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Single-product oligopolies without product differentiation are examined with linear

production, production adjustment, flexible workforce and investment costs. The price

function is assumed to be hyperbolic which makes the non-linearity of the model much

stronger than in the case of linear price function examined earlier in the literature. The

best responses of the firms are determined which are not monotonic in contrast to

the linear case. The set of all steady states is then characterized and in the case of a

duopoly it is illustrated. The asymptotical behavior of the steady states is examined by

using simulation. We analyze the effects of the different types of costs on the industry

dynamics and compare them to the prediction by the well known model with hyperbolic

price function and no product adjustment and investments costs.
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1. INTRODUCTION

Oligopoly theory and its applications became one of the central issues in the literature of
mathematical economics since the pioneering work of Cournot [1]. As a non-cooperative game
it models the competition of firms producing similar products or offering similar services. Several
variants and extensions of the classical model were introduced and examined including models
with and without product differentiation, multi-product oligopolies, rent-seeking games and
labor managed firms among others. The existence and uniqueness of the equilibrium was the
main focus of research in early stages and later the focus of studies turned to the dynamic
extensions of these model variants. The earlier results up to the mid 70s were summarized
in Okuguchi [2] including some of his fundamental contributions. With linear price and cost
functions the dynamic models with both gradient adjustments and partial adjustments toward
best responses were linear, the asymptotic behavior of which were relatively simple since local
asymptotical stability implied global stability. The multiproduct extensions of these models were
discussed in Okuguchi and Szidarovszky [3]. More recently non-linear models became the main
research focus. There are several ways to introduce non-linearities into oligopoly models. Keeping
the linearity of the price and production cost functions, production adjustment costs were
introduced and their effect on the asymptotic properties of the equilibrium were examined by
Howroyd and Rickard [4], Macleod [5], Reynolds [6, 7], Szidarovszky and Yen [8] among others.
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A complete equilibrium analysis was offered in Zhao and
Szidarovszky [9] and Matsumoto et al. [10]. Non-linearities
were introduced also by considering cartelizing groups and
antitrust thresholds in Matsumoto et al. [11–13], by introducing
contingent workforce and investment costs in Merlone and
Szidarovszky [14] and Matsumoto et al. [10] and by adding
adjustment constraints in Burr et al. [15]. The introduction
of non-linear price and/or cost functions also leads to non-
linear dynamics. Hyperbolic price functions result in interesting
dynamic properties. Such oligopoly models are equivalent to
rent-seeking games [16–18] as well as to market-share attraction
models [19, 20]. A comprehensive summary of different versions
of non-linear oligopolies and their asymptotic analysis are offered
in Bischi et al. [21].

The flexibility of workforce is well known to be an important
aspect in terms of manufacturers competitivity [22]. More
recently, the role of flexibility has been examined as it concerns
recession and possible recover [23]. In this paper we reconsider
the model of Matsumoto et al. [10] with keeping linear
production, flexible workforce and additional adjustment costs
but introducing hyperbolic price function which makes the non-
linearity of the model much stronger leading to more interesting
dynamic properties. Hyperbolic price functions were introduced
into duopolies by Puu [24] based on general Cobb-Douglas
type utility functions of the consumers [25]. They also have the
interesting property that the consumers always spend a constant
sum on the goods, regardless of price. The choice of linear cost
function serves mathematical convenience for the possibility of
deriving simple analytic expressions in the different segments of
the profit function. More complex cost functions would result in
implicit forms of the best responses making the analysis much
more difficult if not impossible. Nevertheless, by comparing the
dynamics of our model to those in the original model presented
in Puu [26] we can better understand what are the consequences
of flexible workforce in the industry.

This paper develops as follows. The mathematical model is
introduced and the best responses of the firms are determined
in Section 2. The set of all steady states is characterized in Section
3, and the asymptotic behavior of the steady states is examined
in Section 4 by using simulation. The last Section 5 concludes the
paper with future research directions.

