
METHODS
published: 06 October 2016

doi: 10.3389/fams.2016.00016

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 October 2016 | Volume 2 | Article 16

Edited by:

Fangfei Dong,

Stony Brook University, USA

Reviewed by:

Daniele Marazzina,

Polytechnic University of Milan, Italy

Jiho Park,

Stony Brook University, USA

*Correspondence:

Lennart Obermann

obermann@cs.uni-goettingen.de

Specialty section:

This article was submitted to

Mathematical Finance,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 17 August 2016

Accepted: 20 September 2016

Published: 06 October 2016

Citation:

Obermann L and Waack S (2016)

Interpretable Multiclass Models for

Corporate Credit Rating Capable of

Expressing Doubt.

Front. Appl. Math. Stat. 2:16.

doi: 10.3389/fams.2016.00016

Interpretable Multiclass Models for
Corporate Credit Rating Capable of
Expressing Doubt
Lennart Obermann* and Stephan Waack

Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, University of Göttingen, Göttingen,

Germany

Corporate credit rating is a process to classify commercial enterprises based on their

creditworthiness. Machine learning algorithms can construct classification models, but

in general they do not tend to be 100% accurate. Since they can be used as decision

support for experts, interpretable models are desirable. Unfortunately, interpretable

models are provided by only few machine learners. Furthermore, credit rating often is

a multiclass problem with more than two rating classes. Due to this fact, multiclass

classification is often achieved via meta-algorithms using multiple binary learners.

However, most state-of-the-art meta-algorithms destroy the interpretability of binary

models. In this study, we present Thresholder, a binary interpretable threshold-based

disjunctive normal form (DNF) learning algorithm in addition to modifications of popular

multiclass meta-algorithms which maintain the interpretability of our binary classifier.

Furthermore, we present an approach to express doubt in the decision of our model.

Performance and model size are compared with other interpretable approaches for

learning DNFs (RIPPER) and decision trees (C4.5) as well as non-interpretable models

like random forests, artificial neural networks, and support vector machines. We evaluate

their performances on three real-life data sets divided into three rating classes. In this case

study all threshold-based and interpretable models perform equally well and significantly

better than other methods. Our new Thresholder algorithm builds the smallest models

while its performance is as good as the best methods of our case study. Furthermore,

Thresholder marks many potential misclassifications in advance with a doubt label

without increasing the classification error.

Keywords: credit rating, machine learning, multiclass classification, interpretability, disjunctive normal forms,

expression of doubt

1. INTRODUCTION

The evaluation of the economic situation of commercial enterprises is an important task because
inaccurate predictions may lead to huge financial losses. Machine learning methods using annual
accounts offer an automated and objective way to achieve high prediction rates for this task. In
any case, machine learning models may be incorrect. Therefore, these models cannot completely
replace expensive experts. Thus, our goal is to build objective models with a low prediction error
as a helpful decision support for experts in credit rating. Therefore, we additionally focus on the
interpretability of models. There are binary tasks such as insolvency prediction and multiclass tasks

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/editorialboard
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/editorialboard
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/editorialboard
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/editorialboard
http://dx.doi.org/10.3389/fams.2016.00016
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2016.00016&domain=pdf&date_stamp=2016-10-06
http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:obermann@cs.uni-goettingen.de
http://dx.doi.org/10.3389/fams.2016.00016
http://journal.frontiersin.org/article/10.3389/fams.2016.00016/abstract
http://loop.frontiersin.org/people/352919/overview

Obermann and Waack Interpretable Models for Credit Rating

like credit rating. In machine learning, the latter case is often
reduced to several binary learning steps. This might change the
structure and increase the complexity and size of the models and
therefore may destroy their interpretability.

In the literature, the definitions for interpretability in terms
of machine learning are different. A model is called interpretable
if the importance of features is derivable [1] or if it consists
entirely of interpretable rules, no matter how many there are [2].
We suggest in our recently published study [3] that interpretable
models need to be interpretable by human beings and therefore
should consist entirely of interpretable rules, but of a reasonable
amount. Furthermore, these rules have to be connected by
interpretable operations. The less rules there are in a model the
more interpretable it becomes. The rules should have a structure
of what a human being would think of: Boolean expressions with
threshold indicators. In this work, a threshold indicator is the
Boolean indicator function of a threshold of a financial ratio.

The question may arise why models need to be interpretable
and why not simply apply black-boxmodels with a high accuracy.
Florez-Lopez and Ramon-Jeronimo [2] listed three important
benefits from interpretable models.

• Interpretable models allow to justify the decision of a refused
credit [4, 5] which is actually a legal obligation in some
countries, e.g., in the UK and the US [6].

• Managers are less likely to refuse to use a model which they
understand [7]

• Models that are understood can be combined with expert
knowledge to obtain a more powerful model [8].

Sometimes the prediction for some instances may be of a high
uncertainty. In some applications, it would be helpful to have
an I-Dont-Know-classification (IDK) label for these instances to
express doubt rather than guessing a label. These IDK-classified
instances can be treated in a more sophisticated or expensive
process. In insolvency prediction, for example, if an enterprise
is labeled solvent with a high uncertainty, the possibility to
lose the money of a granted credit to this enterprise can
be reduced by manually reevaluating this enterprise again by
experts. Technically, IDK-classifications are simply an additional
class label which does not occur in the training set. Therefore,
each multiclass model can represent IDK-classifications. There
are several challenges when dealing with IDK-classifications, like
the training process where none of these labels are observed,
finding a reasonable amount of IDK-classifications, and using a
decent error measure when evaluating the performance.

We further developed our binary Thresholder algorithm
for learning Disjunctive Normal Forms (DNFs) to output
interpretable multiclass models which can express doubt and
compared it with another DNF and Decision Tree (DT)
algorithm. We compared these three interpretable models with
some of the most popular and recently used non-interpretable
methods as well, namely Random Forests (RFs), Artificial Neural
Networks (ANNs), and Support Vector Machines (SVMs).

In a binary learning setting to predict insolvency we
already showed non-inferiority for interpretable models [3].
In this paper we want to show that this does not only
work for a multiclass problem, but even better for a problem

with man-made classifications, i.e., credit ratings. Our main
finding is that the interpretable models outperform the more
sophisticated black-box models in our case study on credit
rating. This can be explained by the nature of the problem.
Insolvency is influenced by multiple economic factors. In
contrast, credit rating is based on decisions by people thinking
in interpretable ways. Thus, we assume that logical operations
on threshold indicators for financial ratios are the best choice to
reconstruct human decisions in credit rating. Furthermore, we
introduce Thresholder for interpretable multiclass models which
additionally offers the possibility to express doubt.

The remainder of this paper starts with Section 2 where
related work is presented. The utilized learning algorithms and
multiclass methods are described in Section 3. Afterwards, we
present the case study in Section 4 whose results are presented
and discussed in Section 5. Finally, Section 6 concludes this paper
with a brief summary of the main contributions of this paper and
an outlook on future work.

2. RELATED WORK

There are several binary classification problems in finance, e.g.,
predicting bankruptcy, insolvency, business failure, or financial
distress. Credit rating or bond rating with more than two classes
are typical multiclass classification problems. However, there are
many studies which examine these problems for only two classes.

Most studies are solely based on data obtained from annual
accounts. Despite the fact that few studies also consider
qualitative factors [9], this paper focuses on quantitative data.
A common problem is acquiring useful data sets since annual
accounts of enterprises have to be collected from different
sources, declarations of insolvency are only published for a
limited amount of time, and rating classes which are not publicly
available are determined by credit rating agencies. Therefore,
many studies suffer from small and different data sets as well.
Thus, their absolute results are not directly comparable. A second
problem of most data sets are big imbalances. Naturally, there
are less insolvent or low rated enterprises for a given time
period than solvent ones. Inhomogeneities are a third problem.
Predictions for a mixture of enterprises of different sizes, of
different industries, and with annual accounts from different
years are more difficult than they are for homogeneous data sets.

In the following, we provide a short overview of general
statistical and machine learning methods, methods for multiclass
problems, and interpretable models in finance.

2.1. Machine Learning in Finance in
General
The following is a short overview about prior studies on
binary financial problems using statistical and machine learning
approaches. It shows which methods are used and that in most
studies at least one of the data problems stated above is present.

One of the first studies on business failure uses an univariate
model [10]. Afterwards, rather simple methods like (linear)
Multiple Discriminant Analysiss (MDAs) [11–13], logit models
[14–16], and probit models [17, 18] were used.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

Later, these simple methods were outperformed and replaced
by the very famous ANNs [19–22] and SVMs [23–26]. Both are
the most popular methods to the present day.

An alternative to the two black-box methods above are
interpretable methods like DTs [27, 28], Regression trees [29],
Rough Set Theory (RST) [30–32], and DNFs [33–35] which
are also referred to as rule sets. Especially newer studies yield
comparable results to SVMs and ANNs.

The newest approaches mainly concentrate on ensemble
learning algorithms in combination with boosting and bagging
[36–41] to increase the performance of existing algorithms.

A detailed overview of the history ofmethods used on business
data can be found in Balcaen and Ooghe [42] and Dimitras et al.
[43]. A general survey on bagging and other ensemble techniques
in bankruptcy prediction can be found in Verikas et al. [44].

2.2. Machine Learning in Finance for
Multiclass Credit Rating
Most of the studies on multiclass credit rating propose SVMs
or ANNs. However, interpretable DNFs or DTs are hardly ever
considered.

Huang et al. [45] performed a credit rating comparing
methods for improved accuracy of SVMs and improved
interpretability through feature extraction for ANNs. However,
they realized that only a slight performance improvement of
SVMs was achieved. They worked with five different rating
classes.

Instead of a credit rating a bond rating with six classes was
done by Cao et al. [46]. They tested different multiclass methods
for SVMs and compared these results with ANNs and logit
models. A main finding was that few features are not only
sufficient, but can even improve the accuracy. They achieved an
accuracy gain of about 2%.

Hájek [47] proposed different ANNs for municipal credit
rating and compared them with classification trees and SVMs.
Probabilistic neural networks obtained the best results. However,
the interpretable classification trees achieved good results as well.
They used four and nine classes and concluded that only small
lists of features determine the classification.

