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We propose a multi-factor Gaussian model to analyze the dynamics of sovereign bond

yields, as well as sovereign and banks CDS quotes. This paper has three objectives

(all of them with relevant implications from a supervisory perspective): (1) disentangling

the credit risk component of sovereign bonds from the interest rate component; (2)

exploring the sovereign CDS-bond basis, i.e., the difference between sovereign CDS

quotes and the corresponding bond yields; (3) inferring fromCDS quotes the idiosyncratic

component of a bank credit risk and analyzing its relation with sovereign risk. We cast the

model in a state-space form with linear measurement function. To calibrate the model we

consider a maximum likelihood estimation together with a Kalman filter method in which

both the gradient vector and the Hessian matrix to be used in the optimization can be

computed in closed form.

Keywords: Gaussian Ornstein-Uhlenbeck processes, bond pricing, CDS pricing, sovereign risk, CDS-bond basis,

Kalman filter, maximum likelihood estimation

1. INTRODUCTION

Even though there exists a vast amount of research on the static pricing of complex credit
derivatives, such as first-to-default swaps or synthetic collateralized debt obligations (CDOs), there
are only a few empirical studies that explore under a dynamic perspective the behavior of sovereign
bonds, sovereign credit default swap (CDS), and domestic banks CDS during the last financial
downturn. As observed by O’Donoghue et al. [1], investors in bonds, CDS and other simple credit
derivatives are exposed to price fluctuations even in the absence of defaults, therefore it is important
to analyze the dynamics of these products.

Bond prices and CDS spreads reflect, among other things, in addition to the market risk
associated with the dynamics of interest rates, the default risk of the bond issuer and other risks
associated with the markets in which these instruments are traded. The use of stochastic multi-
factor models allows one to consider information about the entire term structure of bonds and CDS
and analyze the frictions caused by the presence of different risks (e.g., market, credit, liquidity, and
currency risks), implicit in the behavior of market prices. The purpose of this paper is to use a
well-established model from the existing literature to estimate the factors that drive the intensity
of default and the different behavior of the markets where these financial instruments are traded.
In particular, it is proposed to model: (1) the sovereign credit risk component through a reduced
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form model calibrated on government bonds; (2) another
component, to which we refer to as basis component, estimated
by fitting the model on observed sovereign CDS spreads.
In the second part of the work, the same methodology is
extended to investigate the relationship between sovereign and
domestic banking system. In particular, the CDS spreads of
major European banks are modeled by considering the common
sovereign risk component (obtained from sovereign bond) and
an idiosyncratic component driven by the specific risk of the
individual bank. For international comparison purposes, the
same analysis has been carried out for the main Euro area
countries (Italy, Germany, France and Spain).

The multi-factor model here proposed allows us to jointly
calibrate the sovereign term structure, the sovereign CDS curve
and relations with the domestic banks CDS curve. The approach
used in this paper makes possible to explore the dynamics of
the different factors influencing the behavior of these market
data. The information content of government bonds and credit
default swaps is analyzed by considering a unified framework.
The entire interest rate and CDS term structures are considered
in the calibration exercise.

More in details, we describe a model based on the short-
rate process approach first defined in the interest rate context.
However, there are two main differences between interest rate
and credit derivatives. First, as observed by Cont [2], unlike the
interest rate swap, the payoff of a CDS has a binary nature, that is,
while themark-to-market value of a CDS position prior to default
may be small, the actual exposure upon default may represent a
large fraction of the notional. Second, as outlined by Brigo and El-
Bachir [3], while the interest rate derivatives market is one of the
most active financial markets with a large number of caps, floors,
swaptions and other derivatives, the single-name default swap
market presents a very small number of traded derivatives and
the calibration of any model with a large number of parameters
(for example [4]) becomes unfeasible.

Both the Libor and the swapmarketmodels (see [5]) cannot be
applied in this context for three main reasons. First these market
models have been developed to calibrate the quotes of the most
liquid interest rate derivatives traded in the market, that is, caps,
floors and swaptions with the purpose of price exotic derivatives,
usually traded over the counter, and hedge them. Even if the
information derived by the implied volatilities of these liquid
derivatives may be considered to capture the market expectation
on future rates, the analysis of these derivatives is beyond the
scope of this paper. Second, these models are usually calibrated
under a static perspective, that is, at each given point in time the
model prices have to be as close as possible to the prices traded in
themarket and, even if themarket is quoting unreasonable prices,
the trader has to find the parameters that replicate those prices.
The trader needs to achieve static consistency in order to provide
at each given point in time arbitrage-free prices or to hedge
its derivatives portfolio. Conversely, our model is calibrated by
following a dynamic approach in order to analyze the long term
relations between sovereign term structures, sovereign and banks
CDS spreads. Third, only recently, the academia has proposed
tractable Libor models with default risk that may be used by
practitioners (see [6]), even if probably they are not being used

yet, mainly because, as already observed, the single-name credit
default markets are not enough liquid to calibrate or estimate
any model with a large number of parameters. Our model is
calibrated by following a dynamic approach in order to analyze
the behavior of yield curves. Under the taxonomy introduced
by Nawalkha et al. [7], the model we analyze can be defined as
single-plus.

More recently, while most of the empirical studies on this
argument are based on the techniques employed in the literature
on interest rate term structure models, some authors have
proposed modeling the spread log returns. O’Donoghue et al.
[1] and Cont and Kan [8] have applied to CDS spreads the
techniques commonly employed in modeling stock log returns
(see also [9]). Even if this last approach is appealing, in this
paper we will implement a classical multi- (instantaneous) factor
model. We do not model the dynamics of the risk-free rate.
We implicitly assume that the factor driving the interest rate
risk is independent on the other risk factors. We model the
dynamics of three different types of spreads. First the spread
between sovereign bonds and risk-free rates, second the spread
between CDS quotes and sovereign bonds, third the spread
between bank and sovereign CDS quotes. The aim of this paper
is (1) disentangling the credit risk component of sovereign bonds
from the interest rate component, (2) exploring the sovereign
CDS-bond basis, that is the difference between CDS quotes and
sovereign bond yields, and (3) extracting from CDS quote the
specific bank credit risk and its relation with the sovereign risk.

Each of these three objectives may have relevant implications
from a supervisory perspective. First, disentangling the interest
rate and credit risk components of sovereign bond yields allows
to properly monitor different risk drivers of banks exposures,
which can impact bank solvency in different ways. Second,
the treatment of basis risk, i.e., the risk that the relationship
between the prices of correlated instruments changes over time,
is of material importance to both the standardized and internal
model approaches for market risk1. The basis between bond
and CDS curves frequently caused severe losses by banks during
adverse periods of stress. Third, disentangling the sovereign and
idiosyncratic components of banks credit risk spreads allows to
shed light on the sovereign-bank nexus, which has been at the
core of the euro area sovereign debt crisis in recent years.

As observed by O’Kane [10], the difference between the
German yield and the Libor swap rate with the same maturity
may be negative. Even if in this study the reference risk-free
rates are the Euribor-swap and the Eonia swap rates, we observe
the same empirical fact also for Italy, France and Spain. In
view of these empirical facts, we consider the classical Vasicek
models extended to a multi-factor framework. This model allows
negative values with positive probability and it can capture the
patterns observed in market data.

As far as the implementation is concerned, we cast the bond
and CDS default term structure into a state-space form and
calibrate it with a filter as similarly done by Chen et al. [11],
Jarrow et al. [12], Carr and Wu [13], Chen et al. [14], Ang

1Basel Committee for Banking Supervision, minimum capital requirements for

market risk, January 2016.
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and Longstaff [15], Bianchi and Fabozzi [16], and Li and Zinna
[17, 18]. The Kalman filter algorithm together with a maximum
likelihood estimation method are considered to fit the model in
the period from June 2008 to December 2014. Analytic formulas
for the gradient vector and the Hessian matrix of the likelihood
function maximized in the optimization algorithm are used, as
done in Bianchi and Rocco [19].

The remainder of the paper is organized as follows. Section
2 reviews the Vasicek multi-factor model considered in the
empirical study and the ways to computing bond prices, yield
levels and CDS spreads. In Section 3 we describe the Bloomberg
data about government bonds and the Datastream data about

CDS quotes. The estimation algorithms together with the main
empirical results are discussed in Sections 4 and 5. Section 6
summarizes the paper main conclusions.

2. THE MODEL

On the lines of Ang and Longstaff [15], we analyze multi-
factor Gaussian term structure models under the risk-neutral
measure. We assume that the risk neutral dynamics of the
default intensities are defined as the sum of Gaussian factors.
The dynamics of these underlying factors under the historical
measure and the associated market price of risk are left

FIGURE 1 | Bootstrapped zero rates form the Euribor and swap curve and Eonia swap curve from June 30, 2008 to December 31, 2014. The zero rates

and their difference range from the 3-month to the 30-year maturity.
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unspecified and they are not investigated. The risk-neutral
dynamics are extracted by observed bond yield curves and CDS
quotes and we explore both the time-series and cross section
dimension. We further assume that the structural parameters
are kept constant over time, that is the model proposed is
time homogeneous. We point out that the factors driving the
intensities are not tradable assets, therefore it is not possible
to perform a double-calibration in which the historical and
risk-neutral model parameters can be jointly estimated. A
joint calibration is possible if both the underlying and the
derivative are observable, such as for example for equities and
equity options (e.g., [20] for an example of double-calibration).
Unfortunately, we cannot estimate actual default probabilities
due to the lack of defaults in the data. Therefore, it is not possible
to check whether the proposed factor historical dynamics are
feasible or not, and for this reason we prefer not to explore these
dynamics.

2.1. The Vasicek Process
As proposed by Vasicek [21], a Gaussian Ornstein-Uhlencek
(OU) process can be used to model the dynamics of the
instantaneous spot rate, that is

dλt = κ(η − λt)dt + ϑdWt , (2.1)

with λ0 > 0, κ , and ϑ positive parameters, and η ∈ R. Usually,
the parameter η is chosen to be positive.We recall that, even if η is
not negative, the process can be negative with positive probability
(see [5]). Under the Vasicek assumption there exists a closed-
form expression for the characteristic function of the integrated
process (see Proposition 2.6.2.1 in [22]) and the integral in
Equation (2.3) on Section 2.2 can be computed as follows

PVasicekSurV (τ > t) = ea(t) + b(t)λ0 , (2.2)

where

a(t) = −ηt + η
1− e−κt

κ
−

ϑ2

4κ3

(

1− e−κt
)2

+
ϑ2

2κ2

(

t −
1− e−κt

κ

)

,

b(t) = −
1− e−κt

κ
.

It follows that the yield is

y(0, t) = −
1

t

(

a(t)+ b(t)λ0
)

.

In this paper, the Vasicek factor will be used in a multivariate
framework, as described in Section 2.3.

2.2. Evaluate CDS Spreads
We consider a reduced-form approach to model the default
probability, and we assume that the default intensity is a
stochastic process (see [23]). There is a general consensus
in assuming a stochastic intensity instead of a deterministic
intensity to model uncertainty about the future dynamics of the

credit risk of a given reference entity. A similar framework has
been used to price interest rate derivatives, and it can be used
to model the risk-free curve. As we will briefly describe in the
following, in the credit derivatives case one models the default
intensity process while in the interest rate case one models the
spot rate or the factors explaining the term structure. More in
detail, in a reduced-form model one assumes that the time of
default is determined by the first jump time of a Cox process Nt

starting from zero and with a stochastic intensity rate λt , where
0 ≤ t ≤ T. Under this setting the default time τ is defined as

τ = inf {t > 0|Nt > 0} = inf {t > 0|It > E1} ,

where the process It is usually defined as an integrated process,
i.e.,

It =

∫ t

0
λs ds

TABLE 1 | Summary statistics of the CDS spreads with maturity 5 year

between June 30, 2008 and December 31, 2014 for the four sovereign and

the 21 banks considered in the empirical study.

