x)− 〈x∗, x〉 ≤ −(f + (z̄∗h))∗S(x
∗)+ ε.

Adding convexity and topological hypotheses to the
functions and sets involved, one obtains the following
consequences of Theorem 4.8 and Theorem 4.10,
respectively.

Theorem 4.16. Let S be a closed and convex set, f a convex and
lower semicontinuous function and h a C-convex and C-epi-closed
vector function. The formula

∂ν(f + δA)(x) =
⋂

η>0

⋃

z∗∈C∗

∂ν+η+(z∗h)(x)(f + δS + (z∗h))(x)

is valid for all x ∈ X and all ν > 0 if and only if the function
infz∗∈C∗ (f + (z̄∗h))∗S is ω(X∗,X)-lower semicontinuous.

Theorem 4.17. Let S be a closed and convex set, f a convex and
lower semicontinuous function and h a C-convex and C-epi-closed
vector function. The formula

∂ν(f + δA)(x) =
⋃

z∗∈C∗

∂ν+(z∗h)(x)(f + δS + (z∗h))(x)

is valid for all x ∈ X and all ν > 0 if and only if the set
∪z∗∈C∗ epi(f + (z∗h)+δS)

∗ is closed in the topology ω(X∗,X)×R.

The other perturbation function we employed to assign a
conjugate dual problem to (PC) as a special case of (DG) is 8FL.
The statements particularized above for 8L become in this case
the following ones.

Theorem 4.18. Let x ∈ X. Then

∂ε(f + δA)(x) =
⋂

η>0

⋃

z∗∈C∗,ε1,ε2≥0,
ε1+ε2=ε+η+(z∗h)(x)

(

∂ε1 f (x)+ ∂ε2 ((z
∗h)

+ δS)(x)
)

if and only if for each x∗ ∈ ∂ε(f + δA)(x) one has

f (x)− 〈x∗, x〉 ≤ sup
z∗∈C∗,
y∗∈X∗

{

− f ∗(y∗)− (z̄∗h)∗S(x
∗ − y∗)

}

+ ε.

Theorem 4.19. Let x ∈ X. Then

∂ε(f + δA)(x) =
⋃

z∗∈C∗,ε1,ε2≥0,
ε1+ε2=ε+η+(z∗h)(x)

(

∂ε1 f (x)+ ∂ε2 ((z
∗h)+ δS)(x)

)

if and only if for each x∗ ∈ ∂ε(f + δA)(x) there exist z∗ ∈ C∗ and
y∗ ∈ X∗ such that

f (x)− 〈x∗, x〉 ≤ −f ∗(y∗)− (z∗h)∗S(x
∗ − y∗)+ ε.

Theorem 4.20. Let S be a closed and convex set, f a convex and
lower semicontinuous function and h a C-convex and C-epi-closed
vector function. The formula

∂ν(f + δA)(x) =
⋂

η>0

⋃

z∗∈C∗,ε1,ε2≥0,
ε1+ε2=ν+η+(z∗h)(x)

(

∂ε1 f (x)+ ∂ε2 ((z
∗h)

+ δS)(x)
)

is valid for all x ∈ X and all ν > 0 if and only
if the function infz∗∈C∗ f�(z̄∗h)∗S is ω(X∗,X)-lower
semicontinuous.

Theorem 4.21. Let S be a closed and convex set, f a convex and
lower semicontinuous function and h a C-convex and C-epi-closed
vector function. The formula

∂ν(f + δA)(x) =
⋃

z∗∈C∗,ε1,ε2≥0,
ε1+ε2=ν+(z∗h)(x)

(

∂ε1 f (x)+ ∂ε2 ((z
∗h)+ δS)(x)

)

is valid for all x ∈ X and all ν > 0 if and only
if the set epi f ∗ + ∪z∗∈C∗ epi(z∗h)∗S is closed in the topology
ω(X∗,X)×R.

Analogously one can particularize the other statements
involving the (ε-)subdifferential of 8(·, 0)(x) for
8FL, too.

4.2. Unconstrained Scalar Optimization

Problems
Consider now the framework of Section 3.2. From Theorem
4.4 one obtains the following statement where a subdifferential
inclusion characterizes a situation of ε-duality gap for (PU)
and (DU).

Theorem 4.22. Let x ∈ X. Then

∂ε(f + g ◦ A)(x) =
⋂

η>0

⋃

ε1,ε2≥0,
ε1+ε2=ε+η

(

∂ε1 f (x)+ A∗∂ε2g(Ax)
)

if and only if for each x∗ ∈ ∂ε(f + g ◦ A)(x) one has

f (x)+ g(Ax)− 〈x∗, x〉 ≤ sup
y∗∈X∗

{

− f ∗(A∗y∗)− g∗(x∗ − y∗)
}

+ ε.