Kim and Ahn [48] performed a credit rating with four classes.
They propose new multiclass methods for SVMs and compare
them with other methods. Their method outperformed the rest,
but only with an advantage of less than 1%.

Guo et al. [49] studied credit rating with four classes as
well. They used a support vector domain combined with a
fuzzy clustering algorithm and compared it with different SVM
multiclass methods. Their approach outperformed conventional
multiclass methods with less than 2%.

A credit rating with 16 classes was performed by Kwon et al.
[50]. They used double ensemble approaches containing bagging
and boosting to significantly improve DTs.

2.3. Interpretable Models in Finance
There are general approaches that try to simplify non-
interpretable models. They render models interpretable
by extracting rules or pointing out feature importance.

Some approaches combine interpretable models to a more
accurate but bigger interpretable model.

There are approaches to make ANNs more interpretable [4,
51–55]. Some approaches try to simplify black-box models like
SVMs [56] and show interpretations for single data points or
extract rules as well [57, 58]. These approaches try to extract rules
which do only represent an approximation of the original model.
This decreases the accuracy of the models. Some researchers
combine interpretable rules [1, 2] to achieve better results of
interpretable models. For all methods above there is a tradeoff
between accuracy and interpretability. Models gain accuracy by
getting bigger and thus lose interpretability. Vice versa, non-
interpretable models lose accuracy by becoming interpretable.
Although, the loss in accuracy often is very small.

In finance, most studies concentrate on improving the
prediction accuracy. There are few studies dealing with
interpretability of models, especially for multiclass problems.
One of these studies was performed by Kim et al. [59] on a small
data set to predict six class bond rating. They compared DTs,
ANNs, MDAs, and logit models. ANNs performed much better
than the rest. However, this study dates back to 1993, the data set
is very small, and DT algorithms have evolved a lot since then. As
mentioned above, Huang et al. [45] improved interpretability in
credit rating through feature extraction for ANNs.

For binary problems in finance, research has shown that
already existing interpretable models are not necessarily worse
than more complex models. Jones et al. [60] concluded that
simpler and more interpretable classifiers like logit, probit, and
MDAs performed comparatively well to ANNs and SVMs when
predicting rating changes. Virág and Nyitrai [61] studied RST
for bankruptcy prediction. They showed that this interpretable
model is competitive to ANNs and SVMs. We showed in a prior
study [3] that interpretable models are not inferior to black-box
models in insolvency prediction, by comparing DTs, DNFs, RFs,
ANNs, and SVMs.

On a final note, Hand [5] argues that “the apparent
superiority of more sophisticated methods may be something
of an illusion.” He showed that for many cases the marginal
gain of sophisticated and ensemble models is small compared
to simple models. Section 2.2 shows similar observations for
most multiclass credit rating studies. Nevertheless, we appreciate
the work on sophisticated methods because classification
performance is still a more important factor for a classifier than
interpretability.

In this study, we examine interpretable multiclass models for
a three-class credit rating. We consider the interpretable model
classes of DTs and DNFs using different learning algorithms to
build the models. The model size is restricted to obtain small
and interpretable models. We compare them with the most
common methods, namely ANNs and SVMs. RFs are used to
represent combined interpretable models using thresholds. We
compare the multiclass methods used by Guo et al. [49] and an
ensemble method representatively for the work of Kwon et al.
[50]. Furthermore, we use our new approach to express doubt in
the classification. Three data sets with annual accounts of 1256
trading, 1361 construction, and 1066 financial enterprises are
used for a three-class credit rating.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

3. METHODS USED FOR CREDIT RATING

In this paper, the following models are studied:

• Thresholder DNFs,
• RIPPER DNFs,
• C4.5 DTs,
• RBF-networks (ANNs),
• RFs,
• Linear SVMs (L-SVMs),
• RBF-kernel SVMs (R-SVMs), and
• Polynomial-kernel SVMs (P-SVMs).

In this section, we describe the three interpretable already
published (binary) learning algorithms for DNFs and DTs
in detail. Afterwards, there will be description of common
multiclass methods, followed by a discussion of their
interpretability. At last, we present our new multiclass approach
to obtain interpretable multiclass models using Thresholder.
The Thresholder algorithm and the multiclass methods were
implemented by us. For the other algorithms the implementation
of the WEKA learning framework [62] was used.

3.1. Known Interpretable Learning
Algorithms Used
We use three algorithms to build interpretable models; our
Thresholder algorithm, as well as the RIPPER algorithm to build
DNFs, and the famous C4.5 algorithm to build DTs.

A DNF is a disjunction of monomialsm with a conjunction of
literals l

DNF =m1 ∨m2 ∨ . . . ∨ mr

= (l1,1 ∧ l1,2 ∧ . . . ∧ l1,p)
∨ (l2,1 ∧ l2,2 ∧ . . . ∧ l2,p)
∨ . . .

∨ (lr,1 ∧ lr,2 ∧ . . . ∧ lr,p),

with r monomials and p literals per monomial. We call
these literals threshold indicators. If this formula is fulfilled,
the instance will be classified positive, otherwise negative.
The literature calls DNFs rulesets as well and the containing
monomials rules. This is likewise correct, but less precise as well.

A DT is a binary tree with threshold indicators as nodes which
split the input space. The leaves determine the classification.

3.1.1. Thresholder Algorithm for Learning DNFs
We have recently published the binary classification version
of this Thresholder algorithm [3] so we provide only a short
overview. This algorithm is a greedy heuristic and calculates a
DNF model of threshold indicators. In the base algorithm, each
monomial’s threshold is calculated step by step. This is achieved
by considering each feature value of the instances as a possible
upper and lower threshold candidate and selecting the best one.
If all p thresholds are calculated or there is no further benefit in
adding thresholds, the algorithm builds the next monomial.

We improved this greedy approach using a semi-greedy
algorithm. For each monomial in the DNF, we calculate n
monomial candidates m1,m2, . . . ,mn simultaneously, with the
first threshold indicator of dimension 1, 2, . . . , n. The following

threshold indicators of each monomial candidate are calculated
greedy as before. The best of these n monomial candidates is
added as monomial to the DNF. This decision is made according
to the classification error of the DNF using this monomial
candidate. Afterwards, the next monomial is calculated in the
same way.

To further improve the heuristic, we use post-pruning which
is adapted from the C4.5 DT algorithm. We build a bigger DNF
than intended and afterwards prune some threshold indicators
to obtain a different DNF. Like the improvement above, this
technique should compensate for the greediness of the approach.
The process of building the DNF involves adding one literal
after another. In contrast, the pruning technique deletes multiple
literals at any position in the DNF. Our pruning technique has
three parameters pruning complexity pc, pruning error pe, and
pruning size ps and works as follows: remove the set of 1 . . . pc
threshold indicators or the monomial, whichever worsens the
error of the model at least. Repeat this until the error worsens
by at most pe. Depending on the value of pe, this might increase
the training error slightly, but decreases overfitting and therefore
might decrease the generalization error. The third parameter
ps restricts the maximum size of the model measured by the
number of threshold indicators. Pruning will not stop until model
size is equal or below ps. This parameter controls the degree
of interpretability. For reducing the generalization error, these
pruning parameters should be selected on a separate data set.

There are several generalization parameters which also allow
for the output models to be adjusted to one’s needs. The
maximum number of literals andmonomials is adjustable, as well
as the pruning parameters allowing to output models of a certain
size.

This algorithm was already successfully used in this form for
a binary problem [3]. For this study, we applied only a few
improvements for the pruning part. Further, we added parameter
ps that prunes the DNF until a certain model size is reached.
Especially for small values of ps, it is important to prune the
DNF to exactly size ps + pc and, afterwards, to prune the
remaining pc literals all at once. This enhances the performance
and minimizes the influence of the greediness of the pruning
algorithm. Additionally, the option to prune a monomial as a
whole was added. We added some performance improvements
as well such as lowering pc for bigger model sizes because it
exponentially increases computation time with regard to the
model size.

3.1.2. RIPPER Algorithm for Learning DNFs
Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) is an improvement to IREP [63] and was introduced
by Cohen [64]. RIPPER is a greedy heuristic, which grows
monomials, prunes them, and then adds them to a DNF. To
achieve this, the training set is randomly partitioned into a
growing set and a pruning set. After that, one monomial at a
time is calculated, using the growing set. The selection of literals
is based on the metric precision - false discovery rate. After a
monomial is calculated, it is pruned using the pruning set and
accuracy as the performance measure. The pruned monomial
is added to the DNF. Instances covered by the monomial are

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

deleted. The heuristic stops, if all positive instances are covered
or the description length of the DNF is more than a certain
parameter larger than the smallest description length of the
monomials obtained so far. The DNF is post-processed in an
optimization phase, which optimizes the monomials step by step
by creating a replacement and a revision of the monomial. The
replacement is created by growing and then pruning a new
rule, where pruning minimizes the error of the entire DNF. The
revision is created the same way, but starts with the original rule
instead of an empty rule. A decision is made by the minimum
description length (MDL) heuristic [65], whether the original
monomial should or should not be exchanged by the replacement
or the revision.

Important parameters are the number of folds which are used
for pruning and the generalization parameter which determines
the minimum number of instances in a rule.

3.1.3. C4.5 Algorithm for Learning DTs
C4.5 is a widely used DT algorithm developed by Quinlan [66]
based on the ID3 algorithm [67]. The information gain criterion
is used to split the data by creating the nodes of the tree. After it
is grown, the tree is pruned by remove branches which are not
helpful for the classification. This avoids overfitting and reduces
the size of the model.

Important generalization parameters are the confidence factor
which controls the amount of pruning and theminimumnumber
of instances in a leaf.

3.2. Known Multiclass Meta-Algorithms
Used
Multiclass classification problems have more than two different
label values for their classes. Many learning algorithms naturally
support only binary classification, like SVMs. However, there
are meta-algorithms which turn binary learning algorithms
to multiclass classifiers by using multiple binary learning
algorithms.

3.2.1. All-at-once
Some classifiers naturally support training multiple classes all at
once. Tree-based models like DTs and RFs can assign arbitrary
label values in their leaves. Since DNFs are Boolean expressions,
they naturally support only binary classification. ANNs classify
multiple classes by usingmultiple output nodes with a probability
for each label. SVMs cannot handle multiclass learning problems
naturally.