Minimum Mean Median Maximum Standard

deviation

ITALY

Sovereign 38.75 210.74 173.06 586.70 130.37

BP 75.50 322.64 240.87 941.07 203.88

UBI 59.70 214.36 164.10 682.30 137.06

PMI 50.00 277.91 180.49 803.81 197.72

MB 44.00 187.97 145.21 597.56 118.21

BMPS 53.30 319.23 245.17 906.44 217.78

ISP 44.00 194.89 142.17 607.89 133.35

UCG 51.23 231.07 169.96 711.72 144.01

GERMANY

Sovereign 5.95 41.99 35.91 118.38 24.22

DBK 56.52 118.66 106.91 327.61 41.18

CBK 55.22 146.71 125.60 379.62 69.68

BLGZ 69.78 124.86 105.00 327.35 51.81

LBS 50.96 121.83 119.76 306.63 51.91

NLB 65.00 132.30 119.55 249.72 37.74

NSH 114.74 213.97 193.01 413.75 64.05

FRANCE

Sovereign 9.75 79.53 68.57 245.27 51.83

BNP 41.00 120.63 100.44 367.23 66.12

GLE 62.60 154.75 123.78 436.42 84.61

ACA 55.56 147.64 131.43 411.07 75.46

KN 51.80 175.25 167.54 350.00 69.41

SPAIN

Sovereign 34.00 214.49 210.94 634.35 136.40

SAN 63.75 198.82 170.60 506.67 107.28

BBVA 57.40 207.11 193.31 521.36 112.71

SAB 106.37 353.31 300.63 837.91 195.20

POP 132.85 384.54 324.53 953.67 217.14

While the bank CDS spreads are in Euro, the sovereign CDS spreads are in US dollar.
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where λt is often a stationary affine process and E1 is an
exponential random variable with mean equal to 1. It follows that
the survival probability up to time t is equal to

PSurV(τ > t) = E
[

exp(−It)
]

= φIt (i), (2.3)

where φIt (u), with u ∈ R, is the characteristic function relative to
It and i is the imaginary unit2. We remind that the characteristic
function of a random variable X is defined as

φX(u) = E
[

exp(iuX)
]

,

where u ∈ R. By assuming a model for the intensity
process λt we can compute the corresponding survival

2 If λt was a instantaneous short rate process, the same formula would represent

the price at time 0 of a zero coupon bond maturing at t.

probability. If one knows the characteristic function of the
process It , it is straightforward to compute the expectation in
Equation (2.3).

Following the computations reported in O’Kane and Turnbull
[24], given a model for the survival probability, the fair spread of
a CDS expiring at time T is

cCDST

=
(1− R)

∑n
i D(0, ti)(PSurV(ti−1)− PSurV(ti))

∑n
i D(0, ti)PSurV(ti)1ti +

1
2

∑n
i D(0, ti)(PSurV(ti−1)− PSurV(ti))1ti

,

(2.4)

where R is the recovery rate (usually assumed equal to 40 per
cent), D(0, t) is the discount factor, t1, . . . , tn = T represent the

FIGURE 2 | Observed 5-year CDS spread, implied 5-year CDS spread and 5-year CDS-bond basis from January 02, 2006 to December 31, 2014. We

report (A) the observed Italian 5-year CDS spread, the implied 5-year CDS spread computed as difference between the observed Italian 5-year bond yield and the

5-year Eonia swap rate; (B) the 5-year CDS-bond basis, that is the difference between the observed CDS spread and the implied one.
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dates of payment at the end of each period ti until maturity T.3

Fee and loss payments are assumed to be made at the end of each
period. Furthermore, it is taken into account that if default occurs
between some payment dates, the fee has to be paid only for the
portion between the last payment date and the time of default as
the insurance buyer is protected only for that period.

In this paper, to calibrate the model instead of directly
considering the formula in Equation (2.4) as done in Bianchi and
Fabozzi [16], we bootstrap the default probability curves from
CDS market quotes. That is, for each given point in time and
for each maturity, after having fixed a constant recovery rate
(we assume 40 per cent for both sovereign and bank CDS), we
find the constant default intensity λ such that the CDS quote
coincides with the right-hand side of the equality (2.4). We
then calibrate the proposed model on these default probability
curves. Since these curves can be expressed as a linear function
of the state variables (i.e., unobservable factors) we will use a
maximum likelihood estimation method based on the Kalman
filter algorithm as proposed in Bianchi and Rocco [19].

3 Here we assume a deterministic discount factor. Chen et al. [11, 14] considered

a stochastic interest rate, and Dunbar [25] proposed a framework with stochastic

factors to model interest rate and liquidity.

2.3. A Multi-factor Reduced-Form Model
The extension of Equation (2.3) to the sum of two or more
default intensity factors λ1t , . . . , λnt is straightforward when
pairwise independence is assumed between factors. The formula
in Equation (2.3) becomes

PSurV(τ > t) = φI1t
(i) · · ·φInt

(i). (2.5)

However, if one considers dependent factors, the decomposition
in Equation (2.5) no longer holds. Normal-based models may
still have a closed-form solution, but in general, if one assumes
a richer dependence structure (for example, a multivariate
model or a copula allowing for tail dependence), Monte Carlo
simulations or numerical methods are needed to evaluate the
survival probability. The assumption of independence is often
used in the literature. For instance, Feldhütter and Lando [26]
proposed a model with six independent factors to calibrate
Treasury bonds, corporate bonds, and swap rates using both
cross-sectional and time-series properties of the observed yields.
This independence assumption may be restrictive (see [27]),
although the advantage is that pricing formulas have explicit
solutions, and the model is more parsimonious with fewer

FIGURE 3 | Calibration of the 2-factor default intensity process δt on the Italy bond yields from January 02, 2008 to December 31, 2014. We report the

observed spreads between bond and risk-free rates and the estimated ones for all maturities investigated. The Kalman filter is considered to extract the unobservable

default intensity processes.
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parameters to estimate (see also [15]). By following a similar
approach, in our empirical analysis we will consider a multi-
factor model with independent Vasicek factors. As obeserved in
Bianchi and Rocco [19], this assumption allows us to maintain
both computational tractability and model flexibility.

In order to calibrate (1) the sovereign yield curve, obtained
from the prices of sovereign bonds, (2) the sovereign CDS
curve, obtained from the spreads of sovereign CDS, and (3) the
banks CDS curve, obtained from the spreads of bank CDS, we
implement in three different ways a multi-factor model.

We assume that the discount (risk-free) factor satisfies the
following equality

D(0, t) = E[e−
∫ t
0 rsds] (2.6)

where rt is a short-rate process and the price of a defaultable
zero-coupon bond can be written as

B(0, t) = E[e−
∫ t
0 (rs + (1−R)δs)ds] (2.7)

where R is the recovery rate. We assume that the processes rt and
δt are independent, and it follows that

ybond(0, t)− yrisk− free(0, t) = −
1

t
log

(

E[e−
∫ t
0 (1−R)δsds]

)

= −
1− R

t

(

A(t)+ B(t)λ0
)

(2.8)

where A(t) and B(t) are matrices that can be derived by
considering the affine structure of the proposed model. This
means that the model can be directly calibrated by considering
the spread between the risky sovereign bond yield and the risk-
free bond yield, without calibrating a model for the risk-free
yield. Therefore, we calibrate the model on the observed spread
between the sovereign yield curve and the risk-free one. More
precisely, we define the default intensity process δt as

δt = λ1t + λ2t , (2.9)

where λ1t and λ2t are two independent Vasicek factors. By
extending the model in Equation (2.7), it is possible to define
the survival probability to be used to evaluate CDS spreads (both
sovereign and banks CDS spreads), that is

PSurV(τ > t) = E

[

exp

(

−

∫ t

0
(δs + ξs) ds

)]

, (2.10)

where δs is define in Equation (2.9), and ξt is an additional
component which measures the difference between bond prices
and CDS spreads. We assume that

ξt = λ3t + λ4t , (2.11)

where λ3t and λ4t are two independent Vasicek factors, and that
the Brownian motions driving λit , with i from 1 to 4 are mutually
independent. The model (2.10) will be used to calibrate both
sovereign and bank CDS spreads. As in Equation (2.8) the factor
ξt , can be calibrated without considering the risk-free factor, that
is, by assuming that the processes δt and ξt are independent, it
follows that

ycds(0, t)− yrisk− free(0, t) = −
1

t
log

(

E[e−
∫ t
0 (1−R)(δs + ξs)ds]

)

= −
1− R

t

(

A′(t)+ B′(t)λ0
)

.

(2.12)

where A′(t) and B′(t) are matrices that can be derived by
considering the affine structure of the proposed model. A further
enhancement is given by the following approach, that is, the
survival probability to be used to evaluate bank CDS spreads is
assumed to be as follows

PSurV(τ > t) = E

[

exp

(

−

∫ t

0
(δs + ξs + γs) ds

)]

, (2.13)

where δs is defined in Equation (2.9), ξt in Equation (2.11), and
γt is

γt = λ5t + λ6t , (2.14)

TABLE 2 | Calibration error of the 2-factor Vasicek model.

Years to maturity

0.25 0.50 1 2 3 4 5 6 7 8 9 10 15 20 30 Total

Italy 26.51 21.91 24.68 30.48 27.96 24.30 21.88 18.46 18.64 19.24 22.06 22.62 23.56 20.02 22.21 23.21

26.30 18.01 22.58 30.71 28.09 23.41 20.35 16.92 17.37 18.32 21.61 22.09 23.05 19.39 22.38 22.37

Germany 11.79 11.46 9.72 9.03 9.32 8.06 6.75 6.66 6.70 6.89 7.70 8.25 12.84 9.93 13.01 9.45

16.84 15.84 17.17 16.31 16.92 16.24 15.84 15.70 15.65 15.71 16.48 16.80 18.58 16.78 18.97 16.68

France 23.76 20.14 18.28 19.57 20.17 18.20 17.32 17.34 16.66 16.89 16.94 18.35 18.13 18.88 17.14 18.60

12.36 10.50 9.50 11.68 12.95 11.12 10.75 10.85 10.10 10.21 10.29 12.19 12.55 14.34 12.07 11.50

Spain 24.12 20.89 19.61 20.22 20.03 19.07 19.76 19.49 20.34 32.07 22.06 24.23 22.10

22.40 19.23 17.82 18.66 18.44 17.39 18.10 18.05 19.03 31.17 21.61 23.89 20.83

We report, for each country and for each maturity, the error (basis points) in calibrating the spread between the bond term structure and the risk-free (risk-free Eonia) rate in the period

from June 30, 2008 and December 31, 2014. The calibration error of the model that consider the risk-free Eonia rate as discount factor is in italics.
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TABLE 3 | Calibration error of the multi-factor Vasicek model.