2. THE MATHEMATICAL MODEL

An n-firm single-product oligopoly without product
differentiation is considered with isoelastic price function,
p (s) = A

s where s is the output of the industry. Let xk denote
the output of firm k, then s =

∑n
k=1 xk. It is assumed that

the firms have linear cost functions, Ck (xk) = ck + dkxk with
ck, dk > 0. In addition to these production costs we consider the
following cost types. Hiring new workers requires their training
and possibly higher wages. Layoff of workers costs the company
the unemployment insurance and usually severance pays. The
decrease in production levels requires layoffs and any increase
is possible only by increasing the workforce. It is assumed that
the additional cost of production level changes linearly depend

on the levels of decrease or increase in production. This can be
modeled as

C̄k (xk, xk (t − 1)) =
{

δk (xk (t − 1) − xk) if xk < xk (t − 1)
γk (xk − xk (t − 1)) if xk ≥ xk (t − 1)

(1)
as the additional cost in time period t. Here xk is the production
level of the firm in time period t as decision variable and not
the actual value. Increasing the capacity limit beyond the already
built up level

Xk (t − 1) = max
0≤τ≤t−1

{xk (τ )}

also has the investment cost:

Ck (xk,Xk (t − 1)) =
{

0 if xk ≤ Xk (t − 1)
αk (xk − Xk (t − 1)) if xk > Xk (t − 1) .

(2)
Therefore, the profit of firm k can be given as follows,

5k =























xkA
xk+sk

−
(

ck + dkxk
)

− δk
(

xk (t − 1) − xk
)

if 0 ≤ xk ≤ xk (t − 1)
xkA
xk+sk

−
(

ck + dkxk
)

− γk
(

xk − xk (t − 1)
)

if xk (t − 1) < xk ≤ Xk (t − 1)
xkA
xk+sk

−
(

ck + dkxk
)

− γk
(

xk − xk (t − 1)
)

−αk
(

xk − Xk (t − 1)
)

if Xk (t − 1) < xk ≤ Lk

(3)
where sk =

∑n
l 6=k xl is the output of the rest of the industry

and Lk is the maximum possible capacity limit that cannot be
increased further. There is a difference between Xk (t − 1) and
Lk. While Lk is the maximum possible production level that firm
k is able to produce, Xk (t − 1) is the built up capacity during the
previous time periods. In other words, we consider the cost of
workforce flexibility (parameters γk and δk), the cost of adding
new machinery (parameters αk) and, finally some structural
limits which bound the firms capacity. While we assume that
workforce flexibility and new machinery costs are piece-wise
linear, as it concerns the structural limits they would need more
time to be overcome. For the sake of simplicity let ϕ1, ϕ2, and ϕ3

denote these functions.
Clearly

ϕ′
1 (xk) =

Ask

(xk + sk)
2
− dk + δk (4)

ϕ′
2 (xk) =

Ask

(xk + sk)
2
− dk − γk (5)

and

ϕ′
3 (xk) =

Ask

(xk + sk)
2
− dk − γk − αk (6)

so for all feasible xk, ϕ
′
1 (xk) ≥ ϕ′

2 (xk) ≥ ϕ′
3 (xk), and for all l,

ϕ′′
l (xk) =

−2Ask

(xk + sk)
3

< 0

implying that 5k is a strictly concave, piece-wise differentiable,
continuous function.

In order to find out the shape of the profit function 5k and
determine the best responsesRk we have to consider the following
cases.
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(i) ϕ′
1 (0) ≤ 0 occurs when A

sk
− dk + δk ≤ 0, which can be

rewritten as

sk ≥
A

dk − δk
(7)

where we assume the reasonable condition dk > δk. For the

sake of simplified notation let B
(0)
k

= A
dk−δk

and A
(0)
k

= 0.

Notice that if sk = 0, then in the first terms of5k, xk cancels
out and xk = 0 is the best choice. However, at sk = xk = 0,
5k is undefined, so this is only a fictitious best response. So

this case occurs when sk ≥ B
(0)
k

with best response Rk = 0.