3.2.2. One-vs-one
This method [68] combines binary classifiers to multiclass
classifiers and therefore naturally allows binary classifiers like
SVMs to be used for multiclass problems. There are classifiers

trained for each pair of labels resulting in l(l−1)
2 classifiers where

l is the number of labels. For an ordinal multiclass problem, each
label ci is trained against each label cj > ci. The predicted label is

a majority vote of the l(l−1)
2 classifiers. In case of a tie, a decision

must be made, e.g., by using the smaller class index.

3.2.3. One-vs-rest
Like the one-vs-one method, this method trains multiple binary
classifiers [69]. There is one classifier trained for each label.
Each label ci = 1 . . . l is trained against the rest. Again, the final
decision is a majority vote of all classifiers. If label ci wins against
the rest, it gets a vote. Again, the final decision is a majority vote.

Compared to one-vs-one, an advantage of this method is the
smaller runtime which is linear in the number of labels. On
the contrary, the binary training is more expensive, because the
training set consists of the whole data set. A disadvantage is the
imbalance between the data of label ci and the data of the merged
rest in the training set where in general the latter is probably
much bigger. Furthermore, it is problematic that for this method
a tie is muchmore likely than for the one-vs-onemethod, because
a label can only get either one or no vote. This problem can be
solved by using probability estimates for each class as a vote.

3.2.4. One-vs-next
One-vs-next and one-vs-followers (explained below) are both
methods for ordinal multiclass problems. Originally, Kwon et al.
[70] proposed this method for ANNs. Later, this method was
adopted for other methods like SVMs [48].

The idea is to train l − 1 classifiers to differentiate between
label ci and ci−1 for ci = l . . . 1. If the first classifier decides for
the higher class, then this will be the final classification. However,
if the classifier decides for the lower class, the next classifier will
be evaluated. This is repeated until either the higher classification
is chosen or the last classifier is evaluated with a final decision.
Advantages of this method are fewer classifiers and balanced
data sets. Furthermore, this method preserves interpretability of
interpretable binary classifiers by simply cascading them.

3.2.5. One-vs-followers
Like the one-vs-next approach, this method works on ordinal
multiclass problems. The difference is what label ci is compared
to. It is not only compared to ci−1, but to all labels cj = i− 1 . . . 0.
This leads to the same amount of classifiers. Similarly to the
one-vs-rest approach it leads to imbalanced training data sets.
This method also maintains interpretability since it uses the same
hypothesis class as the one-vs-next method.

3.3. New Thresholder Algorithm for
Learning Cascaded DNFs
As mentioned above, DTs are naturally interpretable multiclass
classifier. Interpretable DNF multiclass classification can be
obtained by cascading number of labels l− 1 binary DNF
classifiers which classify one class with one DNF consecutively.
This cascade of DNFs can be seen as a decision list of DNFs.
Algorithm 1 shows how such a classification is achieved. Since
this model is basically an interpretable decision list which grows
only linearly in size with the number of class labels, it can be
considered an interpretable multiclass model.

RIPPER uses this model for multiclass classification. To build
such a classifier, the algorithm orders the classes of the data set
ascending by their size c1, . . . , cl and trains DNF1, . . . ,DNFl−1

using labels c1, . . . , cl−1 as positive data and labels
⋃

(ci, i >

1), . . . ,
⋃

(ci, i > l − 1) as negative data. The training leads

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

Algorithm 1 | Cascaded DNF classifier.

Input : DNFs DNF1, . . . ,DNFl−1, label assignments
cDNF1 , . . . , cDNFl , unknown instance X

Output: Predicted class of X

if DNF1(X) then return cx1 ;
else if DNF2(X) then return cx2 ;
...
else if DNFl−1(X) then return cxl−1

;
else return cxl ;

to a cascaded DNF as described in Algorithm 1. This method
is basically the one-vs-followers approach with a different class
ordering.

3.3.1. Learning Cascaded DNFs
For our Thresholder algorithm we use all multiclass strategies
from Section 3.2 and convert them into an interpretable form.
As mentioned above, the one-vs-next and one-vs-followers
approaches already yield an interpretable form since they are
trained according to Algorithm 1 with an ordering of class labels.
The one-vs-one and one-vs-rest approaches are more difficult
because the resulting majority votes consist of interpretable
parts, but the whole classifiers are not interpretable, like RFs.
In our approach, we solve this problem by transforming them
into cascaded DNFs. We achieve this by using Boolean algebra
to calculate conjunctions and negations of DNFs. Before we
explain this algorithm in detail, we show how applying these two
operations on DNFs will maintain the DNFs every time.

3.3.1.1. Conjunctions and negations of DNFs
The conjunction of two DNFs can be transformed back into a
single DNF using the distributive property and the associative
property of Boolean algebra as seen below. The disjunction of
two DNFs is automatically a disjunction of all monomials and
therefore a new DNF.

DNF1 ∨ DNF2
= (ml ∨ . . . ∨mr) ∨ (m′

1 ∨ . . . ∨m′
2)

= DNF1∨2

The conjunction of a DNF and a literal is a new
DNF with a conjunction of this literal with each
monomial.

l ∧ DNF1
= l ∧ (m1 ∨ . . . ∨mr)
= (l ∧m1) ∨ . . . ∨ (l ∧mr)
= (l ∧ l1,1 ∧ . . . ∧ l1,p) ∨ . . . ∨ (l ∧ lr,1 ∧ . . . ∧ lr,p)
= DNFl∧1

Using the two formulae above, the conjunction of two DNFs can
be transformed into a single DNF.

DNF1 ∧ DNF2
= (m1 ∨ . . . ∨mr) ∧ DNF2
= (m1 ∧ DNF2) ∨ . . . ∨ (mr ∧ DNF2)

=
(

(l1,1 ∧ . . . ∧ l1,p) ∧ DNF2
)

∨ . . .∨
(

(lr,1 ∧ . . . ∧ lr,p) ∧ DNF2
)

=
(

l1,1 ∧ . . . ∧ (l1,p ∧ DNF2)
)

∨ . . .∨
(

lr,1 ∧ . . . ∧ (lr,p ∧ DNF2)
)

= DNF1∧2

The negation of a DNF can be calculated using De Morgan’s
and distributive laws as seen below. Threshold indicators can be
negated by inverting the relational operator, i.e., changing “>” to
“≤” and vice versa. Using this, the negation of a monomial can be
calculated.

m1

= (l1,1 ∧ . . . ∧ l1,p)

= (l1,1 ∨ . . . ∨ l1,p)

The conjunction of two negated monomials can be transformed
into a DNF by using every combination of one literal per
monomial as a new monomial.

m1 ∧m2

= (l1,1 ∨ . . . ∨ l1,p) ∧ (l2,1 ∨ . . . ∨ l2,p)

= (l1,1 ∧ l2,1) ∨ . . . ∨ (l1,1 ∧ l2,p) ∨ . . .∨

(l1,p ∧ l2,1) ∨ . . . ∨ (l1,p ∧ l2,p)

And finally, the negation of a DNF, which is a conjunctive normal
form, can be transformed into a DNF as well using the formulae
above.

DNF1
= m1 ∨ . . . ∨mr

= m1 ∧ . . . ∧mr

= DNF1

Calculating the conjunction or negation of a DNF
exponentially increases the amount of threshold
indicators, a problem which will be addressed later in
Section 3.3.1.3.

3.3.1.2. Interpretable one-vs-one and one-vs-rest classifiers
Since the data sets of our case study have three classes,
we explain our algorithm only for the three class case for
reasons of simplicity. However, it can easily be extended to n
classes.

We denote DNFivj the binary classifier which is trained with
label j as positive and label i as negative data. Taking an instance
of the data set as parameter, it returns true for label j and false
for label i. The majority vote of the three one-vs-one classifiers
DNF0v1,DNF0v2, andDNF1v2 votes for label 2 only ifDNF0v2 and
DNF1v2 both return true. It votes for label 1 only if DNF0v1 and
DNF2v1 = DNF1v2 both return true. It votes for label 0 if DNF0v1
andDNF0v2 both return false. Otherwise, there is a tie. In this case
we assign label 0 as well.

Firstly, we train DNF0v1, DNF0v2, and DNF1v2 similar to
the normal one-vs-one approach. Afterwards, we build two
cascaded DNFs using the conjunctions and negations of DNFs
representing the majority votes as seen above. An alternative
method is to directly train the negated DNF from the data instead
of calculating it. This requires one additional training step. Both
methods are shown in Algorithm 2.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

Algorithm 2 | Indirect and direct method for interpretable
one-vs-one DNF classifiers.

Input : Training sample U, unknown instance X
Output: Predicted class of X

train DNF0v1 on U;
train DNF0v2 on U;
train DNF1v2 on U;

DNF2v1: = DNF1v2
︸ ︷︷ ︸

indirect method

OR train DNF2v1 on U
︸ ︷︷ ︸

direct method

;

if DNF0v2(X) ∧ DNF1v2(X) then
return 2

else if DNF0v1(X) ∧ DNF2v1(X) then
return 1

else
return 0

end

We denote DNF(i,j)vk the binary classifier which is trained with
label i and j as negative and label k as positive data. Taking an
instance of the data set as parameter, it returns true for label k
and false for label i or j. The interpretable one-vs-rest classifier
returns a positive classification for class k only if DNF(i,j)vk
returns true, DNF(k,i)vj returns false, and DNF(j,k)vi returns false.
Like the interpretable one-vs-one method, this method exists in
an indirect and direct version. Algorithm 3 shows this procedure
in detail.

Algorithm 3 | Indirect and direct method for interpretable
one-vs-rest DNF classifiers.

Input : Training sample U, unknown instance X
Output: Predicted class of X

train DNF(1,2)v0 on U;
train DNF(0,2)v1 on U;
train DNF(0,1)v2 on U;

DNF0v(1,2): = DNF(1,2)v0 OR train DNF0v(1,2) on U;

DNF1v(0,2): = DNF(0,2)v1 OR train DNF1v(0,2) on U;

DNF2v(0,1): = DNF(0,1)v2
︸ ︷︷ ︸

indirect method

OR train DNF2v(0,1) on U
︸ ︷︷ ︸

direct method

;

if DNF(0,1)v2(X) ∧ DNF0v(1,2)(X) ∧ DNF1v(0,2)(X) then
return 2

else if DNF(0,2)v1(X) ∧ DNF0v(1,2)(X) ∧ DNF2v(0,1)(X) then
return 1

else
return 0

end

3.3.1.3. Simplification and pruning of cascaded DNFs
As mentioned above, the conjunction and negation operations
for DNFs increase the size of the resulting cascaded DNFs
exponentially, a problem which does not exist for directly
calculated models from the one-vs-next and one-vs-followers
approaches. However, in these bigger DNFs, many rules are
redundant and can be pruned for simplification.