Root mean square error (ξt factor)

1Y 3Y 5Y 7Y 10Y Total

ITALY

Sovereign 19.18 19.68 18.03 16.12 18.20 18.28

21.25 21.44 19.70 17.84 19.61 20.01

BP 20.84 22.94 19.85 18.72 21.05 20.73

21.81 24.02 20.58 19.47 22.11 21.65

UBI 18.97 20.66 21.09 18.71 20.21 19.95

20.00 21.51 21.64 19.47 21.10 20.76

PMI 19.20 20.83 17.90 17.07 18.60 18.76

20.41 22.15 18.71 17.87 19.67 19.82

MB 16.47 18.68 15.83 14.91 16.82 16.59

12.06 15.08 11.09 10.21 13.59 12.53

BMPS 20.34 21.03 19.25 18.43 20.00 19.83

21.38 22.12 20.02 19.18 20.84 20.74

ISP 18.10 19.72 17.87 16.50 17.96 18.06

19.38 21.02 18.72 17.33 19.03 19.13

UCG 18.69 20.14 18.24 16.94 18.52 18.54

19.95 21.44 19.10 17.73 19.60 19.60

GERMANY

Sovereign 13.72 14.38 14.19 13.75 14.16 14.04

15.31 15.25 15.30 14.72 15.00 15.12

DBK 11.56 11.72 11.53 10.07 10.55 11.11

10.27 10.20 10.04 8.32 8.88 9.57

CBK 12.32 12.61 12.32 11.13 11.50 11.99

11.67 11.72 11.40 10.11 10.50 11.10

BLGZ 13.01 13.18 13.04 12.19 12.22 12.74

6.86 7.35 7.32 5.94 6.44 6.80

LBS 5.39 6.78 7.21 5.21 5.42 6.06

4.95 6.07 6.88 4.84 5.19 5.64

NLB 6.10 8.03 6.51 5.19 5.38 6.32

5.38 7.55 5.96 4.60 4.90 5.78

NSH 15.03 14.07 13.63 12.46 12.76 13.62

16.09 15.02 14.43 13.29 13.36 14.48

FRANCE

Sovereign 6.84 7.83 7.28 5.24 6.11 6.72

7.17 7.50 7.69 4.91 6.19 6.77

BNP 13.86 14.20 13.65 12.88 12.91 13.51

9.84 10.13 9.55 8.39 8.63 9.33

GLE 15.24 15.18 14.83 13.89 14.03 14.65

14.68 14.30 13.88 12.79 12.84 13.72

ACA 14.74 14.98 14.62 13.37 13.68 14.29

14.02 13.95 13.55 12.12 12.37 13.22

KN 15.44 15.02 13.09 11.83 11.99 13.56

16.68 15.96 13.96 12.64 12.67 14.48

SPAIN

Sovereign 19.92 20.04 16.24 16.21 16.40 17.85

15.69 16.12 12.30 13.56 13.59 14.32

SAN 18.60 17.62 16.17 16.36 16.15 17.01

19.42 18.00 16.97 17.07 17.11 17.74

BBVA 18.89 17.86 16.35 16.60 16.46 17.26

(Continued)

TABLE 3 | Continued

Root mean square error (ξt factor)

1Y 3Y 5Y 7Y 10Y Total

19.73 18.28 17.18 17.42 17.48 18.04

SAB 20.54 18.31 16.47 16.53 16.82 17.80

21.12 18.62 17.22 17.42 17.92 18.51

POP 22.00 20.15 19.13 17.53 18.73 19.56

22.51 20.37 19.76 18.27 19.76 20.18

We report, for each country (bank) and for each maturity, the CDS spread calibration error

(basis points). In the calibration of bank CDS spreads we take into account the domestic

two-factor sovereign components calibrated on the bond term structure. The calibration

error of the model that consider the risk-free Eonia rate as discount factor is in italic.

where γt is an additional component which measures the
difference between sovereign and domestic bank CDS spreads.
Also in this extension, we assume that λ5t and λ6t are two
independent Vasicek factors, and that the Brownian motions
driving λit , with i from 1 to 6 are mutually independent. We
point out that, under the independence assumption we consider,
the integrals Equations (2.7), (2.10), and (2.13) have a close-form
solution. In order to model possible negative differences between
sovereign and risk-free rates, and between sovereign and banks
CDS spreads, and to reduce the calibration error, in our empirical
study we assume that η is zero for the factors λ2t , λ

4
t and λ6t . This

last assumption is needed to avoid overparametrization problems
that may affect the calibration performance.

3. THE DATA

This section provides a description of the data used in the
empirical analysis. We obtained from Bloomberg Italian, French,
German, and Spanish bond term structure data from June 30,
2008 to December 31, 2014. For Spain we consider only bonds
with maturities larger than 2 years, because for shorter maturities
Bloomberg does not provide data until the second semester
of 2011. The time period in this study includes (1) the high
volatility period after the Lehman Brothers filling for Chapter
11 bankruptcy protection (September 15, 2008), (2) the recent
sovereign debt crisis, during which the spread between the 10-
year Italian BTP and the German bund exceeded 500 basis points
(bp), and (3) the assumption by the European Central Bank
(ECB) of responsibility for the direct supervision of the major
euro-area banks. The risk-free zero rates are bootstrapped from
the Euribor rate for short-term maturities up to 9 months and
the EU swap curve for maturities from 1 to 30 years. For each
observation day and for each maturity, the observed discount
factor is computed by linear interpolation of the zero rates term
structure. The same procedure is considered to find the risk-
free rates starting from the Eonia swap data. We refer to these
rates as risk-free Euribor-swap and risk-free Eonia, respectively.
In our analysis, we will consider both rates as discount factors. As
shown in Figure 1, the Euribor-OIS basis explosion of 2008 and
between the end of 2011 and the beginning of 2012 is essentially a
consequence of the different credit and liquidity risk reflected by
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TABLE 4 | Calibration error of the multi-factor Vasicek model.

Root mean square error (γt factor)

1Y 3Y 5Y 7Y 10Y Total

ITALY

BP 23.67 24.20 21.93 20.79 23.19 22.79

23.69 24.56 21.88 20.72 23.63 22.94

UBI 23.77 24.27 23.88 21.46 22.62 23.22

23.78 24.42 23.77 21.36 22.95 23.28

PMI 23.49 23.55 21.18 19.93 21.67 22.01

23.51 23.91 21.04 19.81 22.02 22.11

MB 22.13 22.80 20.11 18.64 19.91 20.77

22.15 23.00 19.97 18.50 20.24 20.83

BMPS 23.89 23.09 21.68 20.42 21.84 22.22

23.91 23.34 21.58 20.33 22.20 22.31

ISP 22.36 22.43 20.60 19.10 20.05 20.95

22.44 22.77 20.52 18.97 20.42 21.07

UCG 22.49 22.62 20.79 19.30 20.51 21.18

22.52 22.97 20.73 19.18 20.96 21.31

GERMANY

DBK 14.27 13.91 13.72 12.27 12.69 13.39

9.36 9.22 9.49 7.35 8.36 8.79

CBK 10.15 10.46 10.32 8.73 9.42 9.84

9.77 10.15 9.99 8.32 9.16 9.50

BLGZ 5.71 6.54 6.99 4.88 6.36 6.14

5.63 6.29 7.12 5.19 6.53 6.19

LBS 5.20 6.44 7.41 5.16 6.09 6.12

5.12 5.73 7.68 5.16 6.42 6.09

NLB 6.09 7.94 6.76 4.78 6.06 6.41

5.87 7.59 6.59 4.76 5.86 6.21

NSH 16.30 15.09 14.73 13.46 13.93 14.73

16.25 14.97 14.82 13.50 13.86 14.71

FRANCE

BNP 16.10 16.13 15.61 14.62 14.62 15.43

11.11 11.15 10.86 9.60 9.99 10.56

GLE 14.79 14.68 14.16 12.98 13.06 13.96

11.41 11.45 11.00 9.73 10.19 10.78

ACA 16.03 16.00 15.47 14.00 13.97 15.12

11.34 11.63 11.37 9.73 10.34 10.90

KN 16.81 16.08 14.53 13.22 13.90 14.97

16.92 16.18 14.58 13.23 13.87 15.02

SPAIN

SAN 24.70 22.73 20.04 18.43 20.15 21.32

24.50 22.21 19.68 18.22 20.12 21.06

BBVA 24.64 22.51 19.90 18.50 20.60 21.34

24.47 22.07 19.61 18.35 20.68 21.14

SAB 26.47 23.24 20.87 19.84 22.66 22.73

26.30 22.89 20.79 19.84 22.86 22.64

POP 27.58 24.82 22.50 20.72 23.69 23.97

27.35 24.38 22.43 20.69 23.76 23.82

We report, for each bank and for each maturity, the CDS spread calibration error (basis

points). In the calibration of bank CDS spreads we take into account the domestic

multi-factor sovereign components calibrated on the bond and CDS term structure. The

calibration error of the model that consider the risk-free Eonia rate as discount factor is in

italic.

Euribor-swap and Eonia swap rates (see [28] for more detail on
this aspects). Even if many banks now consider Eonia swap rates
as the risk-free rate when collateralized portfolios are valued and
XIBOR for this purpose when portfolios are not collateralized,
Hull andWhite [29] have suggested to use Eonia swap rates in all
situations.

Furthermore, we observe that the differences between
sovereign and risk-free rates (both Euribor-swap and Eonia) may
be negative, particularly at the end of 2008 and for the shortest
maturities.

In addition to sovereign CDS data (in US dollar), we consider
CDS spread data (in Euro) of seven Italian banks: Banco
Popolare (BP), Unione di Banche Italiane Scpa (UBI), Banca
Popolare di Milano (PMI), Mediobanca (MB), Banca Monte
Paschi di Siena (BMPS), Intesa San Paolo (ISP), e Unicredit
Group (UCG). Then we consider CDS spread data (in Euro)
of 14 major European banks together with the corresponding
sovereign bond and CDS term structure data. We analyze for
the Germany, Deutsche Bank (DBK), Commerzbank (CBK),
Bayerishe Landesbank (BLGZ), Landesbank Baden-Wüttember
(LBS), Norddeutsche Landesbank Girozentrale (NLB), and HSH
Nordbank (NSH); for the France, BNP Paribas (BNP), Société
Générale (GLE), Crédit Agricole Group (ACA), Natixis (KN);
finally, for the Spain, Banco Santander (SAN), BBVA, Banco de
Sabadell (SAB), and Banco Popular Espanol (POP).

Mid spreads for maturities 1, 3, 5, 7, and 10 years are
obtained from Thomson Reuters Datastream from June 30, 2008
to December 31, 2014. Italian, French, German and Spanish
sovereign CDS spreads in US dollar for the same maturities are
also obtained from Thomson Reuters Datastream. In Table 1 we
report some summary statistics for the 5-year CDS quotes. We
are aware of the fact that (1) CDS data refer to market quotes, not
necessarily realized in actual transactions, (2) the collected bid-
ask difference could not reflect the real liquidity of the market,
(3) the data can be different among data providers, as recently
observed by Mayordomo et al. [30], and, furthermore, (4) the
transactions generally involve the 5-year maturity contracts as
described in Amadei et al. [31].

In Figure 2 we report the time-series from January 2, 2006
to December 31, 2014 of the 5-year Italy CDS spread and
the implied CDS spread with the same 5-year maturity. This
difference represents the so-called CDS-bond basis, that is

Basisit = cCDSt,Ti
− c

implied CDS
t,Ti

(3.1)

where cCDSt,Ti
is the spread at time t of the CDS with maturity Ti,

and c
implied CDS
t,Ti

is the spread computed as the difference between
the yield at time t of the bond with maturity Ti and the Eonia
swap rate at time t with maturity Ti. As observed in Amadei et al.
[31] and shown in Figure 2, the basis is almost always positive.
However, it is around zero in periods of calm.