At sk = A
(0)
k

there is no best response.
(ii) ϕ′

1 (0) > 0 and ϕ′
1 (xk (t − 1)) ≤ 0 occur when

A
(0)
k

< sk < B
(0)
k

and
Ask

(xk (t − 1) + sk)
2
−

(

dk − δk
)

≤ 0

The second condition is a quadratic inequality
in sk:

s2k
(

dk − δk
)

+ sk
(

2xk (t − 1)
(

dk − δk
)

− A
)

+ x2k (t − 1)
(

dk − δk
)

≥ 0 (8)

The discriminant of the left hand side is

D
(1)
k

= A
(

A− 4xk (t − 1)
(

dk − δk
))

If this is non-positive, then (8) holds for all sk, in which

case define A
(1)
k

= A
(0)
k

and B
(1)
k

= B
(0)
k
. If D

(1)
k

> 0, then

there are two positive roots A
(1)
k

< B
(1)
k
. We can prove that

B
(1)
k

< B
(0)
k
. This inequality has the form:

A

dk − δk
>

A− 2xk (t − 1)
(

dk − δk
)

+
√

(

A− 2xk (t − 1)
(

dk − δk
))2 − 4x2

k (t − 1)
(

dk − δk
)2

2
(

dk − δk
)

which can be rewritten as
√

(

A− 2xk (t − 1)
(

dk − δk
))2 − 4x2

k (t − 1)
(

dk − δk
)2

< A+ 2xk (t − 1)
(

dk − δk
)

This inequality is obviously satisfied. So this case occurs
when

A
(0)
k

≤ sk ≤ A
(1)
k

or B
(1)
k

≤ sk ≤ B
(0)
k

(9)

and Rk is the stationary point in interval (0, xk (t − 1)):

Rk =

√

Ask

dk − δk
− sk (10)

(iii) ϕ′
1 (xk (t − 1)) > 0 and ϕ′

2 (xk (t − 1)) ≤ 0 is the case when

A
(1)
k

< sk < B
(1)
k

and

s2k
(

dk + γk
)

+ sk
(

2xk (t − 1)
(

dk + γk
)

− A
)

+ x2k (t − 1)
(

dk + γk
)

≥ 0 (11)

with discriminant

D
(2)
k

= A
(

A− 4xk (t − 1)
(

dk + γk
))

.

Notice that if D
(2)
k

> 0, then D
(1)
k

> 0 as well and if

D
(1)
k

< 0, then D
(2)
k

< 0 as well. In the case when D
(2)
k

> 0,

the left hand side of (11) has two positive roots A
(2)
k

< B
(2)
k
,

and since the left hand side of Inequality (11) is larger than

that of (8),A
(2)
k

> A
(1)
k

and B
(2)
k

< B
(1)
k
. Otherwise Equation

(11) holds for all sk and so we can select A
(2)
k

= A
(1)
k

and

B
(2)
k

= B
(1)
k
. This case occurs when

A
(1)
k

< sk ≤ A
(2)
k

or B
(2)
k

≤ sk < B
(1)
k

(12)

and the best response is xk (t − 1).
(iv) ϕ′

2 (xk (t − 1)) > 0 and ϕ′
2 (Xk (t − 1)) ≤ 0 occur when

A
(2)
k

< sk < B
(2)
k

and

s2k
(

dk + γk
)

+ sk
(

2Xk (t − 1)
(

dk + γk
)

− A
)

+ X2
k (t − 1)

(

dk + γk
)

≥ 0 (13)

The discriminant of the left hand side is

D
(3)
k

= A
(

A− 4Xk (t − 1)
(

dk + γk
))

and notice thatD
(3)
k

> 0 implies thatD
(2)
k

> 0 and ifD
(2)
k

<

0 then D
(3)
k

< 0 as well. If D
(3)
k

≤ 0 then we can select

A
(3)
k

= A
(2)
k

and B
(3)
k

= B
(2)
k
. Otherwise Expression (13)

has two positive roots A
(3)
k

< B
(3)
k

and since the left hand

side of (13) is larger than that of (11), A
(3)
k

> A
(2)
k

and

B
(3)
k

< B
(2)
k
. Clearly this is the case when

A
(2)
k

< sk ≤ A
(3)
k

or B
(3)
k

≤ sk < B
(2)
k

(14)

and the best response is the stationary point between
xk (t − 1) and Xk (t − 1):

Rk =

√

Ask

dk + γk
− sk (15)

(v) ϕ′
2 (Xk (t − 1)) > 0 and ϕ′

3 (Xk (t − 1)) ≤ 0 have two
conditions:

A
(3)
k

< sk < B
(3)
k

and

s2k
(

dk + γk + αk

)

+ sk
(

2Xk (t − 1)
(

dk + γk + αk

)

− A
)

+ X2
k (t − 1)