If a monomial contains multiple threshold indicators of the
same dimension and orientation, the less restrictive ones can be
discarded without changing the logic of the Boolean formula. In
this example, the first threshold indicator can be discarded

Solvent =
(

(Cash flow > 1.45 mil. BC) ∧
(Cash flow > 1.5 mil. BC) ∧
(RoI > 9.5%)

)

∨

Whole monomials can be discarded as well; consider the example
of the conjunction of twomonomialsm1 andm2, wherem1 is less
restrictive thanm2 in every threshold

Solvent =
(

(Cash flow > 1.45 mil. BC) ∧ (RoI > 9.5%)
)

∨
(

(Cash flow > 1.5 mil. BC) ∧ (RoI > 10%)
)

∨

Then, m2 can be pruned and m1 already represents the
conjunction.

Using these conversions, which do not touch the outcome of
the formulae, the size of the cascaded DNF shrinks significantly.
Nevertheless, the model size might become clearly bigger than
directly calculated models since there might be monomials which
are not exactly as restrictive, but only almost as restrictive as other
monomials

Solvent =
(

(Cash flow > 1.45 mil. BC) ∧ (RoI > 9.5%)
)

∨
(

(Cash flow > 1.4 mil. BC) ∧ (RoI > 10%)
)

∨

Pruning them would change the logic of the formula, but in
practice this might only affect very few instances indicating the
usage of post pruning. Therefore, we apply the same pruning
algorithm for both a single DNF and the cascaded DNF classifier.

After all, we have six interpretable multiclass methods
implemented for our Thresholder algorithm, namely

• one-vs-next,
• one-vs-followers,
• one-vs-one(-indirect),
• one-vs-one-direct,
• one-vs-rest(-indirect), and
• one-vs-rest-direct.

All of these methods are trained with an ascending and
descending order of the class labels in a three-fold-cross-
validation of the training data to chose the better order. The all-
at-once method of our Thresholder trains all of the six methods
above in a three-fold-cross-validation and chooses the best one.
When there is a tie, it chooses the one with the smaller model size.

3.3.2. IDK-Classification for Cascaded DNFs
IDK-labels are assigned by classifiers, but cannot be observed in
training data sets. We propose to assign IDK-classifications when

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

a tie of the one-vs-one and one-vs-rest multiclass method occurs.
Therefore, all classifiers using these methods can implement
IDK-classification.

However, we want to go one step further and develop
interpretable models using IDK-classifications. In the previous
section, we presented interpretable one-vs-one and one-vs-rest
multiclass methods for Thresholder. We assign the label 0 in case
of a tie. However, if we add an l-th DNF to our cascade, we can
distinguish between label 0 and a tie which we can assign an
IDK-classification. Algorithm 4 shows this procedure for the one-
vs-one method. IDK-classification using the one-vs-rest method
works similar.

The all-at-once method of Thresholder using IDK-
classifications uses only the four multiclass methods which
support IDK-classifications, i.e., the two versions of one-vs-one
and one-vs-rest.

Algorithm 4 | Indirect and direct method for interpretable
one-vs-one DNF classifiers using IDK-classifications.

Input : Training sample U, unknown instance X
Output: Predicted class of X

train DNF0v1 on U;
train DNF0v2 on U;
train DNF1v2 on U;

DNF2v1: = DNF1v2 OR train DNF2v1 on U;

DNF1v0: = DNF0v1 OR train DNF1v0 on U;

DNF2v0: = DNF0v2
︸ ︷︷ ︸

indirect method

OR train DNF2v0 on U
︸ ︷︷ ︸

direct method

;

if DNF0v2(X) ∧ DNF1v2(X) then
return 2

else if DNF0v1(X) ∧ DNF2v1(X) then
return 1

else if DNF1v0(X) ∧ DNF2v0(X) then
return 0

else
return 3 (IDK)

end

Compared to the basic one-vs-one method, the model size
is increased by one additional DNF and the training involves
negating or training two additional DNFs. As before, the model
size can be controlled via pruning. Furthermore, using different
values of τ , pruning can control the amount of IDK-assignments.
Decreasing τ should result in an increase of IDK-classifications
and an increase of the classification error.

4. CASE STUDY

This section describes the database which we use for credit rating.
It addresses the experiments we ran, the settings we used and the
process of evaluation.

4.1. Data
This case study is based on the DAFNE database by the credit
bureau [71]. In our previous study on insolvency prediction [3],
we worked with a much older version of this database with a

TABLE 1 | Number of enterprises of each rating class as they appear in

our data sets.

Data set Low Medium High Total

Wholesale and retail trade 256 500 500 1256

Construction 361 500 500 1361

Finance 62 500 504 1066

TABLE 2 | The nine financial ratios used in this study.

Revenue

Net income

Profit margin

Capital-debt ratio

Equity ratio

Cash flow

Current maturities

Return on equity (RoE)

Return on investment (RoI)

big number of inhomogeneous enterprises of different industries,
sizes, and years of annual accounts. This time we obtained more
homogeneous data. Thus, we were able to work with a random
selection of three separate data sets roughly containing 1000
to 1500 enterprises of the industries wholesale and retail trade,
construction, and finance. Each data set contains mostly German
and only very big enterprises1 with annual accounts from 2013
divided into three rating classes. The highest rating matches
Standard and Poor’s AAA to BB+ rating classes, the medium
rating matches BB to B, and the lowest rating matches B− to
D. The idea was to find 500 enterprises for each industry and
rating class, but since enterprises with the lowest rating are
comparatively rare, this requirement could not be met. Details
about the actual numbers can be found in Table 1.

The features of the data sets are directly taken or calculated
from annual accounts, i.e., balance sheets and income statements.
Many of these features contain missing values since only a few
financial ratios are required to be published in an annual financial
statement. We discarded all features that were not at least 90%
complete. All features which were not used in our previous
study [3] and which are just single values from balance sheets
or income statements were discarded as well. Performing this
feature selection, we ended up with nine financial ratios as shown
in Table 2.

The missing values had to be replaced with some numerical
values. Experiments with different replacement strategies
have shown that missing values provide rating information.
Enterprises with a low rating tend to have more missing values.
Therefore, our replacement strategy for missing values is using
the value zero instead of mean, median or other estimators. This
value isolates the information and can easily be recognized in
the resulting model. Our data sets are randomly drawn subsets
of bigger data sets of the Creditreform. Thus, the distribution of
missing values should represent the distribution of the missing

1Enterprise size is a feature in the database and its calculation is undocumented.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

values of the bigger data sets. Since this distribution is not
altered, missing values are a legitimate discrimination criterion.

4.2. Experiments
We have chosen the classification error as a performance
measure. According to the related literature this is a common
measure for multiclass problems in finance. Since the data is
split randomly, repetitions slightly change results. Therefore,
we performed 20 repetitions and took the mean value of these
results. Then we tested the statistical significance between the
different methods using Welch’s t-test [72] and the Wilcoxon
signed-rank test [73] for pairwise error and model size
comparisons. We denoted results as significantly different, if the
p-value was below 0.01.

For the error rate in case of IDK-classifications, we use a
parameter τ to penalize assignments of this class. As stated
by Alpaydin [74], choosing τ = 0, an IDK-classification is
always assigned. Choosing τ = 1, an IDK-classification is never
assigned. Therefore, the parameter should be chosen that 0 <

τ < 1. Therefore, we have chosen τ = 0.67, i.e., the probability
of guessing the wrong label in the three class case.

There are different measures for the model size of DNFs
and DTs. The size of a DT can be measured by the size of the
tree which is the number of nodes (threshold indicators) and
the number of leaves (output values). This measure is used in
WEKA as well [62]. Possible measures for the DNF size are the
number of rules as used in WEKA [62] and the total number of
threshold indicators [75]2. Since the first measure only counts
the number of monomials and does not take the size of the
monomials into account at all, we consider the secondmeasure to
be more appropriate to quantify model size and interpretability.
However, simply using the latter measure for cascaded DNFs
would result in an unfair advantage over DTs. Hence, we have
to add the number of output values which is the number of single
DNFs+1.

The algorithms from Section 3.1 were evaluated using the
standard procedure which splits the data randomly into a 67%
training and 33% test split. Since standard parameters are
not always the best choice, a three-fold cross-validation was
applied to the training set for the parameter selection of all
algorithms.

We evaluated all learning algorithms of Section 3.1 in
combination with all multiclass methods from Section 3.2.
The one-vs-one and one-vs-rest methods were applied in two
different ways. Thresholder used the indirect and direct method
(Section 3.3.1.2). All other algorithms used the normal method
with majority votes and a modified method with probability
estimates as votes. To test whether the learning algorithms can
be further improved by ensemble learning, we exemplarily tested
the one-vs-one method with boosted classifiers using AdaBoost
with 10 boosting iterations.

We experimented with different parameter values for the
algorithms to find an ideal and fair setting for each of
them to represent their performance. This resulted in sets
of parameter values where the final setting is selected using

2Technically they use the number of rules multiplied by the mean rule size.

TABLE 3 | Parameter sets used for the learning algorithms.

Algorithm Parameters used

Thresholder Max. number of literals p = 5

Max. number of clauses r = 5

Max. number of thresholds in a single DNF pssingle = 7

Prune at most pc = 4 literals at once

Prune only if error worsens by at most pe = 0.001

Max. number of thresholds in the cascaded DNF

ps = {2;3; 4;6; 8;10}

C4.5 Confidence factor used for pruning

C = {0.005;0.01;0.02}

Min. number of instances per leaf

M = {10;20;50}

RIPPER Number of folds for growing/pruning F = {2;3; 4}

Min. number of instances per rule N = {1;2; 4}

Number of optimization runs O = 2

RF Number of trees I = {4; 6;10}

Max. depth of the trees d = {2;5; 10}

ANN Number of RBF-functions B = {10;20;30}

Min. width of RBF-functions W = {1; 10;100}

L-SVM Complexity parameter

C = {100;500; 1000;5000;10000}

Normalize data

P-SVM Exponent in polynomial function E = {2; 3;4}

Complexity parameter C = {10;100; 1000}

Normalize data

R-SVM γ in RBF-function G = {0.01; 0.1; 1}

Complexity parameter C = {10;100; 1000}

Normalize data

For each algorithm all parameter combinations of these values are used.

a three-fold-cross-validation. For details of the parameter
sets see Table 3. Parameters of interpretable models were
chosen only based on their performance regardless of model
size.