4. FITTING MARKET DATA IN PRACTICE

Pan and Singleton [32] observed that the use of a stochastic
interest rate model does not improve the estimates significantly.
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For this reason we do not calibrate the risk-free term structure.
Alternatively, by assuming the model in Equation (2.6), the
stochastic risk-free component rt may be calibrated by fitting
the zero rates term structure based on the Euribor rate and the
EU swap curve or on the Eonia swap curve. To summarize, the
calibration exercise is divided into four main steps (each of them
is repeated using alternatively Euribor and swap rates, or Eonia
swap rates as risk-free rates).

1. We bootstrap the risk-free zero curve from market rates
and compute the spread between sovereign bond yield and
the risk-free zero curve. Then, using the risk-free curve, we
bootstrap the survival probabilities from the CDS quotes
(both sovereigns and banks).

2. We calibrate δt (two Vasicek factors) based on the spread
computed in the previous step.

3. Given an estimate for δt , ξ soV

t (two Vasicek factors) can be
calibrated on the sovereign CDS spreads; in this case ξ soV

t

represents the difference between the credit risk implied

by market CDS spreads and bonds yields. This factor can
capture the CDS-bond basis defined in Equation (3.1) and
shown in Figure 2. The factor ξ soV

t can be viewed as the
instantaneous CDS-bond basis. As discussed in Section
5.2, this difference may be caused by a different liquidity
between the two markets, the counterparty risk in the CDS
spreads, possible other risk factors associated with themarket
microstructure.

4a. Given an estimate for δt , ξ it (two Vasicek factors) can be
calibrated on the CDS spreads of a domestic bank i; in
this case ξ it represents the difference between the credit risk
implied by the sovereign bond yields and the risks reflected in
bank CDS spreads. This difference can be viewed as a specific
risk and it may include the idiosyncratic credit risk of the
reference entity, a liquidity component, and possible other
risk factors associated with the market microstructure.

4b. In the extension of the model presented in Equation (2.13),
step 4a is replaced by the following. Given an estimate for

TABLE 5 | Estimated parameters of the multi-factor Vasicek model.

Sovereign bond term structure estimation (δt factor)

κ1 η1 ϑ1 κ2 ϑ2 σ ε LL

Italy 0.034 0.087 0.012 1.463 0.027 0.027 1.239e+05

−2.95e-3 −2.76e-3 −4.52e-3 2.38e-6 −3.75e-3 3.34e-4 4.52e-3

−3.97e-10 4.98e-8 −3.98e-11 1.77e-4 1.14e-7 1.60e-8

Germany 1.442 0.014 0.013 0.047 0.004 0.014 1.423e+05

1.28e-5 1.09e-1 4.93e-3 3.72e-2 −7.49e-2 −4.23e-2 1.09e-1

−3.17e-4 −1.64e-9 2.48e-8 −6.34e-8 7.77e-10 3.86e-9

France 0.619 0.100 0.010 0.013 0.007 0.016 1.378e+05

1.34e-6 −2.42e+3 8.18e-5 1.59e-4 −5.16e-4 −1.97e-5 5.16e-4

−2.36e-5 4.87e-8 5.93e-9 2.41e-10 6.03e-11 5.50e-9

Spain 0.020 0.093 0.008 0.693 0.064 0.023 1.020e+05

3.42e-5 7.60e-6 −8.03e-5 1.90e-7 2.24e-7 1.52e-5 8.03e-5

−9.02e-11 1.54e-7 −1.41e-11 3.25e-5 2.12e-7 1.47e-8

Sovereign CDS estimation (ξsoV

t
factor)

κ3 η3 ϑ3 κ4 ϑ4 σ ε LL

Italy 0.045 0.092 0.031 0.482 0.025 0.016 4.465e+04

2.10e-5 8.37e-6 5.48e-4 −4.91e-6 2.95e-4 8.45e-4 8.45e-4

4.12e-9 8.62e-7 1.48e-9 3.49e-5 5.72e-8 1.84e-8

Germany 0.003 0.100 0.006 0.429 0.009 0.006 5.275e+04

−1.15e-2 −1.03e+2 9.31e-3 7.65e-5 7.65e-3 9.05e-3 1.15e-2

2.36e-12 2.01e-5 6.62e-12 −6.67e-6 2.84e-9 2.92e-9

France 0.198 0.017 0.010 0.003 0.009 0.009 5.017e+04

5.01e-4 −1.74e-4 3.62e-3 1.52e-3 1.74e-2 2.34e-2 2.34e-2

−1.80e-6 2.06e-5 1.74e-9 1.25e-12 1.05e-11 5.40e-9

Spain 1.086 0.100 0.028 0.117 0.067 0.015 4.456e+04

1.88e-7 −6.88e+2 −5.01e-5 5.42e-6 −2.96e-5 6.95e-6 5.01e-5

6.04e-4 1.32e-7 2.73e-7 2.29e-8 3.90e-9 1.72e-8

We consider the risk-free Euribor-swap rate as discount factor. We report, for each country, the parameters calibrated on the bond term structure, and the parameters calibrated on

CDS spreads. In the calibration of CDS spreads, the domestic two-factor sovereign components are taken into account. We report, for each estimated parameter, the corresponding

value of the gradient and the square of the standard error (in italic). The value of the likelihood and of the first order optimality condition at the optimal point is also shown.
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both δt and ξ soV

t , calibrated on the sovereign bond term
structure and on the corresponding sovereign CDS spreads,
γ i
t can be calibrated on the CDS spreads of a domestic bank

i; in this case,γt represents the difference between the bank
CDS spreads and the corresponding sovereign CDS spreads.

There are two possible methodologies to estimate a reduced-
form model: (1) one can fit the model to the daily spreads
observed in themarket and check both themodel capabilities and
the parameter stability; or (2) one can extract the unobservable
default intensity process (or processes) by using a filter as
described by Lando [33] and empirically tested by Jarrow et al.
[12]. We will consider the second approach. In all the cases we
are interested in, the model can be written in the following form

xt = f (xt− 1,2, Vt− 1)

zt = h(xt ,2, εt)
(4.1)

where t is the day counter, xt is the state variable (also referred
to as the latent or unobservable factor) and it can be also a
multidimensional variable, as in our case, vt−1 is the randomness
from the state variable and 2 are the model parameters. The
state variable follows the dynamics described by f . The variable
zt represents the set of observations, in our case the difference
between sovereign bond yields and risk-free rates (or between
CDS spreads and sovereign bond yields) observed in the market.
Then, the function h is the so-called measurement function,
which in our case is given by the bond (or the CDS) spread
pricing formula, and it depends on the state variable, model
parameters and measurement noise εt . A standard hypothesis
assumes that this measurement noise is normally distributed:
since we consider more than one yield (or more than one CDS
spread) observations each day, we have a multivariate normally
distributed error. Even though themeasurement error covariance
matrix R can be set as a non-diagonal matrix, it is chosen to
be diagonal in this study and therefore the covariance structure

TABLE 6 | Estimated parameters of the multi-factor Vasicek model.

Sovereign bond term structure estimation (δt factor)

κ1 η1 ϑ1 κ2 ϑ2 σ ε LL

Italy 0.038 0.075 0.012 1.438 0.026 0.028 1.229e+05

−2.20e-2 −1.44e-2 8.14e-2 1.65e-5 −6.41e-3 −1.20e-3 8.14e-2

−5.84e-10 4.32e-8 −4.07e-11 1.88e-4 1.04e-7 1.73e-8

Germany 1.984 0.100 0.010 0.005 0.002 0.013 1.438e+05

2.52e-8 −4.91e+2 7.30e-6 −8.87e-5 −1.14e-4 1.44e-4 1.44e-4

−2.80e-4 7.75e-8 3.16e-8 −1.28e-11 −3.27e-12 3.49e-9

France 0.420 0.053 0.007 0.018 0.006 0.013 1.427e+05

9.83e-7 −4.96e-6 −2.03e-5 −9.14e-6 2.13e-5 −6.85e-5 6.85e-5

9.71e-5 1.57e-7 1.19e-9 −2.19e-10 −1.96e-11 3.73e-9

Spain 0.022 0.083 0.009 0.735 0.067 0.023 1.017e+05

1.80e-2 8.00e-3 −5.67e-2 5.17e-5 2.63e-5 3.40e-5 5.67e-2

−1.30e-10 1.26e-7 −1.63e-11 3.95e-5 2.78e-7 1.51e-8

Sovereign CDS estimation (ξsoV

t
factor)

κ3 η3 ϑ3 κ4 ϑ4 σ ε LL

Italy 0.038 0.100 0.028 0.426 0.024 0.016 4.453e+04

2.46e-2 −3.31e+2 −5.93e-2 9.61e-4 −2.00e-3 4.86e-2 5.93e-2

4.13e-9 1.43e-6 1.91e-9 1.94e-5 4.66e-8 1.92e-8

Germany 0.002 0.100 0.005 0.229 0.006 0.006 5.315e+04

1.42e-4 −2.90e-1 −2.95e-4 −2.36e-5 4.64e-4 2.54e-3 2.54e-3

4.56e-13 1.06e-4 3.24e-12 −7.97e-6 5.29e-10 2.73e-9

France 0.145 0.001 0.009 0.002 0.010 0.009 4.984e+04

−4.98e-3 1.57e+2 −3.10e-2 2.39e-2 −9.55e-2 −8.60e-2 9.55e-2

5.77e-7 1.08e-3 6.95e-10 1.64e-13 4.85e-12 6.01e-9

Spain 0.815 0.026 0.026 0.121 0.040 0.015 4.493e+04

2.07e-7 −1.74e-5 1.00e-6 −6.43e-6 3.71e-5 6.31e-6 3.71e-5

1.90e-4 1.05e-7 8.28e-8 6.90e-8 4.17e-9 1.73e-8

We consider the risk-free Eonia rate as discount factor. We report, for each country, the parameters calibrated on the bond term structure and the parameters calibrated on CDS

spreads. In the calibration of CDS spreads, the domestic two-factor sovereign components are taken into account. We report, for each estimated parameter, the corresponding value

of the gradient and the square of the standard error (in italic). The value of the likelihood and of the first order optimality condition at the optimal point is also shown.
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of the factors is represented only by the model itself and not
by the measurement error covariance matrix. Since the model
proposed in Equation (4.1) is Gaussian with respect to the state
variable and linear with respect to the measurement function,
the classical Kalman filter can be used. More details on the
maximum likelihood estimation (MLE) method implemented
to calibrate market data can be found in Bianchi and Rocco
[19]. In the algorithm proposed by Bianchi and Rocco [19] the
gradient and the Hessian of the likelihood function involved in
the optimization problem can be computed in closed form. As

already observed the similarities between the algorithms used
to dynamically calibrate the bond term structure and the CDS
spreads come from the fact that the formula to price a bond given
in Equation (2.7) is similar to the formula to compute the survival
probability given in Equations (2.10) and (2.13).

5. THE EMPIRICAL ANALYSIS

In this section we report the estimation results of the calibration
conducted on sovereign bonds and on sovereign and bank CDS

FIGURE 4 | Default intensity processes based the multi-factor model with Vasicek dynamics for the four sovereigns from June 30, 2008 to December

31, 2014. The Kalman filter is considered to extract the unobservable default intensity processes δt (1) and ξsoV

t (2). While in (1) we report the estimation of the factor

driving the spread between the sovereign bond yield and the risk-free rate, in (2) we report the estimation of the factor driving the CDS-bond basis. We consider both

risk-free Euribor-swap (in blue) and risk-free Eonia (in red) rates as discount factor.
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quotes. In Section 5.1 we empirically analyze the spread between
sovereign bonds and risk-free rates. Then, in Section 5.2, we study
the dynamics of the CDS-bond basis and, finally, we evaluate the
specific bank credit risk component extracted from bank CDS
quotes in Section 5.3.