(

dk + γk + αk

)

≥ 0 (16)
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The discriminant is

D
(4)
k

= A
(

A− 4Xk (t − 1)
(

dk + γk + αk

))

and notice that D
(4)
k

> 0 implies that D
(3)
k

> 0 furthermore

D
(3)
k

< 0 implies that D
(4)
k

< 0. If D
(4)
k

≤ 0 then we

select A
(4)
k

= A
(3)
k

and B
(4)
k

= B
(3)
k
, and if D

(4)
k

> 0, then

Expression (16) has two positive roots A
(4)
k

< B
(4)
k
, where

A
(4)
k

> A
(3)
k

and B
(4)
k

< B
(3)
k
. This case occurs when

A
(3)
k

< sk ≤ A
(4)
k

or B
(4)
k

≤ sk < B
(3)
k

(17)

and in this case the best response is Xk (t − 1).

FIGURE 1 | The possible shapes of the profit function of firm k.

(vi) ϕ′
3 (Xk (t − 1)) > 0 and ϕ′

3 (Lk) ≤ 0 is the case when

A
(4)
k

< sk < B
(4)
k

and

s2k
(

dk + γk + αk

)

+ sk
(

2Lk
(

dk + γk + αk

)

− A
)

+ L2k
(

dk + γk + αk

)

≥ 0 (18)

The discriminant is

D
(5)
k

= A
(

A− 4Lk
(

dk + γk + αk

))

and similarly to the other casesD
(5)
k

> 0 implies thatD
(4)
k

>

0, and D
(4)
k

< 0 implies that D
(5)
k

< 0. In case of D
(5)
k

≤ 0

we may chose A
(5)
k

= A
(4)
k

and B
(5)
k

= B
(4)
k
. Otherwise

Expression (18) has two positive roots A
(5)
k

< B
(5)
k
, where

A
(5)
k

> A
(4)
k

and B
(5)
k

< B
(4)
k
. This case occurs when

A
(4)
k

< sk ≤ A
(5)
k

or B
(5)
k

≤ sk < B
(4)
k

(19)

and the best response is the stationary point between
Xk (t − 1) and Lk:

Rk =

√

Ask

dk + γk + αk
− sk (20)

(vii) And finally, the case of ϕ′
3 (Lk) > 0 occurs when A

(5)
k

<

sk < B
(5)
k

and the best response is Rk = Lk.

The different segments of 5k are summarized in Figure 1, and
those of Rk are illustrated in Figure 7. Depending on the model
parameter values some segments might be missing as shown in
Figures 2–6.

FIGURE 2 | Different segments of Rk when D
(1)

k
≤ 0.

FIGURE 3 | Different segments of Rk when D
(2)

k
≤ 0 and D

(1)

k
> 0.

FIGURE 4 | Different segments of Rk when D
(3)

k
≤ 0 and D

(2)

k
> 0.
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FIGURE 5 | Different segments of Rk when D
(4)

k
≤ 0 and D

(3)

k
> 0.

FIGURE 6 | Different segments of Rk when D
(5)

k
≤ 0 and D

(4)

k
> 0.

FIGURE 7 | Different segments of Rk when D
(5)

k
> 0.

FIGURE 8 | Region of interior steady states components.
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FIGURE 9 | Interior steady states in a duopoly.

For easier understanding of the different cases notice that

D
(0)
1 ≥ D

(0)
2 ≥ D

(0)
3 ≥ D

(0)
4 ≥ D

(0)
5 , so if any one of these

quantities in non-positive, then the same holds for all others with
larger subscripts.

The computation of Rk can be done in the following
algorithm:

• Step 1. Set

A
(0)
k

= 0, B
(0)
k

=
A

dk − δk
(21)

Compute D
(l)
k

values for l = 1, 2, 3, 4, 5. If all D
(l)
k

are non-
positive then Rk is determined from Figure 2, otherwise go to
next step.

• Step 2. Let A
(1)
k

and B
(1)
k

be the smaller and larger ones of the
roots

A− 2xk (t − 1)
(

dk − δk
)

±
√

D
(1)
k

2
(

dk − δk
) (22)

IfD
(2)
k

≤ 0, then Rk is determined from Figure 3, otherwise go
to next step.