In a second experiment we tried different generalization
parameters for all interpretable models of the all-at-once
multiclass method. We started with the parameter settings of
the previous experiments and changed the values stepwise in a
way that the model size of the last parameter combination was
five or lower. This is the smallest model size which allows for
a separation of three classes. For details see Table 4. That way,
we can evaluate a model’s performance compared to its size.
Lowering the model size is desirable, because a lower model size
increases interpretability.

A third experiment was performed to study the behavior of
IDK-classifications.We tested all algorithms in combination with
all multiclass methods supporting IDK-classification, i.e., one-
vs-one and one-vs-rest. Additionally, we evaluated Thresholder

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

using different values of τ . Although we tried different values
of τ in the training process, τ is always fixed to 0.67 when
testing the model. This allows for a proper evaluation. Since we
are more interested in the performance using IDK-classifications
and model size is of second rank, we use the parameters from
Table 3.

TABLE 4 | The six different generalization parameter sets used for

evaluating the correlation between classification error and model size.

Para. Thresholder C4.5 RIPPER

P1 ps = {2;3; 4;6; 8; 10} M = {10;20;50} N = {1;2; 4}

P2 ps = {2;3; 4;6; 8} M = 20 N = 5

P3 ps = {2;3; 4;6} M = 30 N = 10

P4 ps = {2; 3;4} M = 40 N = 20

P5 ps = {2;3} M = 50 N = 50

P6 ps = {2} M = 60 N = 100

5. RESULTS AND DISCUSSION

In this section, the results of the three experiments of the
case study are shown and discussed. The experiments were
performed as described above. Welch’s t-test and the Wilcoxon
signed-rank test both yielded almost always the same results
for our experiments. If they disagreed, result were denoted as
significantly different.

In the following tables, the abbreviation err refers to the error
rate and size to the model size.

5.1. Performance of All Models and
Methods
Table 5 shows the error rates for all three data sets, learning
algorithms, andmulticlass methods. Figure 1 visualizes the mean
error rates for the three data sets and shows that all algorithms
for interpretable models and RFs perform similarly well and are
much better than other algorithms. Different multiclass methods

TABLE 5 | Error rates of learning algorithms and multiclass methods in percent.

Algorithm All One One One One One One Boosting

-at- -vs- -vs- -vs- -vs- -vs- -vs- (one

once one one rest rest next followers -vs-

direct/prob. direct/prob. one)

(A) TRADE DATA SET

Thresholder 4.8 5.0 5.1 5.0 5.2 4.6 4.9 5.8

C4.5 4.8 5.2 5.5 5.2 5.0 5.4 5.4 5.3

RIPPER 4.7 4.2+ 4.2+ 5.1 5.0 4.7 4.5i 4.9

RF 4.9 4.9 4.2+ 4.9 4.8 5.0 4.6 5.1

ANN* 19.2 11.6 12.0 16.1 18.2 11.5 13.4 11.7

L-SVM* 7.9 10.5 20.3 28.4 8.2 7.5 8.2

P-SVM* 8.1 13.1 18.1 22.6 8.4 8.1 9.6

R-SVM* 13.0 12.9 22.4 25.4 12.0 13.0 11.9

(B) CONSTRUCTION DATA SET

Thresholder 8.8 8.8 8.4i 9.4 9.2 9.2 9.0 11.5

C4.5 8.6 8.9 8.2+ 8.2+ 8.8 8.4 8.3 10.4

RIPPER 8.4i 8.7 8.9 9.9 9.7 8.5 8.7 11.1

RF 8.8 10.0 9.1 10.6 10.3 9.5 9.5 9.6

ANN* 18.5 18.2 18.0 27.9 28.5 19.1 17.8 18.1

L-SVM* 13.8 16.1 37.1 33.4 14.3 14.3 14.5

P-SVM* 15.4 17.8 25.5 26.4 16.9 16.5 17.2

R-SVM* 16.2 17.0 24.5 26.2 15.6 15.5 16.5

(C) FINANCE DATA SET.

Thresholder 16.6 16.6 17.0 17.0 17.5 17.2 17.0 28.4

C4.5 16.0i 16.5 15.8+ 16.0 17.0 15.9 16.6 20.4

RIPPER 16.8 17.6 17.9 17.2 16.9 17.0 17.9 20.4

RF* 18.4 18.3 17.4 20.2 18.8 17.6 17.4 18.5

ANN* 32.6 32.7 32.2 36.1 36.5 33.4 32.9 33.2

L-SVM* 36.9 37.1 37.1 41.1 36.5 35.8 36.3

P-SVM* 30.6 29.1 30.8 31.9 30.1 30.2 29.9

R-SVM* 30.9 29.9 34.4 35.3 32.3 31.0 32.6

There are marks, if the best result for an algorithm (*) is significantly worse than the overall best result (+). The best interpretable result is marked with i .

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

do only affect the performance of the non-thresholds-based
algorithms. Boosting does not significantly increase performance.
In fact, in most cases it tends to overfit and slightly decreases it.

This experiment shows that interpretable algorithms perform
best. Moreover, all of them have a similar classification error.
RFs perform slightly worse only for the finance data set. All
other non-interpretable algorithms perform significantly worse.
Thus, the best performing algorithms are all threshold-based.
There is quite a big gap between the error rates of the threshold-
based algorithms and the rest, as can be seen in Figure 1. The
figure shows that the mean gap over the three data sets is
almost always about 10% or higher for each multiclass method
which means about twice as many misclassifications. Despite
the fact that this figure only plots the mean values for all data
sets, it reflects the relative results of each data set as well.
Different multiclass methods do not influence the performance
of threshold-based algorithms to a great extend. Nevertheless, for
ANNs and SVMs, there is a big performance drop when using
the one-vs-rest method which was observed in other studies

0%

5%

10%

15%

20%

25%

30%

35%

40%

Thresh.

C4.5

RIPPER

RF

ANN

L-SVM

P-SVM

R-SVM

Multiclass method

E
rr

o
r

ra
te

FIGURE 1 | Mean error values of learning algorithms and multiclass

methods for all data sets.

[48, 49, 76] as well. The remaining multiclass methods only
show marginal differences among each other. For these data sets,
using methods with probability estimates is almost always worse
than using methods with simple votes. When ignoring the badly
performing one-vs-rest methods, SVMs perform better than
ANNs as observed by Kim and Ahn [48]. The simple L-SVMs
perform slightly better than the more sophisticated P-SVMs and
R-SVMs on the trade and construction data set. The ensemble
learningmethod boosting slightly increases the performance only
of some of the bad performing non-interpretable algorithms.
However, the best performances are achieved by the threshold-
based algorithms and boosting does not increase it. This and the
fact that they all perform similarly well leads to the conclusion
that the remaining error is noise which can only be eliminated
using additional information.

We were surprised at the bad performance of the
popular SVMs and ANNs. Therefore, we experimented with
different parameters and different kernels in this experiment.
Furthermore, we tried a feature selection, but to no avail.
There are very few studies comparing these methods with
threshold-based models in the field of multiclass credit rating.
Furthermore, the credit agencies’ processes of determining
credit ratings are unknown and differ from agency to agency.
We suspect that Creditreform’s credit rating is focused on
thresholds of account data. Therefore, threshold-based models
are more appropriate to reconstruct this credit rating using these
data sets. Other approaches from Section 2.2 would probably
increase the performance of SVMs and ANNs. However, the
small performance gain of methods from these studies compared
to the standard algorithms used in this experiment, renders it
unlikely to fill the performance gap between the former and the
threshold-based algorithms. This applies at least to this problem
and these data sets.

5.2. Model Sizes of Interpretable Models
Since all interpretable algorithms yield the best results in the first
experiment, we tried to obtain the required model size for this
comparable performance. Therefore, we examined performance
and model size for different parameters. Figure 2 and Table 6

P1 P2 P3 P4 P5 P6

4,0%

4,5%

5,0%

5,5%

6,0%

6,5%

7,0%

7,5%

8,0%

8,5%

9,0%

1

2

3

4

5

6

7

8

9

10
Trade

Generalization parameter set

E
rr

o
r

ra
te

P1 P2 P3 P4 P5 P6

8,0%

9,0%

10,0%

11,0%

12,0%

13,0%

14,0%

15,0%

16,0%

1

2

3

4

5

6

7

8

9

10
Construction

Generalization parameter set

P1 P2 P3 P4 P5 P6

15,5%

16,5%

17,5%

18,5%

19,5%

20,5%

21,5%

22,5%

23,5%

1

2

3

4

5

6

7

8

9

10
Finance

Thresholder
error rate

Thresholder
model size

C4.5
error rate

C4.5
model size

RIPPER
error rate

RIPPER
model size

Significance
border

Generalization parameter set

M
o
d
e
l
s
iz

e

FIGURE 2 | Error rate and model size for different generalization parameters. A border is plotted between the results which are not significantly worse and the

results which are significantly worse than the best result. No border is plotted for the finance data set because there are no results which are significantly worse than

the best result.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

TABLE 6 | Error rate in percent and model size for different generalization

parameters.

Para. Thresholder C4.5 RIPPER

Set Err Size Err Size Err Size

(C) TRADE DATA SET.

P1 4.8 7.6 4.8 7.6 4.7 8.9

P2 4.6 7.8 5.3* 5.8 4.6 8.5

P3 4.9 7.3 5.4* 5.0 4.7 8.0

P4 4.9 6.7+ 5.4* 5.0 5.9* 5.4

P5 5.3∗ 5.4 5.4* 5.0 5.9* 5.4

P6 5.5* 5.0 5.4* 5.0 5.7* 5.1

(D) CONSTRUCTION DATA SET.