In order to avoid strange patterns in the optimization
algorithm, we constrain the parameters (κ , η, ϑ) of each Vasicek
factor to range in the region between (1e-3, 1e-3, 1e-3) and (10,
0.1, 0.25). These values seem to be reasonable for the model we
are considering and the data we are analyzing: the long term

mean η and the volatility ϑ cannot be too high; the boundaries
for the speed of mean reversion κ are wide enough to explain
different possible dynamics. As can be observed in the following
Tables 5–10, the optimal value parameter η sometimes hits the
boundaries of the selected parameters region (i.e., η is equal
to 0.1). This may be due to an overparametrization problem.
Furthermore, after some preliminary empirical tests, we observed
that enlarging the boundaries does not improve the calibration
procedure. The parameter σε (i.e., the standard deviation of
the measurement noise) ranges between 1e-3 and 0.5. As done

FIGURE 5 | Default intensity processes based the multi-factor model with Vasicek dynamics for the 14 banks from June 30, 2008 to December 31,

2014. The Kalman filter is considered to extract the unobservable default intensity processes ξt (1) and γt (2). While in (1) we report the estimation of the factor driving

the spread between bank CDS and the sovereign bond yield, in (2) we report the estimation of the factor driving the difference between bank and sovereign CDS

quotes. We consider the risk-free rate Eonia as discount factor.
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TABLE 7 | Estimated parameters of the multi-factor Vasicek model.

Bank CDS estimation (ξ t factor)

κ3 η3 ϑ3 κ4 ϑ4 σ ε LL

BP 0.022 0.100 0.021 1.117 0.035 0.016 4.397e+04

−1.37e-4 −8.62e+3 4.07e-4 −2.89e-6 −3.77e-4 7.82e-3 7.82e-3

−7.88e-11 1.55e-6 −6.29e-11 3.83e-4 −6.97e-7 2.19e-8

UBI 0.034 0.100 0.027 1.159 0.028 0.017 4.391e+04

1.56e-2 −2.37e+3 −3.14e-2 9.44e-4 −6.89e-3 2.50e-2 3.37e-2

−3.20e-9 8.73e-7 −1.32e-9 9.63e-4 2.06e-7 2.27e-8

PMI 0.013 0.100 0.017 0.930 0.032 0.014 4.533e+04

4.59e-7 −5.73e+3 3.56e-7 5.11e-9 6.62e-8 3.06e-7 4.59e-7

−2.64e-11 3.34e-6 −3.84e-11 1.39e-4 −4.63e-7 1.63e-8

MB 0.041 0.100 0.031 1.338 0.026 0.013 4.622e+04

−2.66e-5 −1.35e+1 1.13e-4 −6.74e-6 5.76e-4 6.24e-3 6.24e-3

1.13e-9 6.70e-7 4.87e-10 2.44e-3 2.45e-7 1.26e-8

BMPS 0.009 0.100 0.018 1.366 0.044 0.013 4.514e+04

4.11e-3 −5.93e+3 −1.16e-2 −2.71e-5 5.33e-4 5.43e-3 1.16e-2

−3.97e-12 5.31e-6 −1.41e-11 3.71e-4 −9.86e-7 1.60e-8

ISP 0.789 0.100 0.025 0.036 0.026 0.014 4.575e+04

1.40e-4 −3.65e+3 2.21e-3 6.23e-3 −2.83e-3 6.55e-4 6.23e-3

−2.41e-5 −3.76e-6 1.39e-7 −6.35e-7 −7.12e-9 1.37e-8

UCG 0.697 0.100 0.026 0.042 0.028 0.014 4.542e+04

1.79e-6 −4.83e+3 8.44e-5 −6.83e-6 −5.95e-6 1.59e-4 1.59e-4

8.47e-5 3.53e-7 2.13e-7 −6.43e-9 −1.83e-9 1.49e-8

DBK 0.424 0.078 0.014 0.040 0.022 0.008 4.969e+04

−9.30e-5 6.01e-4 −1.35e-3 8.43e-4 −4.25e-3 −1.56e-3 4.25e-3

−8.60e-6 2.37e-7 1.43e-8 1.82e-9 3.66e-10 5.25e-9

CBK 0.410 0.081 0.016 0.049 0.025 0.008 4.989e+04

7.05e-4 −7.04e-3 1.98e-3 −6.71e-3 3.02e-2 −3.45e-2 3.45e-2

−1.89e-5 9.09e-8 1.32e-8 4.51e-9 8.04e-10 4.66e-9

BLGZ 0.025 0.100 0.021 0.630 0.012 0.006 5.224e+04

−4.98e-3 −1.36e+3 7.10e-3 2.79e-4 −6.08e-4 −9.43e-3 9.43e-3

1.53e-10 1.54e-7 9.28e-11 −4.70e-5 3.69e-8 2.73e-9

LBS 0.016 0.034 0.013 0.662 0.011 0.006 5.212e+04

−1.31e-2 −1.18e-2 9.68e-2 6.75e-4 −1.14e-3 −1.03e-2 9.68e-2

9.31e-11 2.82e-7 5.21e-11 −4.22e-5 1.09e-8 3.12e-9

NLB 0.754 0.001 0.011 0.005 0.012 0.007 5.168e+04

−4.27e-7 7.49e+2 3.40e-6 −2.78e-7 −4.75e-5 −2.18e-5 4.75e-5

−1.61e-5 2.21e-7 2.83e-8 2.64e-12 1.18e-11 3.63e-9

NSH 0.606 0.100 0.022 0.004 0.017 0.009 4.928e+04

1.86e-7 −2.60e+2 −5.32e-6 −3.91e-5 9.74e-5 2.58e-4 2.58e-4

−5.40e-6 2.78e-6 −1.46e-7 2.70e-12 4.54e-11 5.95e-9

BNP 0.028 0.094 0.023 0.316 0.013 0.008 5.010e+04

−5.01e-3 −1.64e-3 1.48e-2 9.66e-5 6.23e-4 1.72e-3 1.48e-2

4.49e-10 7.20e-7 2.36e-10 −1.48e-5 1.24e-8 4.63e-9

GLE 0.032 0.100 0.025 0.361 0.016 0.009 4.911e+04

2.23e-5 −8.01e+2 −6.93e-5 −1.22e-7 1.47e-6 9.01e-5 9.01e-5

1.24e-9 8.53e-7 5.77e-10 6.53e-5 2.59e-8 5.77e-9

ACA 0.036 0.100 0.026 0.354 0.016 0.009 4.910e+04

−4.23e-4 −8.05e+2 1.60e-3 2.12e-5 9.54e-5 1.46e-3 1.60e-3

(Continued)
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TABLE 7 | Continued

Bank CDS estimation (ξ t factor)

κ3 η3 ϑ3 κ4 ϑ4 σ ε LL

1.17e-9 4.98e-7 4.70e-10 −1.62e-5 1.71e-8 5.79e-9

KN 0.582 0.100 0.023 0.054 0.031 0.010 4.807e+04

−2.18e-6 −1.41e+3 −1.58e-4 −3.54e-4 9.66e-4 1.23e-4 9.66e-4

−1.07e-5 1.66e-7 −3.36e-7 2.62e-9 5.06e-10 7.67e-9

SAN 0.014 0.100 0.030 0.308 0.020 0.013 4.617e+04

−6.17e-6 −3.32e+2 1.29e-5 5.03e-9 −6.58e-6 3.06e-5 3.06e-5

5.65e-11 1.05e-5 2.43e-10 9.86e-6 −1.47e-7 1.24e-8

BBVA 0.006 0.100 0.028 0.308 0.021 0.013 4.586e+04

9.55e-4 −1.33e+2 −2.83e-3 −8.07e-5 −2.44e-4 5.78e-5 2.83e-3

6.45e-12 2.96e-5 1.20e-10 6.78e-6 −2.77e-6 1.33e-8

SAB 0.407 0.100 0.029 0.001 0.028 0.014 4.527e+04

−4.76e-4 −5.39e+1 −1.78e-3 5.51e+3 −1.61e-2 −6.96e-3 1.61e-2

−2.80e-7 −1.82e-5 −4.24e-8 6.19e-14 4.85e-11 1.51e-8

POP 0.541 0.100 0.032 0.004 0.029 0.016 4.414e+04

4.48e-8 −4.22e+2 −1.49e-6 3.77e-5 5.48e-6 8.99e-6 3.77e-5

−3.51e-6 2.98e-6 −6.65e-8 −6.16e-12 −2.86e-10 1.99e-8

We consider the risk-free Euribor-swap rate as discount factor. We report for each bank the parameters calibrated on CDS spreads. In the calibration of CDS spreads, we take into

account the domestic two-factor sovereign components calibrated on the bond term structure. We report, for each estimated parameter, the corresponding value of the gradient and

the square of the standard error (in italic). The value of the likelihood and of the first order optimality condition at the optimal point is also shown.

in Bianchi and Rocco [19], the optimization algorithm applied
in this study is the sequential quadratic programming method
implemented in the fminconMatlab function in which the option
sqp is selected. The analytic gradient vector of the likelihood is
provided in order to speed up the algorithm. As an alternative
the interior point algorithm that considers the analytic Hessian
matrix can be used. We point out that the computation of the
analytic Hessian is time consuming, and for this reason we
choose to use it only to compute the standard errors of the
parameters and not to include it into the optimization algorithm.
As starting point of the algorithm we select a random point in
the parameter region. First we calibrate the model on the data
that considers the Euribor-swap rates as risk-free rates, then we
select the optimal parameters of this calibration as starting point
of the calibration on the data considers the Eonia rates as risk-free
rates.

For comparative purposes, the models performance across
maturities and different observations days are evaluated by the
root mean square error (RMSE)

RMSE =

√

√

√

√

∑

t

∑

Ti

(cmarket
t,Ti

− cmodel
t,Ti

(2))2

number of observations
, (5.1)

where cmarket
t,Ti

refers to the observed data (bond spreads with
respect to risk-free zero-rates and CDS spreads with respect to
bond yields) with maturity Ti observed at time t and cmodel

t,Ti
(2)

are the model estimates.

5.1. The Sovereign Bond Spread
We observe that sometimes may happen that the defaultable
zero rates extracted from sovereign bonds are smaller than
the zero rates bootstrapped from Euribor-swap rates (i.e., the
spread represented by the factor δt may be negative). This means
that the risk implied in the market quotes of sovereign debt
is smaller that the risk of the rate commonly used as discount
factor in derivatives pricing. This phenomenon is well-known
and there is a lively debate among academics and quants. Even
if it may be caused by the counterparty and the liquidity risks
in the interbank and interest rate derivatives market, there
is not yet a general consensus on which model to use and
on which discount rate to consider to price defaultable bonds
and derivatives. As already observed, in 2008 the Euribor-OIS
spread, that is the difference between the Euro interbank offered
rate (Euribor) and the overnight indexed swap (OIS), reached
unprecedented levels. This spread is a measure of both credit
and liquidity risk. Morevover, on September 17, 2008, Bloomberg
reported that there was a flight to safety as investors sold off
their positions in credit risky assets and invested those funds
in short-term Treasury bills, resulting in Treasury bills rates
falling to their lowest level since World War II. A similar
investor behavior was observed in Europe. For this reason we
will consider also the model that take into consideration the
risk-free zero rates bootstrapped from the Eonia swap curve.
However, even if the Eonia rates are generally smaller that
Euribor-swap rates, as shown in Figure 1, it may also happen
that defaultable zero rates extracted form sovereign bonds are
smaller than the zero rates bootstrapped from Eonia swap
rates.
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TABLE 8 | Estimated parameters of the multi-factor Vasicek model.