• Step 3. Let A
(2)
k

and B
(2)
k

be the smaller and larger ones of the
roots

A− 2xk (t − 1)
(

dk + γk
)

±
√

D
(2)
k

2
(

dk + γk
) (23)

IfD
(3)
k

≤ 0, then Rk is determined from Figure 4, otherwise go
to next step.

• Step 4. Let A
(3)
k

and B
(3)
k

be the smaller and larger ones of the
roots

A− 2Xk (t − 1)
(

dk + γk
)

±
√

D
(3)
k

2
(

dk + γk
) (24)

IfD
(4)
k

≤ 0, then Rk is determined from Figure 5, otherwise go
to next step.

• Step 5. Let A
(4)
k

and B
(4)
k

be the smaller and larger ones of the
roots

A− 2Xk (t − 1)
(

dk + γk + αk

)

±
√

D
(4)
k

2
(

dk + γk + αk

) (25)
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FIGURE 10 | Bifurcation diagram. Amplitudes plotted vs. marginal cost

ratio.

IfD
(5)
k

≤ 0, then Rk is determined from Figure 6, otherwise go
to next step.

• Step 6. Let A
(5)
k

and B
(5)
k

be the smaller and larger ones of the
roots

A− 2Lk
(

dk + γk + αk

)

±
√

D
(5)
k

2
(

dk + γk + αk

) (26)

Rk is determined from Figure 7.

3. STEADY STATES ANALYSIS

By denoting the best response function of firm k by Rk (sk, xk,Xk),
the dynamic model with positive adjustment toward best
responses can be written as

xk (t) = KkRk (sk (t − 1) , xk (t − 1) ,Xk (t − 1))

+ (1− Kk) xk (t − 1)

for k = 1, 2, . . . , n. Clearly a vector (x̄1, . . . , x̄n, s̄1, . . . , s̄n,
X̄1, . . . , X̄n

)

is a steady state if and only if for all k,

x̄k = Rk
(

s̄k, x̄kX̄k

)

x̄k ≤ X̄k

and

s̄k =
∑

l 6=k

x̄l

In determining the set of all steady states we have the following
possibilities:

FIGURE 11 | Investment cost. (A) Bifurcation diagram in the parameter

plane
(

d2/d1,α = α1 = α2
)

; the regions of different periodicity are

represented by different colors. The horizontal yellow lines represent the

line on which, in (B), the bifurcation diagram is shown with

α = α1 = α2 = 0.20 and in (C), the bifurcation diagram is shown with

α = α1 = α2 = 0.48.

(a) x̄k = 0 if

s̄k ≥
A

dk − δk
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FIGURE 12 | Hiring cost. (A) Bifurcation diagram in the parameter plane
(

d2/d1, γ = γ1 = γ2
)

; the regions of different periodicity are represented by

different colors. The horizontal yellow line represents the line on which, in (B),

the bifurcation diagram is shown with γ = γ1 = γ2 = 0.05, and in (C), the

bifurcation diagram is shown with γ = γ1 = γ2 = 0.4.

FIGURE 13 | Layoff cost. (A) Bifurcation diagram in the parameter plane
(

d2/d1, δ = δ1 = δ2
)

; the regions of different periodicity are represented by

different colors. The horizontal yellow lines represent the line on which, in (B),

the bifurcation diagram is shown with δ = δ1 = δ2 = 0.1 and in (C), the

bifurcation diagram is shown with δ = δ1 = δ2 = 0.2.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 November 2016 | Volume 2 | Article 19

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Matsumoto et al. Extended Oligopolies with Flexible Workforce

FIGURE 14 | Capacity limit. (A) Bifurcation diagram in the parameter plane
(

d2/d1, L = L1 = L2
)

; the regions of different periodicity are represented by

different colors. The horizontal yellow line represents the line on which, in (B),

the bifurcation diagram is shown with L = L1 = L2 = 0.15, and in (C), the

bifurcation diagram is shown with L = L1 = L2 = 0.2.