Further, Theorem 4.7 turns into the following assertion.

Theorem 4.23. Let x ∈ X. Then

∂ε(f + g ◦ A)(x) =
⋃

ε1,ε2≥0,
ε1+ε2=ε

(

∂ε1 f (x)+ A∗∂ε2g(Ax)
)

if and only if for each x∗ ∈ ∂ε(f + g ◦ A)(x) there exists a y∗ ∈ X∗

such that

f (x)+ g(Ax)− 〈x∗, x〉 ≤ −f ∗(A∗y∗)− g∗(x∗ − y∗)+ ε.
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Adding convexity and topological hypotheses to the
functions and sets involved, one obtains the following
consequences of Theorem 4.8 and Theorem 4.10,
respectively.

Theorem 4.24. Let the functions f and g be also convex and lower
semicontinuous. The formula

∂ν(f + g ◦ A)(x) =
⋂

η>0

⋃

ε1,ε2≥0,
ε1+ε2=ν+η

(

∂ε1 f (x)+ A∗∂ε2g(Ax)
)

is valid for all x ∈ X and all ν > 0 if and only if the function
infy∗∈C∗

[

f ∗(A∗y∗)+g∗(·−y∗)
]

isω(X∗,X)-lower semicontinuous.

Theorem 4.25. Let the functions f and g be also convex and lower
semicontinuous. The formula

∂ν(f + g ◦ A)(x) =
⋃

ε1,ε2≥0,
ε1+ε2=ν

(

∂ε1 f (x)+ A∗∂ε2g(Ax)
)

is valid for all x ∈ X and all ν > 0 if and only if
the set epi f ∗ + (A∗ × idR)(epi g

∗) is closed in the topology
ω(X∗,X)×R.

Analogously one can particularize the other statements
involving the (ε-)subdifferential of 8(·, 0)(x) to the present
framework, too. Moreover, one can see (PC) as an unconstrained
optimization problem like in Remark 17 and the corresponding
counterparts of the statements given above can be formulated for
it, too.

Remark 24. Particularizing the results provided in this section
for constrained and unconstrained convex optimization
problems (and adding where necessary additional hypotheses)
one can rediscover various statements from Jeyakumar et al.
[8], Boţ et al. [38, 39]. Moreover, the classical Basic Constraint
Qualification (see for instance, [11–13]) and the Farkas-
Minkowski Constraint Qualification (cf. [14–16]) prove to be
special instances of the regularity conditions presented in this
section.

Remark 25. From the statements provided in Sections 3.1 and
3.2 one can derive ε-optimality conditions for (PC) and (PU) and
their dual problems, as done in the general case in Theorem 4.12
and Theorem 4.13.

Remark 26. More characterizations of (stable) ε-duality
gap and strong/total duality statements via epigraph and/or
subdifferential inclusions similar to the ones provided within this
chapter for constrained optimization problems can be found in
Boncea and Grad [22], while in Boncea and Grad [21] the same
kind of assertions are delivered for unconstrained composed
optimization problems (see also [49]). Moreover, in Boţ and
Grad [35] we have provided equivalent characterizations of zero

duality gap and stable strong duality via epigraph inclusions
for both constrained and unconstrained, as well for composed
optimization problems with the involved functions taken
convex.

5. CONCLUSIONS, REMARKS AND

FURTHER DIRECTIONS OF RESEARCH

The closedness type regularity conditions have proven during
the last decade to be viable alternatives to their more restrictive
interiority type counterparts, in both convex optimization
and different areas where it was successfully applied. In this
survey paper we have deconstructed and reconstructed some
closedness type regularity conditions formulated by means
of epigraphs and (ε-)subdifferentials, respectively, for general
optimization problems, showing thus that they arise naturally
when dealing with such problems. Some of the general results
were particularized for constrained and unconstrained convex
optimization problems, respectively.

Closedness type regularity conditions were employed
by different authors in other related research fields, too,
like subdifferential calculus (e.g., by [10, 18, 29, 50–52]),
DC programming (e.g., by [51, 53–57]), generalized convex
optimization (e.g., by [58–60]), semiinfinite programming (e.g.,
by [15, 16, 50, 53, 61–64]), semidefinite programming (e.g.,
by [43, 45, 46, 65]), robust optimization (e.g., by [63, 66, 67]),
location optimization (e.g., by [68]), vector optimization (e.g., by
[10, 29, 63, 64, 69]), monotone operators ([17, 70–78]), machine
learning ([79]) or variational inequalities ([80–83]), and the list
is far from being complete.

Other possible immediate research fields where we believe that
the the closedness type regularity conditions may prove to be
useful are bilevel optimization (possibly via the Fenchel-Lagrange
approach of [84]), error bounds (maybe via the approach of
[85]), equilibrium problems (possibly via variational inequalities,
inspired by [80, 82, 83]) and even numerical optimization (e.g.,
for primal-dual algorithms, by guaranteeing strong duality).
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49. Boţ RI, Grad SM, Wanka G. New constraint qualification and conjugate

duality for composed convex optimization problems. J Optim Theory Appl.