Bank CDS estimation (ξ t factor)

κ3 η3 ϑ3 κ4 ϑ4 σ ε LL

BP 1.366 0.100 0.036 0.024 0.021 0.017 4.366e+04

−1.15e-5 −9.02e+3 7.93e-4 −5.82e-3 7.89e-3 9.51e-3 1.07e-2

8.39e-4 1.17e-6 −1.85e-6 −1.16e-10 −7.58e-11 2.39e-8

UBI 1.618 0.100 0.031 0.033 0.027 0.018 4.382e+04

−9.62e-8 −2.04e+3 8.58e-7 −2.29e-5 5.14e-5 −3.66e-5 5.14e-5

2.47e-3 6.21e-7 4.14e-7 −2.60e-9 −1.16e-9 2.34e-8

PMI 1.024 0.100 0.032 0.016 0.017 0.015 4.491e+04

6.29e-6 −6.39e+3 1.36e-4 −1.13e-2 2.14e-2 −2.22e-3 2.14e-2

4.69e-4 5.12e-6 −7.04e-7 −4.78e-11 −4.85e-11 1.89e-8

MB 3.064 0.043 0.045 0.075 0.030 0.013 4.612e+04

2.51e-6 7.00e-3 −1.01e-3 5.35e-3 −1.74e-2 −7.80e-4 1.74e-2

1.38e-2 8.04e-8 1.54e-6 1.05e-8 1.09e-9 1.32e-8

BMPS 1.801 0.100 0.049 0.013 0.018 0.014 4.485e+04

1.11e-4 −7.49e+3 −1.30e-3 1.79e-2 −1.70e-2 −7.63e-2 7.63e-2

1.08e-3 2.58e-6 −2.13e-6 −1.08e-11 −2.11e-11 1.74e-8

ISP 0.843 0.100 0.024 0.036 0.026 0.014 4.534e+04

2.73e-5 −3.26e+3 −1.32e-4 1.42e-3 −3.83e-3 −3.62e-3 3.83e-3

1.25e-4 −3.34e-7 1.35e-7 −9.00e-8 −5.96e-9 1.58e-8

UCG 0.720 0.100 0.025 0.042 0.027 0.015 4.497e+04

1.63e-7 −4.29e+3 −8.54e-7 −4.99e-6 1.60e-5 −2.53e-6 1.60e-5

9.92e-5 3.90e-7 1.70e-7 −6.86e-9 −1.91e-9 1.70e-8

DBK 0.296 0.051 0.012 0.044 0.019 0.008 4.969e+04

2.97e-6 −7.61e-6 2.73e-5 −5.21e-6 5.13e-5 −1.79e-5 5.13e-5

−4.80e-6 3.02e-7 4.83e-9 7.10e-9 6.43e-10 5.45e-9

CBK 0.313 0.063 0.014 0.055 0.024 0.008 4.995e+04

5.51e-7 3.95e-5 −4.75e-5 3.56e-5 −1.85e-4 −2.44e-5 1.85e-4

−9.13e-4 −1.24e-5 5.32e-9 7.42e-9 1.32e-9 4.67e-9

BLGZ 0.400 0.037 0.009 0.029 0.014 0.006 5.258e+04

2.82e-4 1.53e-3 −2.91e-3 6.70e-4 −6.57e-3 2.08e-2 2.08e-2

−1.05e-5 1.84e-8 4.50e-9 6.69e-10 1.26e-10 2.76e-9

LBS 0.457 0.020 0.009 0.027 0.012 0.006 5.249e+04

1.07e-5 9.51e-6 6.35e-4 1.60e-5 −6.84e-4 −3.61e-3 3.61e-3

−2.16e-5 −1.33e-7 2.91e-9 1.19e-9 1.42e-10 2.92e-9

NLB 0.537 0.001 0.008 0.014 0.010 0.007 5.197e+04

3.05e-7 2.52e+3 −4.75e-6 4.40e-7 −1.35e-7 −8.60e-6 8.60e-6

−2.62e-5 −3.35e-7 7.06e-9 6.41e-11 3.27e-11 3.51e-9

NSH 0.505 0.100 0.021 0.007 0.017 0.008 4.954e+04

5.14e-7 −3.81e+2 −3.55e-6 2.78e-7 9.82e-6 −1.31e-5 1.31e-5

−5.14e-6 3.46e-6 −8.28e-8 1.50e-11 8.59e-11 5.61e-9

BNP 0.240 0.041 0.012 0.040 0.020 0.008 5.010e+04

2.56e-9 −8.69e-9 1.75e-8 −2.88e-8 4.89e-8 3.90e-7 3.90e-7

5.57e-6 7.69e-7 3.70e-9 3.02e-9 5.84e-10 4.81e-9

GLE 0.311 0.083 0.015 0.041 0.026 0.009 4.914e+04

7.76e-6 −2.73e-5 4.31e-5 −3.59e-5 1.97e-4 −3.83e-4 3.83e-4

1.35e-5 5.99e-7 1.02e-8 2.43e-9 7.20e-10 5.81e-9

ACA 0.304 0.081 0.014 0.042 0.026 0.009 4.919e+04

2.42e-5 −4.84e-3 2.44e-3 −8.08e-3 3.64e-2 −1.26e-2 3.64e-2

(Continued)
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TABLE 8 | Continued

Bank CDS estimation (ξ t factor)

κ3 η3 ϑ3 κ4 ϑ4 σ ε LL

6.75e-5 9.99e-7 7.86e-9 2.09e-9 5.86e-10 5.76e-9

KN 0.598 0.100 0.021 0.054 0.031 0.010 4.811e+04

−3.04e-6 −9.14e+2 −1.91e-4 −2.37e-4 7.79e-4 1.72e-3 1.72e-3

−1.34e-5 1.59e-7 −1.10e-6 2.43e-9 4.95e-10 7.63e-9

SAN 0.306 0.100 0.021 0.023 0.029 0.013 4.612e+04

−6.77e-9 −3.34e+1 −1.75e-8 1.99e-7 −3.51e-7 −6.49e-7 6.49e-7

8.10e-6 3.92e-6 4.81e-8 3.63e-10 4.99e-10 1.26e-8

BBVA 0.303 0.100 0.023 0.014 0.027 0.014 4.574e+04

5.69e-10 −4.21e+1 −2.02e-8 1.56e-7 −6.07e-8 7.98e-7 7.98e-7

5.90e-6 1.15e-5 4.03e-8 1.17e-10 3.77e-10 1.41e-8

SAB 0.429 0.100 0.031 0.001 0.024 0.014 4.513e+04

6.67e-5 −5.72e+1 −1.80e-4 5.19e+3 2.34e-3 5.73e-4 2.34e-3

−5.95e-7 −3.65e-5 −7.60e-8 −6.07e-14 −3.48e-11 1.59e-8

POP 0.578 0.100 0.034 0.005 0.025 0.016 4.408e+04

7.20e-7 −5.21e+2 1.35e-6 2.83e-5 4.47e-5 −5.22e-5 5.22e-5

−5.84e-6 3.63e-6 −9.06e-8 −2.04e-12 −6.10e-11 2.04e-8

We consider the risk-free Eonia rate as discount factor. We report for each bank the parameters calibrated on CDS spreads. In the calibration of CDS spreads, we take into account the

domestic two-factor sovereign components calibrated on the bond term structure. We report, for each estimated parameter, the corresponding value of the gradient and the square of

the standard error (in italic). The value of the likelihood and of the first order optimality condition at the optimal point is also shown.

In Tables 2 and 5 we report, for each country and each
maturity, the sovereign bond spread term structure calibration
error and the corresponding estimated parameters in the period
from January 03, 2008 to December 31, 2014 based on the multi-
factor reduced form model described in Section 2.3. In Table 6

we report the estimated parameters by considering the risk-free
Eonia rates. Then, in Figure 3 the estimated Italian spreads are
compared with those observed in the market4. As shown in
Table 2, the overall RMSE across all maturities ranges from 9.45
bp for Germany to 23.21 for Italy (11.50 bp for France to 22.37
for Italy when considering the risk-free Eonia). The countries
reporting the smallest calibration error are Germany, if one
considers the spread with respect to the Euribor-swap rate, and
its RMSE ranges from 6.66 bp for the 6-year maturity to 13.01 bp
for the 30-year maturity, and France, if one considers the spread
with respect to the Eonia rate, and its RMSE ranges from 9.50
bp for the 1-year maturity to 14.34 bp for the 20-year maturity.
The country reporting the largest calibration error is Italy, and
the RMSE ranges from 18.46 bp for the 6-year maturity to 30.48
bp for the 2-year maturity, and if one considers the spread with
respect to the Eonia rate it ranges from 16.92 bp for the 6-year
maturity to 30.71 bp for the 2-year maturity. The RMSE values
reported in Table 2 show that the calibration error depends on
the maturity. However, based on the RMSE values, the model
performance is satisfactory.

In Tables 5, 6 we report the estimated parameters, the
corresponding value of the gradient and the square of the
standard errors. The value of the likelihood and of the first order

4 The calibrated spread for Germany, France and Spain are available upon request.

optimality condition at the optimal point is also shown. For the
definition of the first order optimality condition we refer to the
Matlab documentation.

Then in Figure 4 we show the dynamics of the estimated
instantaneous default intensity, that is the trajectory of the
process δt . This default intensity does not represent the overall
country risk, but only the specific default risk component. We
consider both risk-free Euribor-swap (in blue) and risk-free
Eonia (in red) rates as discount factor. The two trajectories differ
only slightly. Even if the long term mean of the process is strictly
positive, the process becomes negative. This is mainly caused by
the fact that the difference between the sovereign yield and the
selected risk-free rate may become negative or very close to zero.
During the period of turmoil, the intensity sharply increases: this
is the case for Italy and Spain. In calm periods, the instantaneous
default intensity is close to zero, that is the short-term country
risk is negligible. Note that for Spain the estimation results may
be affected by the fact that we do not have data for maturities
smaller than 2 years.

As observed by Ang and Longstaff [15], the value of δt
essentially captures the level of the shortest maturity spread
while the parameters κ , η, and ϑ capture the average slope and
curvature of the term structure throughout the sample period.
This in practice means that δt represents the short-term country
specific risk.

5.2. The Time-Varying CDS-Bond Basis
As done in other similar studies (see [18]) we assume that
euro-denominated CDS spreads are equal to dollar-denominated
CDS spreads. For European sovereign entities the contracts
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TABLE 9 | Estimated parameters of the multi-factor Vasicek model.