(b) x̄k = Lk if

As̄k

(Lk + s̄k)
2
− dk − γk ≥ 0 (27)

(c) x̄k is interior if

As̄k

(x̄k + s̄k)
2
− dk + δk > 0 >

As̄k

(x̄k + s̄k)
2
− dk − γk (28)

Notice that in case (b), X̄k = Lk, so segment of ϕ3 is eliminated.
The condition of case (b) can be rewritten as

Lk ≤

√

As̄k

dk + γk
− s̄k (29)

and that of case (c) is equivalent to the following:

√

As̄k

dk + γk
− s̄k ≤ x̄k ≤

√

As̄k

dk − δk
− s̄k (30)

So feasible solution of Inequality (30) for x̄k exists if and only if
the right hand side is positive, which occurs if s̄k < A

dk−δk
, and

if the left hand side is below Lk, which is the case when (29) is
violated.

Figure 8 illustrates the domain determined by condition (30)
for player k, and Figure 9 shows the region of interior steady
states in a duopoly.

4. SIMULATION STUDY

The model introduced and analyzed in the previous sections
is a clear generalization of the duopoly model of Puu [24, 26,
Chapter 7]. His special model can be obtained by selecting
α1 = α2 = γ1 = γ2 = δ1 = δ2 = 0 and sufficiently
large values of L1 and L2. In this particular case, the only fixed
point, except the origin, is, of course, the Cournot equilibrium
point:











x∗1 = d2
d1+d2

x∗2 = d1
d1+d2

In Puu [26] it is proved that whenever one of the ratios of
the marginal costs of the duopolists falls outside the interval
[

3−
√
2, 3+

√
2
]

, the Cournot point is not stable. Furthermore,

the complexity of the dynamics is illustrated considering a
bifurcation diagram of firms’ output vs. the marginal cost ratio.
When we set α1 = α2 = γ1 = γ2 = δ1 = δ2 = 0 and sufficiently
large L1 and L2, we obtain the bifurcation diagram reported in
Figure 10, which is identical to the one presented in Puu [26, p.
271 ]. This Figure has been obtained with A = 1, c1 = c2 = 0,
d1 = 1 and initial condition x1 (0) = x2 (0) = 0.1 when d2 varies
in the interval [5.75, 6.25].
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The model we present here is much more complex. To
understand the effects of the different costs and production
constraints we introduced, we analyze each of them separately
and compare the dynamics to the one originally presented in
Puu [26]. These analyses are reported in Figures 11–14. Each of
these figures consists of a bifurcation diagram in the parameter
plane

(

d2/d1,α = α1 = α2

)

in which the regions of different
periodicity are represented by different colors. Bifurcation
diagrams are also shown in which amplitudes are plotted vs.
marginal cost ratio as in the original figure in Puu [26, p. 271]
which is here reproduced as Figure 10. The two bifurcation
diagrams with marginal cost ratio as bifurcation variable help
to understand how the different cost coefficients affect the
dynamics. Therefore, we will next examine how the dynamic
properties of the dynamics depend on the different values of the
different cost coefficients. The comparison of these bifurcation
diagrams helps to understand the respective roles of isoelastic
demand function, workforce flexibility costs and structural
limits.

Let us start our analysis by considering the effects of
the investment costs αk. As the investment costs are small
(Figure 11B) the bifurcation diagram is identical to the case when
investment costs are zero. In this case the trajectories after a
transient of 5000 iterations are also identical. By contrast, when
investments costs are larger (α = α1 = α2 = 0.48) the trajectory
becomes less complex than in the case of smaller costs (α = α1 =
α2 = 0.2). This can be explained because larger investment costs
dampen firms’ reply.

The effects of the hiring costs γk are much more pronounced.
In fact even for small values of hiring costs the dynamics is much
simpler as it can be seen in Figures 12B,C. For even larger values
of the hiring costs we do not have cycles as it can be seen from the
top of Figure 12A. In this case also, hiring costs dampen firms’
reply.

When considering layoff costs δk, the effects are similar to
those of investment costs. For small values of layoff costs the
dynamics is similar but not identical to the one with no costs.
In fact, although Figures 10, 13C look similar, an inspection
of the trajectories after discarding 5000 transient shows some
differences. Also in this case, for even larger values of the
hiring costs we do not have cycles as it can be seen from
the top of Figure 13A. Large enough layoff costs dampen the
dynamics.

Finally, when considering capacity limits Lk we can
see that, unless they are influencing firms’ response, they
have no effect on the dynamics. As a matter of fact,
Figures 10, 14C are identical as they are the respective
trajectories after a transient of 5000 iterations. In this
case large production limits do not have any effect on the
dynamics.