P1 8.8 8.8 8.6 9.0 8.4 9.9

P2 8.7 8.0 8.9 8.8 8.3 9.4

P3 8.6 7.4 10.5* 7.2 8.4 9.1

P4 9.0 6.9+ 11.0* 5.0 10.4* 7.1

P5 10.9* 5.3 11.0* 5.0 10.2* 5.0

P6 10.8* 5.0 11.0* 5.0 10.2* 5.0

(E) FINANCE DATA SET.

P1 16.6 5.9 16.0 6.8 16.8 9.3

P2 16.6 5.6 16.5 6.0 16.7 9.5

P3 16.9 5.3 16.5 5.0 17.0 8.9

P4 16.8 5.1 16.5 5.0 15.9 5.4

P5 16.9 4.5 16.5 5.0 17.5 4.3

P6 16.9 4.0 16.9 5.0 17.9 3.7+

A * means that this result is significantly worse than the best interpretable result (marked

with i in Table 5) for this data set. Horizontal lines separate significant from non-significant

results. The smallest model sizes which are not significantly different from each other with

an error not significantly worse than the best error for this data set are marked with a +.

show the connection of performance and model size when the
model size is decreased. They denote statistical significances
between error rates and model sizes as well.

The parameter selection for the previous comparisons is solely
based on the classification error and does not consider model
size, because we wanted to compare interpretable and non-
interpretable algorithms. Therefore, it would be unfair to choose
the winner of the similarly performing models solely based on
the model size of these experiments. As described above, we
did another experiment using different generalization parameters
to compare classification error and model size for the all-at-
once method of the Thresholder, RIPPER, and C4.5 algorithm.
Figure 2 and Table 6 show that increasing the generalization also
increases the classification error and lowers the model size at the
same time. We consider the smallest model sizes that do not
perform significantly worse than the overall best interpretable
result of this data set. This is done for each algorithm and
data set. In the following, we will refer to these smallest model
sizes as the model size of an algorithm. Thus, we can compare
the similarly performing algorithms based on their model
size.

Furthermore, we did a significance analysis for the model sizes
of each algorithm to determine models which are significantly

bigger than the smallest model. For the trade data set,
Thresholder and C4.5 models are significantly smaller than
RIPPER models. Thresholder yields the significantly smallest
models for the construction data set as well. For the finance data
set the situation is different due to the small amount of low-rated
enterprises. Using small models, these enterprises are ignored by
the learners which results in model sizes below five. Nevertheless,
these model sizes could be achieved without getting significantly
worse. For the finance data set, RIPPER models are significantly
smaller than Thresholder models. However, the advantage is
small and only significant because of the constant model sizes
of Thresholder and C4.5 over all repetitions of the experiments.
Nevertheless, the mean model size of Thresholder (5.87) is more
than one threshold smaller than the sizes of C4.5 (7.13) and
RIPPER (6.93). Although the proportions of these numbers
might seem small, it has to be taken into consideration that the
number of thresholds in these models is much smaller (3.21,
4.13, and 4.33) resulting in differences of about 25%. A reason
for the small thresholder models is probably the combination of
several multiclass methods and choosing the best ones with the
smallest model size. Another reason could be the generalization
parameter which directly allows to control the model size.

Figures 3–5 show example models for all interpretable all-
at-once algorithms for each data set. For each algorithm and
data set we picked a single model out of the 20 repetitions of
the parameter set with the biggest generalization that did not
perform significantly worse. We took the models whose model
sizes were closest to the mean model size for this algorithm, data
set, and parameter set. It can be seen that these models are small
and only contain a small number of different financial ratios.
The finding that few features are sufficient to solve financial
problems was shown before [46, 47]. Investigating these models
shows that revenue is the most important financial ratio to
classify trade and construction enterprises. Despite the fact that
revenue is of no importance for financial enterprises, missing
values (replaced by zero-values) are indeed a very important
discrimination criterion. The worse the enterprise’s rating the
more missing values seem to appear in their annual accounts.
The models catch them by using an upper threshold of or slightly
above zero and a second lower threshold of or slightly below
zero. All models displayed are of an interpretable structure and of
an interpretable size. The size of the Thresholder DNFs is lower
than or equal to the size of RIPPER DNFs and DTs. Albeit, DT
interpretability is of a different kind.

5.3. Performance of IDK-classifiers
Table 7 shows the results obtained using IDK-classifications.
Results which were significantly worse than the best interpretable
result (marked with i in Table 5) or with less than one assigned
IDK-label were intentionally left out, because we could not derive
benefit from them. The tables show the error rate, the number
of IDK-assignments, and die proportion of IDK-assignments per
misclassification.

Roughly a third of the 34 IDK-classifier results assign at
least one IDK label and are not significantly worse than the
best interpretable result. There are less for the trade (9) and
construction data sets (10) and more for the finance data

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

A B C

FIGURE 3 | Example models for Thresholder DNFs built on the three data sets. (A) Trade data set model. (B) Construction data set model. (C) Finance data

set model.

D E F

FIGURE 4 | Example models for DTs built on the three data sets. (D) Trade data set model. (E) Construction data set model. (F) Finance data set model.

G

H

I

FIGURE 5 | Example models for RIPPER DNFs built on the three data sets. (G) Trade data set model. (H) Construction data set model. (I) Finance data set

model.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

TABLE 7 | Absolute number of IDK-assignments and error rate and

number of IDK-assignments per misclassifications in percent of all

learning algorithms and IDK-classifier capable multiclass methods.

Learning

algorithm

Multiclass method τ #IDK #IDK / #err err
τ=0.67

(G) TRADE DATA SET

Thresholder

All-at-once

0.67 2.8 15 4.8

0.5 2.9 15 5.0

0.3 4.3 23 5.2

One-vs-one 0.3 2.7 14 5.0

One-vs-one-direct

0.67 1.7 8 5.0

0.5 1.9 10 4.9

0.3 3.5 18 5.2

One-vs-rest-direct 0.3 2.7 14 5.1

RF One-vs-rest 5.0 30 4.8

(H) CONSTRUCTION DATA SET

Thresholder

All-at-once
0.67 3.2 8 9.3

0.5 5.4 15 8.9

One-vs-one-direct

0.67 2.4 6 9.1

0.5 3.8 10 9.1

0.3 5.6 14 9.5

One-vs-rest
0.67 3.6 9 9.5

0.5 4.3 11 9.5

One-vs-rest-direct
0.67 4.9 12 9.5

0.5 4.2 10 9.6

C4.5 One-vs-rest 2.3 6 8.3

(I) FINANCE DATA SET

Thresholder

All-at-once

0.67 10.9 19 18.0

0.5 10.7 19 17.9

0.3 8.6 16 17.4

One-vs-one

0.67 4.6 8 17.4

0.5 3.4 6 17.1

0.3 4.2 7 16.6

One-vs-one-direct
0.67 7.1 12 18.3

0.5 9.3 16 18.0

One-vs-rest

0.67 2.0 3 17.8

0.5 6.6 11 18.4

0.3 7.7 13 18.4

One-vs-rest-direct

0.67 4.8 8 18.2

0.5 8.3 14 18.0

0.3 6.8 12 17.9

C4.5 One-vs-rest 5.0 10 15.7

RIPPER One-vs-rest 14.1 27 17.3

RF One-vs-one 1.1 2 18.2

Results are left out, either if there are less than one IDK classified instances or the error

rate is significantly worse than the error rate of the best interpretable method.

set (17). As expected, increasing the IDK class weight τ leads
to a higher amount of IDK-class assignments. In return it
leads to higher error rates. However, there are results assigning
a higher number of uncertain predictions whose errors are
not significantly worse than the error of the best interpretable
result.

As mentioned above, the one-vs-rest approach is more likely
to produces a tie than the other methods, resulting in more
IDK-classifications. However, this does not hold for Thresholder
where all methods perform similarly. An explanation for this
could be the pruning of the cascaded DNF which might prune
the decisions leading to a tie.

There is only a maximum number of five IDK-classifications
in the trade and construction data set and 14 in the finance data
set which seems to be a very low number compared to the size of
a data set. Nevertheless, the purpose of this study is not to find
as many IDK-instances as possible. Correct predictions are still
the most important observations. However, it is desirable to turn
as many misclassifications as possible into IDK-classifications.
Consider that these absolute numbers of IDK-classifications
are only observed on the test data set which is 33% of the
whole data. Comparing their amount with the number of
misclassifications yields rates of 15 to 30% IDK-classifications
per misclassification without worsening the accuracy
significantly.

While performing not significantly different, RFs yield the
most IDK-classifications for the trade data set, Thresholder
for the construction data set, and RIPPER for the finance
data set. However, only Thresholder yields interpretable models
to explain these IDK-assignments. Figure 6 shows example
DNFs built by Thresholder using IDK-classification. For each
data set we selected the setting which yields the most IDK-
assignments without performing significantly worse than the
best interpretable result. The model whose number of IDK-
assignments is closest to the mean number of IDK-assignments
for this data set and settings is displayed. The trade and
finance models are similar to those in Figure 3, but with one
additional threshold which discriminates the IDK-label from
the rest. The model built on the construction data set is
much bigger. An explanation can be found in the missing
optimization of the model size as done in the experiment
above. However, we think that these models are well suited
for decision support with their additional information about
doubt.

6. CONCLUSIONS

Even though the results are empirical, we conclude that
interpretable models are well suited for classification problems in
finance. Those performed slightly better than non-interpretable
models in a prior study on insolvency prediction [3]. In this study
on credit rating interpretable models even outperformed non-
interpretable models reducing the misclassifications by about
50%. The results can be explained by the way classification
is achieved. Insolvency happens when an enterprise cannot
pay its debts which is caused by several financial factors in

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

J

K

L

FIGURE 6 | Example models for Thresholder DNFs using IDK-classifications built on the three data sets. (J) Trade data set model. (K) Finance data set

model. (L) Construction data set model.

contrast to credit ratings which are at least partially man-
made classifications. We conclude that man-made classifications
are based on few thresholds, and therefore, can be detected
by threshold-based algorithms. ANNs and SVMs might build
models which are too complex for these simple rules and lead
to an overfitting of the data. The fact that less sophisticated
L-SVMs outperform P-SVMs and R-SVMs on two data sets
confirms this assumption. Furthermore, boosting which reduces
bias by building more complex models does not increase
the performance. Since all threshold-based methods perform
similarly, we expect the remaining error to be noise which cannot
be explained by the data. In fact, Creditreform gave information
that annual accounts only influence their rating by 20%. Instead,
qualitative factors like payment experiences from the past are
more important.