Bank CDS estimation (γ t factor)

κ5 η5 ϑ5 κ6 ϑ6 σ ε LL

BP 3.728 0.100 0.071 0.028 0.022 0.017 4.365e+04

5.37e-5 −1.08e+4 −3.06e-3 −2.11e-3 9.74e-3 −1.27e-2 1.85e-2

3.17e-3 6.38e-7 −1.29e-5 −1.37e-10 −7.27e-11 2.49e-8

UBI 0.054 0.100 0.033 0.832 0.030 0.019 4.304e+04

7.01e-4 −3.77e+3 −1.94e-3 2.32e-5 −6.25e-4 7.86e-3 7.86e-3

−4.17e-9 5.81e-7 −9.75e-10 2.27e-4 1.59e-7 2.70e-8

PMI 1.311 0.100 0.038 0.029 0.022 0.015 4.436e+04

6.70e-10 −9.56e+3 −1.47e-8 2.67e-7 −4.89e-7 1.66e-7 4.89e-7

6.60e-4 6.16e-7 −5.62e-7 −2.17e-10 −9.99e-11 2.01e-8

MB 0.067 0.100 0.039 0.809 0.025 0.014 4.501e+04

7.57e-7 −1.91e+3 −1.88e-6 6.97e-9 −2.91e-7 −2.33e-6 2.33e-6

8.13e-8 9.75e-6 4.29e-7 2.10e-4 1.11e-7 1.61e-8

BMPS 1.958 0.100 0.053 0.027 0.023 0.014 4.458e+04

6.91e-6 −8.11e+3 −1.88e-4 3.25e-4 −2.30e-3 −1.82e-3 2.30e-3

1.79e-3 6.03e-7 −1.85e-6 −1.33e-10 −7.78e-11 1.82e-8

ISP 1.002 0.100 0.027 0.053 0.033 0.013 4.539e+04

2.45e-8 −2.81e+3 6.67e-7 2.79e-6 −3.68e-6 −3.95e-6 9.12e-6

3.79e-4 2.73e-7 3.42e-7 −6.39e-9 −1.53e-9 1.45e-8

UCG 0.052 0.100 0.032 1.101 0.028 0.013 4.537e+04

−9.08e-4 −5.27e+3 2.31e-3 −1.83e-5 7.08e-4 −2.42e-3 2.42e-3

−2.99e-9 3.02e-7 −7.75e-10 6.69e-4 6.52e-7 1.46e-8

DBK 0.400 0.090 0.011 0.016 0.019 0.009 4.962e+04

−2.94e-4 1.10e-3 −1.96e-3 5.54e-3 −1.18e-2 3.92e-3 1.18e-2

−8.61e-6 1.47e-6 1.83e-8 1.25e-10 1.39e-10 5.61e-9

CBK 0.370 0.045 0.014 0.064 0.024 0.008 4.979e+04

3.04e-5 −9.95e-5 4.00e-4 −3.69e-5 3.27e-4 −1.24e-3 1.24e-3

4.96e-5 2.80e-7 7.12e-9 1.68e-8 1.41e-9 5.00e-9

BLGZ 0.557 0.015 0.009 0.017 0.013 0.007 5.159e+04

1.53e-3 −1.21e-2 7.88e-3 −1.98e-3 1.46e-1 1.59e-1 1.59e-1

−3.33e-5 −9.65e-11 7.67e-9 1.23e-10 6.24e-11 3.72e-9

LBS 0.507 0.001 0.008 0.001 0.014 0.007 5.147e+04

−1.22e-4 1.80e+2 5.22e-3 1.14e+2 −1.23e-2 4.33e-2 4.33e-2

−7.75e-6 −5.23e-7 5.57e-9 1.29e-14 2.54e-12 3.77e-9

NLB 0.520 0.001 0.009 0.057 0.013 0.008 5.080e+04

9.45e-5 1.33e+4 −2.51e-3 −1.43e-4 9.42e-4 −1.42e-2 1.42e-2

−1.91e-4 −1.20e-7 5.48e-9 5.48e-9 1.80e-10 4.66e-9

NSH 0.001 0.100 0.017 0.606 0.021 0.009 4.890e+04

7.93e+3 −2.77e+1 8.24e-2 −4.08e-4 1.54e-3 −1.32e-2 4.45e-1

3.70e-14 3.12e-4 1.06e-11 −2.73e-5 −6.88e-7 6.63e-9

BNP 0.471 0.100 0.010 0.029 0.025 0.008 4.970e+04

−3.39e-6 −1.19e+2 4.66e-4 2.91e-4 −4.57e-4 6.94e-3 6.94e-3

−2.79e-4 4.58e-7 1.71e-8 4.01e-10 2.35e-10 5.26e-9

GLE 0.050 0.085 0.030 0.543 0.015 0.009 4.887e+04

−1.18e-4 −6.36e-5 3.64e-4 6.69e-7 −3.21e-5 5.16e-5 3.64e-4

2.50e-9 1.90e-7 6.43e-10 1.75e-4 3.14e-8 6.20e-9

ACA 0.054 0.100 0.034 0.544 0.014 0.009 4.900e+04

3.94e-7 −4.11e+2 −1.12e-6 −1.58e-8 3.06e-9 −5.84e-7 1.12e-6

(Continued)
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TABLE 9 | Continued

Bank CDS estimation (γ t factor)

κ5 η5 ϑ5 κ6 ϑ6 σ ε LL

2.19e-9 9.26e-8 6.25e-10 −2.69e-4 2.71e-8 5.86e-9

KN 1.065 0.100 0.024 0.023 0.023 0.010 4.790e+04

1.99e-9 −2.05e+3 4.32e-7 9.35e-7 −1.66e-6 −2.13e-6 2.13e-6

−9.78e-5 5.47e-7 −5.03e-6 2.90e-10 2.13e-10 8.27e-9

SAN 0.106 0.100 0.053 0.717 0.026 0.015 4.455e+04

9.57e-8 −1.08e+3 −2.03e-7 3.62e-10 6.99e-8 −4.21e-7 4.21e-7

4.43e-8 3.58e-7 6.89e-9 1.52e-4 4.72e-7 1.73e-8

BBVA 0.657 0.100 0.028 0.097 0.049 0.016 4.429e+04

−1.32e-4 −8.62e+2 −3.05e-3 −3.93e-3 1.20e-2 −1.80e-2 1.80e-2

9.03e-5 3.48e-7 7.10e-7 3.66e-8 6.06e-9 1.90e-8

SAB 0.040 0.100 0.027 0.767 0.043 0.018 4.323e+04

7.85e-9 −6.80e+3 −1.71e-8 1.78e-10 −5.54e-10 1.20e-8 1.71e-8

−9.02e-10 7.20e-7 −3.18e-10 1.35e-4 −1.45e-7 2.57e-8

POP 1.135 0.100 0.049 0.042 0.029 0.018 4.281e+04

−4.27e-7 −8.68e+3 1.23e-6 −1.87e-5 5.01e-5 3.18e-5 5.01e-5

−3.13e-3 4.63e-7 −3.66e-7 −7.61e-10 −2.94e-10 2.80e-8

We consider the risk-free Euribor-swap rate as discount factor. We report for each bank the parameters calibrated on CDS spreads. In the calibration of CDS spreads, we take into

account the domestic multi-factor sovereign components calibrated on the bond and CDS term structure. We report, for each estimated parameter, the corresponding value of the

gradient and the square of the standard error (in italic). The value of the likelihood and of the first order optimality condition at the optimal point is also shown.

denominated in US dollars are generally more liquid than the
contracts denominated in euros, as the former protect the
investor against the risk of euro depreciation in the event of
default. However, possible currency effect are captured by the
factor ξt . This means that the dynamics of the CDS-bond basis
may be affected by the fact that we are investigating US dollar
denominated CDS spreads.

In Figure 2 we report the time-series of the 5-year Italian
CDS-bond basis. As observed by Amadei et al. [31], government
bonds of the main European countries show almost always a
positive basis, and only in the case of Greece there have been
persistent negative basis episodes. As discusses by Lando [33] and
Haworth et al. [34], even for corporate entities the basis has been
rarely close to zero. A variety of different supply and demand,
liquidity and technical factors may cause short-term distortions
between the cash and CDS markets. Among other factors, a CDS
spread cannot become negative while the spread over XIBOR
for a high quality issuer can be negative. We refer to Ang and
Longstaff [35] for a detailed discussion on this topic.

In this section we assume that the sovereign CDS default
intensity has the following form

xsoV

t = λ1t + λ2t + λ3t + λ4t = δt + ξ soV

t ,

where the first two factors (λ1t and λ2t ) have been estimated in
the previous Section 5.1. The factor ξ soV

t is allowed to be negative
in order to give more flexibility in the calibration exercise, while
the long term mean of the default process ξ soV

t remains positive.
As already observed, also in this case the KF method is used to
perform the state and parameter estimation, to extract ξ soV

t , and

to find its parameters from the cross-section of sovereign CDS
spreads over the observation period. This approach allows one to
divide the estimation exercise into two steps: (1) δt is estimated
by considering the whole sovereign bond term structure over
time (see Section 5.1); (2) the basis factor (i.e., ξ soV

t ) is extracted
by taking into consideration the estimate of δt together with the
observed sovereign CDS quotes.

The country reporting the smallest calibration error is France.
For this country the overall RMSE is 6.72 (6.77) if one considers
the Euribor-swap (Eonia) rate as discount factor. The country
reporting the largest calibration error is Italy, with the overall
RMSE equal to 18.28 (20.01), if one considers the spread with
respect to the Euribor-swap (Eonia) rate.

In Tables 5, 6 we report the estimated parameters of the
Vasicek factor ξt , representing the instantaneous basis. The
parameter η1, representing the mean-reverting level is positive,
that is, the instantaneous Italian CDS-bond basis is positive
on the long term, even if it can become negative in particular
market conditions. A similar result has been obtained for all other
countries considered.

In Figure 4 we report the estimated instantaneous basis ξt
calibrated on the difference between CDS quotes and bond yields.
We note that the dynamics of this process may be partially
affected by the fact that while the sovereign term structure ranges
from 3-month to 30-year, the CDS curve has only five maturities
(1-, 3-, 5-, 7- and 10-year). Recall that for other maturities
the CDS are illiquid or not traded. This intensity does not
represents the overall country risk, but only the specific basis
component. We note that these dynamics vary across countries,
and they depend on the selected discount factor. Considering
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TABLE 10 | Estimated parameters of the multi-factor Vasicek model.

Bank CDS estimation (γ t factor)