5. CONCLUSIONS

Non-linear single product oligopolies without product
differentiation were introduced and examined where the
production cost was linear, and the piecewise linear production

adjustment and investment costs made the model non-linear.
The non-linearity of the model became even stronger by
assuming hyperbolic price function. These models are equivalent
with rent-seeking and market-share attraction games as well.
The profit functions of the firms are continuous, piece-wise
differentiable and strictly concave implying the uniqueness of
the best responses. The best response functions of the firms were
then determined which are not monotonic in contrast with the
case of linear price functions assumed earlier in the literature.
The set of all steady states were characterized and illustrated
in the case of a duopoly. The asymptotical properties of the
steady states were investigated by using simulation. Comparing
the dynamics to the one of Puu’s original model, showed the
different roles these costs have on the dynamics. Although
some of them seem to have little effects on the dynamics, others
–such as the hiring costs– have a deep impact. In particular, as
recruitment and selection cost can be staggering, see for instance
Gusdorf [27], they should be considered in order to have a more
realistic model. In our analysis these costs make the dynamics
less complex than the one predicted by the theoretical model.
Furthermore, the dynamics in real word seems to be less complex
than the one predicted by models which do not consider these
costs. A reason for this discrepancy could be that the hiring
costs are high and therefore the dynamics is less complex than
predicted.

It will be interesting to consider the case of a generic isoelastic
function. Also, further non-linearities can be introduced into the
models by assuming non-linear cost functions and different types
of the price functions.Wewill elaborate on these ideas in our next
research project.

AUTHOR CONTRIBUTIONS

UM: Original Idea and Simulations. FS: Mathematical
Derivation. AM: General Comments.

ACKNOWLEDGMENTS

AM has received research grants from the MEXT-Supported
Program for the Strategic Research Foundation at Private
Universities 2013–2017 and Chuo University (Joint Research
Grant). UM has developed this work in the framework of
the research project on “Dynamic Models for behavioural
economics” financed by DESP-University of Urbino.

REFERENCES

1. Cournot A. Recherches sur les Principes Mathematiques de la Theorie des

Richesses. Paris: Hachette (1838). English translation, Kelly, New York, NY,

1960.

2. Okuguchi K. Expectations and Stability in Oligopoly Models. Berlin;

Heidelberg; New York: Springer-Verlag (1976).

3. Okuguchi K, Szidarovszky F. The Theory of Oligopoly with Multi-

product Firms. Berlin; Heidelberg; New York: Springer-Verlag

(1999).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 November 2016 | Volume 2 | Article 19

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Matsumoto et al. Extended Oligopolies with Flexible Workforce

4. Howroyd TD, Rickard JA. Cournot oligopoly and adjustment costs. Econ Lett.

(1981) 7:113–7. doi: 10.1016/0165-1765(87)90104-2

5. Macleod WB. On adjustment costs and the stability of equilibria. Rev Econ

Stud. (1985) 52:575–91. doi: 10.2307/2297733

6. Reynolds SS. Capacity investment, preemption and commitment in an infinite

horizon model. Int Econ Rev. (1987) 28:69–88. doi: 10.2307/2526860

7. Reynolds SS. Dynamic oligopoly with capacity adjustment costs. J Econ Dyn

Contl. (1991) 15:491–514. doi: 10.1016/0165-1889(91)90003-J

8. Szidarovszky F, Yen J. Dynamic Cournot oligopoly with production

adjustment costs. J Math Econ. (1995) 24:95–101. doi: 10.1016/0304-

4068(94)00661-S

9. Zhao J, Szidarovszky F. N-firm oligopolies with production adjustment costs:

best responses and equilibrium. J Econ Behav Organ. (2008) 68:87–99. doi:

10.1016/j.jebo.2007.05.005

10. Matsumoto A, Merlone U, Szidarovszky F. Dynamic oligopoly models with

production adjustment and investment costs. In: Matsumoto A, Szidarovszky

F, Asada T, editors. Essays in Economic Dynamics. Berlin: Springer-Verlag

(2016). p. 99–109. doi: 10.1007/978-981-10-1521-2_6

11. Matsumoto A, Merlone U, Szidarovszky F. Cartelizing groups in dynamic

linear oligopoly with antitrust threshold. Int Game Theory Rev. (2008)