There are three main contributions of this paper. We
showed that threshold-based methods and interpretable methods
outperformed other methods like ANNs and SVMs in a case
study on credit rating. The second contribution is a new
interpretable multiclass method to learn DNFs by adopting
several well known multiclass methods. The classification error
of this method is similar to the other interpretable methods,
but further experiments show smaller model sizes with similar
error rates. As a third contribution, we introduce an interpretable
method to express doubt in the classification. These IDK-labels
can be used as a marker for doubtful classifications. These marks

allow for a selective application of more expensive classification
methods, e.g., classification by hand. However, simple methods
can still be applied, e.g., assigning the most critical label or
randomly choosing a label.

Practical implications of our work are that interpretable
models are well suited for some classification problems in finance.
Despite the fact that all interpretable models have a comparable
classification error, we recommend using our Thresholder
algorithm because it offers some benefits. Thresholder builds
the smallest models, it allows to adjust the amount of
interpretability by determining a maximum model size, it offers
the highest amount of IDK-assignments per misclassifications,
and it is the only algorithm that offers interpretable models for
IDK-assignments.

As future work, we would like to implement the generalization
of our multiclass method to work for more than three
classes and evaluate it accordingly. These models will get
much bigger due to logical operations on more DNFs.
Experiments will show whether the resulting cascaded DNFs
can be pruned down to an interpretable size. Furthermore,
we would like to identify additional problem statements
where interpretable models are non-inferior to interpretable
models. We suggest using sophisticated models only when it is
necessary. However, to determine this necessity it is important
to understand which problems are solvable by interpretable
models.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

AUTHOR CONTRIBUTIONS

LO developed the algorithm Thresholder together with SW. LO
implemented the algorithms and conducted and evaluated the
tests. Themanuscript was drafted by LO and reworked by LO and
SW together. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

We acknowledge support by the German Research Foundation
and the Open Access Publication Funds of the Göttingen
University. Furthermore, this research paper includes large parts
of the Ph.D. thesis of Obermann [77].

REFERENCES

1. Kainulainen L, Miche Y, Eirola E, Yu Q, Frénay B, Séverin E, et al. Ensembles

of local linear models for bankruptcy analysis and prediction. Case Stud

Business Indust Govern Stat. (2014) 4:116–33.

2. Florez-Lopez R, Ramon-Jeronimo JM. Enhancing accuracy and

interpretability of ensemble strategies in credit risk assessment. A correlated-

adjusted decision forest proposal. Exp Syst Appl. (2015) 42:5737–53. doi:

10.1016/j.eswa.2015.02.042

3. Obermann L, Waack S. Demonstrating non-inferiority of easy interpretable

methods for insolvency prediction. Exp Syst Appl. (2015) 42:9117–28. doi:

10.1016/j.eswa.2015.08.009

4. Tomczak JM, Zieba M. Classification Restricted Boltzmann Machine for

comprehensible credit scoring model. Exp Syst Appl. (2015) 42:1789–96. doi:

10.1016/j.eswa.2014.10.016

5. Hand DJ. Classifier technology and the illusion of progress. Stat Sci. (2006)

21:1–14. doi: 10.1214/088342306000000060

6. Crook JN, Edelman DB, Thomas LC. Recent developments in consumer

credit risk assessment. Eur J Oper Res. (2007) 183:1447–65. doi:

10.1016/j.ejor.2006.09.100

7. Sun J, Li H, Huang QH, He KY. Predicting financial distress and

corporate failure: a review from the state-of-the-art definitions, modeling,

sampling, and featuring approaches. Knowl Based Syst. (2014) 57:41–56. doi:

10.1016/j.knosys.2013.12.006

8. Finlay S. Multiple classifier architectures and their application to credit

risk assessment. Eur J Oper Res. (2011) 210:368–78. doi: 10.1016/j.ejor.2010.

09.029

9. Angilella S, Mazzù S. The financing of innovative SMEs: a multicriteria

credit rating model. Eur J Oper Res. (2015) 244:540–54. doi:

10.1016/j.ejor.2015.01.033

10. Beaver WH. Financial ratios as predictors of failure. J Account Res. (1966)

4:71–111. doi: 10.2307/2490171

11. Altman EI. Financial ratios, discriminant analysis and the prediction of

corporate bankruptcy. J Finance (1968) 23:589–609. doi: 10.1111/j.1540-

6261.1968.tb00843.x

12. Blum M. Failing company discriminant analysis. J Account Res. (1974)

12:1–25. doi: 10.2307/2490525

13. Laitinen EK. Prediction of failure of a newly founded firm. J Business Ventur.

(1992) 7:323–40. doi: 10.1016/0883-9026(92)90005-C

14. Martin D. Early warning of bank failure: a logit regression approach. J Bank

Finan. (1977) 1:249–76. doi: 10.1016/0378-4266(77)90022-X

15. Ohlson JA. Financial ratios and the probabilistic prediction of bankruptcy.

J Account Res. (1980) 18:109–31. doi: 10.2307/2490395

16. Gentry JA, Newbold P, Whitford DT. Classifying bankrupt firms with funds

flow components. J Account Res. (1985) 23:146–60. doi: 10.2307/2490911

17. Zmijewski ME. Methodological issues related to the estimation of

financial distress prediction models. J Account Res. (1984) 22:59–82.

doi: 10.2307/2490859

18. Skogsvik K. Current cost accounting ratios as predictors of business

failure: the Swedish case. J Business Finan Account. (1990) 17:137–60. doi:

10.1111/j.1468-5957.1990.tb00554.x

19. Tam KY, Kiang MY. Managerial applications of neural networks: the

case of bank failure predictions. Manage Sci. (1992) 38:926–47. doi:

10.1287/mnsc.38.7.926

20. Wilson RL, Sharda R. Bankruptcy prediction using neural networks. Decis

Supp Syst. (1994) 11:545–57. doi: 10.1016/0167-9236(94)90024-8

21. Charitou A, Neophytou E, Charalambous C. Predicting corporate failure:

empirical evidence for the UK. Eur Account Rev. (2004) 13:465–97. doi:

10.1080/0963818042000216811

22. Neves JC, Vieira A. Improving bankruptcy prediction with hidden layer

learning vector quantization. Eur Account Rev. (2006) 15:253–71. doi:

10.1080/09638180600555016

23. Fan A, PalaniswamiM. Selecting bankruptcy predictors using a support vector

machine approach. In: Proceedings of the International Joint Conference on

Neural Networks, Vol. 6 (2000). p. 354–9. doi: 10.1109/ijcnn.2000.859421

24. Härdle W, Lee YJ, Schäfer D, Yeh YR. Variable selection and oversampling in

the use of smooth support vector machines for predicting the default risk of

companies. J Forecast. (2009) 28:512–34. doi: 10.1002/for.1109

25. Harris T. Credit scoring using the clustered support vector machine. Exp Syst

Appl. (2015) 42:741–50. doi: 10.1016/j.eswa.2014.08.029

26. Danenas P, Garsva G. Selection of support vector machines based

classifiers for credit risk domain. Exp Syst Appl. (2015) 42:3194–204. doi:

10.1016/j.eswa.2014.12.001

27. Frydman H, Altman EI, li Kao D. Introducing recursive partitioning for

financial classification: the case of financial distress. J Finan. (1985) 40:269–91.

doi: 10.1111/j.1540-6261.1985.tb04949.x

28. Fernández E, Olmeda I. Bankruptcy prediction with artificial neural networks.

In: Mira J, Sandoval F, editors. From Natural to Artificial Neural Computation.

Vol. 930 of Lecture Notes in Computer Science. Berlin; Heidelberg: Springer

(1995). p. 1142–6.

29. Fritz S, Hosemann D. Restructuring the credit process: behaviour scoring for

German corporates. Int J Intell Syst Account FinanManage. (2000) 9:9–21. doi:

10.1002/(SICI)1099-1174(200003)9:1<9::AID-ISAF168>3.0.CO;2-Q

30. Slowinski R, Zopounidis C. Application of the rough set approach to

evaluation of bankruptcy risk. Intell Syst Account Finan Manage. (1995)

4:27–41. doi: 10.1002/j.1099-1174.1995.tb00078.x

31. McKee TE. Developing a bankruptcy prediction model via rough sets theory.

Int J Intell Syst Account Finance Manag. (2000) 9:159–73. doi: 10.1002/1099-

1174(200009)9:3<159::AID-ISAF184>3.0.CO;2-C

32. Bose I. Deciding the financial health of dot-coms using rough sets. Inform

Manage. (2006) 43:835–46. doi: 10.1016/j.im.2006.08.001

33. Kotsiantis S, Tzelepis D, Koumanakos E, Tampakas V. Efficiency of

machine learning techniques in bankruptcy prediction. In: 2nd International

Conference on Enterprise Systems and Accounting. Thessaloniki (2005).

34. Brodag T. PAC-Lernen zur Insolvenzerkennung und Hotspot-Identifikation:

Anwendung Statistischer Modelle des Algorithmischen Lernens auf

Betriebswirtschaftliche und Bioinformatische Probleme der Praxis. Göttingen:

University of Göttingen (2008).

35. Kwak W, Shi Y, Kou G. Predicting bankruptcy after The Sarbanes-Oxley act

using the most current data mining approaches. J Business Econ Res. (2012)

10:233–42. doi: 10.19030/jber.v10i4.6899

36. Alfaro Cortés E, Gámez Martínez M, García Rubio N. Multiclass corporate

failure prediction by adaboost.M1. Int Adv Econ Res. (2007) 13:301–12. doi:

10.1007/s11294-007-9090-2

37. Alfaro E, García N, Gámez M, Elizondo D. Bankruptcy forecasting: an

empirical comparison of AdaBoost and neural networks. Decis Supp Syst.