(2007) 135:241–55. doi: 10.1007/s10957-007-9247-4

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 September 2016 | Volume 2 | Article 14

http://hdl.handle.net/2433/140691
http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Grad Closedness Type Regularity Conditions

50. Mordukhovich BS, Nghia TTA. Constraint qualifications and optimality

conditions for nonconvex semi-infinite and infinite programs.Math Program

(2013) 139:271–300. doi: 10.1007/s10107-013-0672-x

51. Dinh N, Mordukhovich BS, Nghia TTA. Subdifferentials of value functions

and optimality conditions for DC and bilevel infinite and semi-infinite

programs.Math Program (2010) 123:101–38. doi: 10.1007/s10107-009-0323-4

52. Correa R, Hantoute A, Jourani A. Characterizations of convex approximate

subdifferential calculus in Banach spaces. Trans Am Math Soc. (2016)

368:4831–54. doi: 10.1090/tran/6589

53. Dinh N, Mordukhovich BS, Nghia TTA. Qualification and optimality

conditions for DC programs with infinite constraints. Acta Math Vietnam

(2009) 34:125–55.

54. Dinh N, Nghia TTA, Vallet G. A closedness condition and its applications to

DC programs with convex constraints. Optimization (2010) 59:541–60. doi:

10.1080/02331930801951348

55. DinhN,Nghia TTA, Vallet G. Farkas-type results and duality for DC programs

with convex constraints. J Convex Anal. (2008) 15:235–62.

56. Sun XK, Guo XL, Zeng J. Necessary optimality conditions for DC infinite

programs with inequality constraints. J Nonlinear Sci Appl. (2016) 9:617–26.

57. Fang DH, Li C, Yang XQ. Stable and total Fenchel duality for DC optimization

problems in locally convex spaces. SIAM J Optim. (2011) 21:730–60. doi:

10.1137/100789749

58. Fajardo MD, Vidal J. Stable strong Fenchel and Lagrange duality for

evenly convex optimization problems. Optimization (2016) 65:1675–91. doi:

10.1080/02331934.2016.1167207

59. Volle M, Martínez-Legaz JE, Vicente-Pérez J. Duality for closed convex

functions and evenly convex functions. J Optim Theory Appl. (2015)

167:985–97. doi: 10.1007/s10957-013-0395-4

60. Martínez-Legaz JE, Vicente-Pérez J. The e-support function of an e-convex set

and conjugacy for e-convex functions. J Math Anal Appl. (2011) 376:602–12.

doi: 10.1016/j.jmaa.2010.10.058

61. Fang DH, Li C, Ng KF. Constraint qualifications for extended Farkas’s lemmas

and Lagrangian dualities in convex infinite programming. SIAM J Optim.

(2009) 20:1311–32. doi: 10.1137/080739124

62. Fang DH, Li C, Ng KF. Constraint qualifications for optimality conditions and

total Lagrange dualities in convex infinite programming. Nonlin Anal. (2010)

73:1143–59. doi: 10.1016/j.na.2010.04.020

63. Goberna MA, Jeyakumar V, Li G, Vicente-Pérez J. Robust solutions

of multiobjective linear semi-infinite programs under constraint data

uncertainty. SIAM J Optim. (2014) 24:1402–19. doi: 10.1137/130939596

64. Goberna MA, Guerra-Vazquez F, Todorov MI. Constraint qualifications in

linear vector semi-infinite optimization. Eur J Oper Res. (2013) 227:12–21. doi:

10.1016/j.ejor.2012.09.006

65. Jeyakumar V. A note on strong duality in convex semidefinite optimization:

necessary and sufficient conditions. Optim Lett. (2008) 2:15–25. doi:

10.1007/s11590-006-0038-x
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85. Boţ RI, Csetnek ER. Error bound results for convex inequality systems

via conjugate duality. Top (2012) 20:296–309. doi: 10.1007/s11750-011-

0187-7

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Grad. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 September 2016 | Volume 2 | Article 14

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

	Closedness Type Regularity Conditions in Convex Optimization and Beyond
	1. Introduction and Preliminaries
	2. General Perturbed Scalar Optimization Problems
	3. Characterizations Involving Epigraphs
	3.1. Constrained Scalar Optimization Problems
	3.2. Unconstrained Scalar Optimization Problems

	4. Characterizations Involving Subdifferentials
	4.1. Constrained Scalar Optimization Problems
	4.2. Unconstrained Scalar Optimization Problems

	5. Conclusions, Remarks and Further Directions of Research
	Author Contributions
	Funding
	Acknowledgments
	References