10:399–419. doi: 10.1142/S0219198908002011

12. Matsumoto A, Merlone U, Szidarovszky F. Cartelising groups in dynamic

hyperbolic oligopoly with antitrust threshold. Aust Econ Papers (2010)

49:289–300. doi: 10.1111/j.1467-8454.2010.00403.x

13. Matsumoto A, Merlone U, Szidarovszky F. Dynamic oligopoly with partial

cooperation and antitrust threshold. J Econ Behav Organ. (2010) 73:259–72.

doi: 10.1016/j.jebo.2009.08.014

14. Merlone U, Szidarovszky F. Dynamic oligopolies with contingent workforce

and investment costs. Math Comput Simul. (2015) 108:144–54. doi:

10.1016/j.matcom.2014.02.003

15. Burr C, Gardini L, Szidarovszky F. Discrete time dynamic oligopolies

with adjustment constraints. J Dyn Games (2015) 2:65–87. doi:

10.3934/jdg.2015.2.65

16. Tullock G. Efficient rent-seeking. In: Buchanan JM, Tollison RD, Tullock G,

editors. Towards a Theory of the Rent-Seeking Society. College Station, TX:

Texas A&M Press (1980). p. 97–112.

17. Okuguchi K. Decreasing Returns and Evidence of Nash Equilibrium in Rent-

Seeking Games. Mimeo: Department of Economics, Nanzan University,

Nagoya, Japan (1995).

18. Szidarovszky F, Okuguchi K. On the existence and uniqueness of pure Nash

equilibrium in rent-seeking gams. Games Econ Behav. (1997) 18:135–40. doi:

10.1006/game.1997.0517

19. Cooper LG, Nakanishi M. Market-Share Analysis. Dordrecht: Kluver

Academic Publisher (1988).

20. Hanssens DM, Parsons LJ, Schultz RL. Market Response Models: Econometric

and Time Series Analysis. Dordrecht: Kluver Academic Publisher (1990).

21. Bischi GI, Chiarella C, Kopel M, Szidarovszky F. Nonlinear Oligopolies:

Stability and Bifurcations. Berlin; New York: Springer-Verlag

(2010).

22. Stewart BD, Webster DB, Ahmad S, Matson JO. Mathematical models for

developing a flexible workforce. Int J Product Econ. (1997) 36:243–54. doi:

10.1016/0925-5273(94)00033-6

23. Nash BJ, Romero J. Flexible workforce: the role of temporary workers

in recession and recovery. Region Focus. (2011) First Quarter:21–3, 38.

Available online at: https://www.richmondfed.org/~/media/richmondfedorg/

publications/research/region_focus/2011/q1/pdf/feature1.pdf

24. Puu T. Chaos in duopoly pricing. Chaos Solitons Fract. (1991) 1:573–81. doi:

10.1016/0960-0779(91)90045-B

25. Agliari A, Puu T. A Cournot duopoly with bounded inverse demand

function. In: Puu T, Sushko I, editors. Oligopoly Dynamics: Models and

Tools.Heidelberg: Springer-Verlag (2002). p. 171–94. doi: 10.1007/978-3-540-

24792-0_7

26. Puu T. Attractors, Bifurcations & Chaos. Nonlinear Phenomena in Economics.

2nd Edn. Berlin; Heidelberg; New York: Springer-Verlag (2003).

27. Gusdorf ML. Recruitment and Selection: Hiring the Right Person. A Two-

Part Learning Module for Undergraduate Students.Alexandria, VA: Society for

Human Resource Management (2008).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Matsumoto, Merlone and Szidarovszky. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 November 2016 | Volume 2 | Article 19

https://www.richmondfed.org/~/media/richmondfedorg/publications/research/region_focus/2011/q1/pdf/feature1.pdf
https://www.richmondfed.org/~/media/richmondfedorg/publications/research/region_focus/2011/q1/pdf/feature1.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

	Extended Dynamic Oligopolies with Flexible Workforce and Isoelastic Price Function
	1. Introduction
	2. The Mathematical Model
	3. Steady States Analysis
	4. Simulation Study
	5. Conclusions
	Author Contributions
	Acknowledgments
	References