(2008) 45:110–22. doi: 10.1016/j.dss.2007.12.002

38. Nanni L, Lumini A. An experimental comparison of ensemble of classifiers

for bankruptcy prediction and credit scoring. Exp Syst Appl. (2009) 36(Pt

2):3028–33. doi: 10.1016/j.eswa.2008.01.018

39. Kang DK, Kim MJ. Performance enhancement of SVM ensembles using

genetic algorithms in bankruptcy prediction. In: Proceedings of the 3rd

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 October 2016 | Volume 2 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Obermann and Waack Interpretable Models for Credit Rating

International Conference on Advanced Computer Theory and Engineering

(ICACTE ’10), Vol. 2 (2010). p. V2154–8.

40. Abellán J, Mantas CJ. Improving experimental studies about ensembles of

classifiers for bankruptcy prediction and credit scoring. Exp Syst Appl. (2014)

41:3825–30. doi: 10.1016/j.eswa.2013.12.003

41. Wang G, Ma J, Yang S. An improved boosting based on feature selection

for corporate bankruptcy prediction. Exp Syst Appl. (2014) 41:2353–61. doi:

10.1016/j.eswa.2013.09.033

42. Balcaen S, Ooghe H. 35 years of studies on business failure: an overview of the

classic statistical methodologies and their related problems. Brit Account Rev.

(2006) 38:63–93. doi: 10.1016/j.bar.2005.09.001

43. Dimitras AI, Zanakis SH, Zopounidis C. A survey of business failures with an

emphasis on prediction methods and industrial applications. Eur J Oper Res.

(1996) 90:487–513. doi: 10.1016/0377-2217(95)00070-4

44. Verikas A, Kalsyte Z, Bacauskiene M, Gelzinis A. Hybrid and ensemble-based

soft computing techniques in bankruptcy prediction: a survey. Soft Comput.

(2010) 14:995–1010. doi: 10.1007/s00500-009-0490-5

45. Huang Z, Chen H, Hsu CJ, Chen WH, Wu S. Credit rating analysis with

support vector machines and neural networks: a market comparative study.

Decis Supp Syst. (2004) 37:543–58. doi: 10.1016/S0167-9236(03)00086-1

46. Cao L, Guan LK, Jingqing Z. Bond rating using support vector machine. Intell

Data Anal. (2006) 10:285–96.

47. Hájek P. Municipal credit rating modelling by neural networks. Decis Supp

Syst. (2011) 51:108–18. doi: 10.1016/j.dss.2010.11.033

48. Kim Kj, Ahn H. A corporate credit rating model using multi-class support

vectormachines with an ordinal pairwise partitioning approach.Comput Oper

Res. (2012) 39:1800–11. doi: 10.1016/j.cor.2011.06.023

49. Guo X, Zhu Z, Shi J. A corporate credit rating model using support vector

domain combined with fuzzy clustering algorithm. Math Prob Eng. (2012)

2012:302624. doi: 10.1155/2012/302624

50. Kwon J, Choi K, Suh Y. Double ensemble approaches to predicting firms’

credit rating. In: PACIS. Jeju Island (2013). p. 158.

51. CravenMW, Shavlik JW. Extracting tree-structured representations of trained

networks. Adv Neural Inform Process Syst. (1996) 8:24–30.

52. Jang JSR, Sun CT. Functional equivalence between radial basis function

networks and fuzzy inference systems. IEEE Trans Neural Netw. (1993)

4:156–9. doi: 10.1109/72.182710

53. Mantas CJ, Puche JM, Mantas JM. Extraction of similarity based fuzzy rules

from artificial neural networks. Int J Approx Reason. (2006) 43:202–21. doi:

10.1016/j.ijar.2006.04.003

54. Féraud R, Clérot F. A methodology to explain neural network

classification. Neural Netw. (2002) 15:237–46. doi: 10.1016/S0893-6080(01)

00127-7

55. Johansson U, König R, Niklasson L. The truth is in there-rule extraction from

opaque models using genetic programming. In: FLAIRS Conference. Miami

Beach, FL (2004). p. 658–63.

56. Barbella D, Benzaid S, Christensen JM, Jackson B, Qin XV, Musicant DR.

Understanding support vector machine classifications via a recommender

system-like approach. In: DMIN. Las Vegas, NV (2009). p. 305–11.

57. Martens D, Baesens B, Gestel TV, Vanthienen J. Comprehensible credit

scoring models using rule extraction from support vector machines. Eur J

Oper Res. (2007) 183:1466–76. doi: 10.1016/j.ejor.2006.04.051

58. Su CT, Chen YC. Rule extraction algorithm from support vector machines

and its application to credit screening. Soft Comput. (2011) 16:645–58. doi:

10.1007/s00500-011-0762-8

59. Kim JW, Weistroffer HR, Redmond RT. Expert systems for bond rating:

a comparative analysis of statistical, rule-based and neural network

systems. Exp Syst. (1993) 10:167–72. doi: 10.1111/j.1468-0394.1993.tb

00093.x

60. Jones S, Johnstone D, Wilson R. An empirical evaluation of the performance

of binary classifiers in the prediction of credit ratings changes. J Bank Finan.

(2015) 56:72–85. doi: 10.1016/j.jbankfin.2015.02.006

61. Virág M, Nyitrai T. Is there a trade-off between the predictive power

and the interpretability of bankruptcy models? The case of the first

Hungarian bankruptcy prediction model. Acta Oeconom. (2014) 64:419–40.

doi: 10.1556/AOecon.64.2014.4.2

62. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The

WEKA data mining software: an update. SIGKDD Explor. (2009) 11:10–8. doi:

10.1145/1656274.1656278

63. Fürnkranz J, Widmer G. Incremental reduced error pruning. In: International

Conference on Machine Learning. New Brunswick, NJ (1994).

64. Cohen W. Fast effective rule induction. In: Twelfth International Conference

onMachine Learning. Tahoe City, CA (1995). doi: 10.1016/b978-1-55860-377-

6.50023-2

65. Rissanen J. Modeling by shortest data description. Automatica (1978)

14:465–71. doi: 10.1016/0005-1098(78)90005-5

66. Quinlan JR. C4.5: Programs for Machine Learning. Morgan Kaufmann (1993).

Available online at: http://books.google.de/books?id=HExncpjbYroC

67. Quinlan JR. Induction of decision trees. Mach Learn. (1986) 1:81–106. doi:

10.1007/BF00116251

68. Friedman J. Another Approach to Polychotomous Classification. Stanford, CA:

Department of Statistics, Stanford University (1996).

69. Kreßel UHG. Pairwise classification and support vector machines. In:

Schölkopf B, Burges CJC, Smola AJ editors, Advances in Kernel Methods:

Support Vector Learning. Cambridge, MA: MIT Press (1999). p. 255–68.

70. Kwon YS, Han I, Lee KC. Ordinal pairwise partitioning (OPP) approach

to neural networks training in bond rating. Int J Intell Syst Account Finan

Manage. (1997) 6:23–40. doi: 10.1002/(SICI)1099-1174(199703)6:1<23::AID-

ISAF113>3.0.CO;2-4

71. Verband der Vereine Creditreform e V. DAFNE Database. (2015).

Available online at: http://en.creditreform.de/portfolio/marketing-services/

target-group-analysis.html (Accessed August 17, 2016).

72. Welch BL. The generalization of ’student’s’ problem when several different

population variances are involved. Biometrika (1947) 34:28–35. doi:

10.2307/2332510

73. Wilcoxon F. Individual comparisons by ranking methods. Biometrics (1945)

1:80–3. doi: 10.2307/3001968

74. Alpaydin E. Introduction to Machine Learning. Adaptive computation and

machine learning. MIT Press (2004). Available online at: https://books.google.

de/books?id=1k0_-WroiqEC

75. García S, Fernández A, Luengo J, Herrera F. A study of statistical techniques

and performance measures for genetics-based machine learning: accuracy

and interpretability. Soft Comput. (2009) 13:959–77. doi: 10.1007/s00500-008-

0392-y

76. Hsu CW, Lin CJ. A comparison of methods for multiclass support vector

machines. IEEE Trans Neural Netw. (2002) 13:415–25. doi: 10.1109/72.991427

77. Obermann L. Interpretable Binary and Multiclass Prediction Models for

Insolvencies and Credit Ratings. University of Göttingen (2016). Available

online at: http://hdl.handle.net/11858/00-1735-0000-0028-8779-4

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer JP and handling Editor declared their shared affiliation, and

the handling Editor states that the process nevertheless met the standards of a fair

and objective review.

Copyright © 2016 Obermann and Waack. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 17 October 2016 | Volume 2 | Article 16

http://books.google.de/books?id=HExncpjbYroC
http://en.creditreform.de/portfolio/marketing-services/target-group-analysis.html
http://en.creditreform.de/portfolio/marketing-services/target-group-analysis.html
https://books.google.de/books?id=1k0_-WroiqEC
https://books.google.de/books?id=1k0_-WroiqEC
http://hdl.handle.net/11858/00-1735-0000-0028-8779-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

	Interpretable Multiclass Models for Corporate Credit Rating Capable of Expressing Doubt
	1. Introduction
	2. Related Work
	2.1. Machine Learning in Finance in General
	2.2. Machine Learning in Finance for Multiclass Credit Rating
	2.3. Interpretable Models in Finance

	3. Methods Used for Credit Rating
	3.1. Known Interpretable Learning Algorithms Used
	3.1.1. Thresholder Algorithm for Learning DNFs
	3.1.2. RIPPER Algorithm for Learning DNFs
	3.1.3. C4.5 Algorithm for Learning DTs

	3.2. Known Multiclass Meta-Algorithms Used
	3.2.1. All-at-once
	3.2.2. One-vs-one
	3.2.3. One-vs-rest
	3.2.4. One-vs-next
	3.2.5. One-vs-followers

	3.3. New Thresholder Algorithm for Learning Cascaded DNFs
	3.3.1. Learning Cascaded DNFs
	3.3.1.1. Conjunctions and negations of DNFs
	3.3.1.2. Interpretable one-vs-one and one-vs-rest classifiers
	3.3.1.3. Simplification and pruning of cascaded DNFs

	3.3.2. IDK-Classification for Cascaded DNFs

	4. Case Study
	4.1. Data
	4.2. Experiments

	5. Results and Discussion
	5.1. Performance of All Models and Methods
	5.2. Model Sizes of Interpretable Models
	5.3. Performance of IDK-classifiers

	6. Conclusions
	Author Contributions
	Acknowledgments
	References