κ5 η5 ϑ5 κ6 ϑ6 σ ε LL

BP 0.027 0.100 0.022 3.719 0.070 0.018 4.329e+04

−1.18e-6 −9.91e+3 9.31e-6 −1.84e-8 6.81e-7 1.12e-5 1.12e-5

−1.34e-10 7.92e-7 −7.42e-11 5.09e-3 −1.18e-5 2.77e-8

UBI 0.053 0.100 0.033 0.865 0.030 0.019 4.285e+04

7.25e-7 −3.48e+3 −1.81e-6 1.28e-8 2.50e-8 6.29e-7 1.81e-6

−4.29e-9 6.32e-7 −1.03e-9 2.88e-4 1.76e-7 2.86e-8

PMI 0.028 0.100 0.022 1.371 0.038 0.016 4.401e+04

−1.31e-4 −8.90e+3 −3.58e-4 −1.55e-6 1.09e-5 3.81e-4 3.81e-4

−1.96e-10 9.02e-7 −9.60e-11 1.01e-3 −5.39e-7 2.26e-8

MB 0.067 0.100 0.039 0.845 0.025 0.015 4.466e+04

2.86e-3 −1.31e+3 −5.59e-3 3.46e-5 −2.38e-4 6.62e-3 6.62e-3

3.36e-8 7.78e-7 1.18e-8 2.46e-4 1.18e-7 1.73e-8

BMPS 0.025 0.100 0.022 2.074 0.055 0.015 4.420e+04

−2.38e-4 −7.74e+3 3.97e-4 −3.05e-6 1.42e-4 1.93e-3 1.93e-3

−1.10e-10 8.18e-7 −7.15e-11 2.46e-3 −1.80e-6 2.08e-8

ISP 0.052 0.100 0.033 0.968 0.026 0.015 4.492e+04

−3.33e-3 −2.72e+3 5.81e-3 −3.93e-5 −3.38e-3 1.57e-3 5.81e-3

−7.57e-9 3.74e-7 −1.79e-9 4.24e-4 3.52e-7 1.69e-8

UCG 0.051 0.100 0.031 1.066 0.027 0.015 4.480e+04

4.27e-5 −4.70e+3 −1.05e-4 7.65e-8 1.30e-5 7.65e-5 1.05e-4

−3.43e-9 3.64e-7 −8.94e-10 6.40e-4 7.26e-7 1.74e-8

DBK 0.023 0.034 0.017 0.294 0.011 0.009 4.939e+04

−4.94e-4 −2.80e-4 1.90e-3 4.71e-5 6.84e-4 −9.36e-3 9.36e-3

9.36e-10 1.49e-6 3.23e-10 −4.41e-6 7.66e-9 6.07e-9

CBK 0.074 0.037 0.024 0.322 0.015 0.008 4.950e+04

−2.05e-5 2.48e-4 −8.26e-4 −2.45e-5 4.84e-4 5.05e-4 8.26e-4

4.30e-8 1.88e-7 2.32e-9 1.26e-5 4.98e-9 5.46e-9

BLGZ 0.026 0.001 0.013 0.354 0.009 0.007 5.186e+04

7.22e-7 1.83e+3 5.07e-6 1.06e-7 −6.96e-7 −1.55e-5 1.55e-5

4.74e-10 −5.43e-7 1.00e-10 −8.21e-5 3.00e-9 3.44e-9

LBS 0.015 0.001 0.014 0.399 0.009 0.007 5.146e+04

−3.47e-3 2.91e+3 −3.69e-3 −8.82e-4 5.59e-2 1.61e-1 1.61e-1

5.24e-11 7.45e-6 4.18e-11 3.26e-4 3.18e-9 3.89e-9

NLB 0.067 0.001 0.015 0.392 0.009 0.008 5.107e+04

1.05e-4 1.72e+4 2.52e-2 1.39e-4 −9.05e-3 7.93e-2 7.93e-2

7.36e-9 2.04e-6 2.08e-10 9.02e-4 3.05e-9 5.38e-9

NSH 0.001 0.100 0.017 0.515 0.020 0.009 4.896e+04

6.71e+3 −6.67e-1 5.57e-3 5.68e-5 2.26e-3 5.75e-3 8.08e-3

3.35e-14 3.72e-4 9.84e-12 −1.25e-5 −6.98e-7 6.50e-9

BNP 0.276 0.052 0.010 0.029 0.020 0.008 4.972e+04

9.51e-5 −2.46e-4 −3.45e-3 −1.41e-4 −9.01e-4 −2.29e-3 3.45e-3

1.82e-5 1.13e-6 6.32e-9 1.12e-9 4.24e-10 5.44e-9

GLE 0.401 0.045 0.015 0.071 0.027 0.009 4.891e+04

3.21e-5 −6.59e-4 −4.73e-4 −4.07e-4 3.12e-3 −5.90e-3 5.90e-3

3.06e-5 1.45e-7 1.26e-8 1.74e-8 1.55e-9 6.33e-9

ACA 0.391 0.053 0.014 0.062 0.027 0.009 4.900e+04

−8.81e-9 3.30e-8 6.27e-8 1.55e-8 −1.00e-7 1.36e-7 1.36e-7

(Continued)
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TABLE 10 | Continued

Bank CDS estimation (γ t factor)

κ5 η5 ϑ5 κ6 ϑ6 σ ε LL

5.49e-5 1.89e-7 1.03e-8 7.40e-9 9.48e-10 6.18e-9

KN 0.761 0.100 0.021 0.019 0.021 0.011 4.790e+04

−8.80e-6 −1.14e+3 6.64e-4 −1.07e-5 5.32e-4 2.05e-3 2.05e-3

−2.58e-5 1.04e-6 −2.41e-7 2.06e-10 1.91e-10 8.57e-9

SAN 0.770 0.100 0.027 0.111 0.056 0.015 4.448e+04

−4.40e-10 −3.42e+2 8.16e-9 −2.67e-8 6.99e-8 −1.06e-7 1.06e-7

1.75e-4 2.81e-7 3.93e-7 4.16e-8 6.00e-9 1.76e-8

BBVA 0.715 0.100 0.029 0.102 0.052 0.016 4.415e+04

−2.86e-5 −1.08e+2 −3.16e-4 −4.23e-4 8.11e-4 −2.29e-3 2.29e-3

1.27e-4 3.06e-7 4.55e-7 3.35e-8 5.16e-9 1.96e-8

SAB 0.784 0.100 0.044 0.036 0.026 0.018 4.305e+04

−1.73e-9 −6.40e+3 6.74e-8 −2.58e-7 8.04e-7 4.93e-7 8.04e-7

1.27e-4 8.31e-7 −1.53e-7 −6.47e-10 −2.62e-10 2.72e-8

POP 1.197 0.100 0.051 0.038 0.028 0.019 4.269e+04

−1.58e-10 −8.32e+3 9.17e-10 −1.13e-8 1.37e-8 8.24e-8 8.24e-8

−3.88e-3 5.50e-7 −4.21e-7 −5.99e-10 −2.59e-10 2.92e-8

We consider the risk-free Eonia rate as discount factor. We report for each bank the parameters calibrated on CDS spreads. In the calibration of CDS spreads, we take into account the

domestic multi-factor sovereign components calibrated on the bond and CDS term structure. We report, for each estimated parameter, the corresponding value of the gradient and the

square of the standard error (in italic). The value of the likelihood and of the first order optimality condition at the optimal point is also shown.

both risk-free Euribor-swap (in blue) and risk-free Eonia (in
red) rates as discount factor, the difference between the two
trajectories is very limited. The trajectory of the instantaneous
basis of Italy and Spain is more volatile compared to those of
Germany and France. For these last countries the basis is closed to
zero, particularly when the risk-free Eonia rate is used as discount
factor. In the last 2 years (2013–2014) also for Italy the short-term
basis risk has been hovering around zero.

We observe that in the estimation of the basis factor (ξ soV

t ) the
use of the Euribor-swap rate as discount factor may distort the
estimation, particularly when the difference between Euribor and
Eonia is high. This empirical finding suggests to prefer the Eonia
rates as discount factor, at least for the financial instruments we
want to price in the calibration exercise conducted in this work.

5.3. The Analysis on Bank CDS
In this section we report the results of the empirical study based
on CDS quotes (observed in the market) of 21 European banks.
As discussed in Section 4 and similar to Section 5.2, this empirical
exercise is made by considering the sovereign risk components
δt and ξ soV

t calibrated on the sovereign bond term structure and
sovereign CDS spreads, respectively.

We consider two different approaches. First, we assume that
the default intensity of bank i has the following form

x
banki
t = λ1t + λ2t + λ3t

i
+ λ4t

i
= δt + ξ it ,

where δt represents the sovereign component calibrated on
the sovereign bond term structure, as shown in Section 5.1.
The factors λ3t and λ4t are allowed to be negative in order to

give more flexibility in the calibration exercise, however the

default process x
banki
t remains positive. This empirical finding

is observed after the calibration procedure. Also in this case
the KF method is used to perform the state and parameter
estimation, to extract ξ it , and to find its parameters from the
cross-section of bank i CDS spreads over the observation period.
This approach allows one to divide the estimation exercise into
two steps: (1) δt is estimated by considering the whole sovereign
bond term structure over time (see Section 5.1); (2) the specific
factor for bank i (i.e., ξ it ) is extracted by taking into consideration
the estimate of δt together with the observed bank i CDS
spreads.

In calibrating bank CDS spreads, the proposed multi-factor
model has a satisfactory performance. The overall RMSE ranges
from 6.05 bp to 20.73 bp (from 5.64 bp to 21.65 with the
Eonia risk-free rates). As shown in Table 3, the calibration error
depends on the maturity and on the bank.

The bank reporting the smallest calibration error is the
German LBS with an overall RMSE equal to 6.06 (5.64 with the
Eonia risk-free rates). The RMSE of this bank ranges from 5.21 bp
for the 7-year maturity to 7.21 bp for the 5-year maturity, and, if
one considers the spread with respect to the Eonia rate, it ranges
from 4.84 bp for the 7-year maturity to 6.88 bp for the 5-year
maturity. The bank reporting the largest calibration error is the
Italian BP with an overall RMSE equal to 20.73 (21.65 with the
Eonia risk-free rates). The RMSE of this bank ranges from 18.72
bp for the 7-year maturity to 22.94 bp for the 3-year maturity,
and if one considers the spread with respect to the Eonia rate it
ranges from 19.47 bp for the 7-year maturity to 24.02 bp for the
3-year maturity.
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In order to compare the dynamics of estimated factors across
banks, in Figure 5 we report the estimated dynamics of the bank
specific factor ξ it (Eonia risk-free rates). They can be compared
with the basis factor estimated in Section 5.2 and reported in
Figure 4. The credit risk varies across banks. We recall that the
total credit risk of each bank is given by the sovereign risk (δt)
and the bank specific risk (ξ it ). Therefore, the default intensity
reported in Figure 5, has to be intended as the specific bank
default intensity. We note that these dynamics varies across
countries and banks, and they depend on the selected risk-
free factor. Furthermore, in Tables 7, 8 we report the estimated
parameters.

We note that the dynamics of this process may be partially
affected by the fact that while the sovereign term structure ranges
from 3-month (2-year for Spain) to 30-year, the bank CDS spread
have only five maturities (1, 3, 5, 7, and 10 years).

In the second approach we assume that bank i default intensity
has the following form

x
banki
t = δt + ξ soV

t + γ i
t ,

where δt represents the sovereign component calibrated on the
sovereign bond term structure and ξ soV

t the component calibrated
on the sovereign CDS-bond basis. Similarly to the first appraoch
considered above, we divide the estimation exercise into different
steps: (1) δt is estimated by considering the whole sovereign bond
term structure over time (see Section 5.1); (2) the factor ξ soV

t is
extracted by taking into consideration the estimate of δt together
with the observed sovereign CDS spreads (see Section 5.2); (3)
the specific factor for the bank i (i.e., γ i

t ) is extracted by taking
into consideration the estimate of δt and ξ soV

t together with the
observed bank i CDS spreads.

Figure 5 shows the dynamics of the estimated factors γt . As
expected, due to the presence of a non zero sovereign CDS-bond
basis, for each bank i the dynamics of ξt and γt are different.
Furthermore, in Tables 9, 10 we report the estimated parameters
and in Table 4 the corresponding calibration errors. The overall
RMSE ranges from 6.12 bp to 23.97 bp (from 6.09 bp to 23.82 with
the Eonia risk-free rates). As shown in Table 4, the calibration
error depends on the maturity and on the bank.

There are no remarkable differences between the two
calibration exercises (compare Tables 3, 4). In both calibration
exercises, the specific bank risk is high for some banks over the
observation period. Some banks report negative values for the
factors ξt and γt , that is they are less risky than the sovereign. This
is particularly evident for banks with large international activities
based in Italy (UCG and ISP) and Spain (SAN and BBVA). In the
last year (2014) for almost all banks, except BMPS and BP, the
risk decreased. In the last 2 years the risk of German and French
banks seems to be close to that of the sovereign. We point out
that the behavior of ξt and γt is only a short-term indicator of the
specific risk of the banks.

6. CONCLUSION

In this paper we implement a multi-factor model based on
the standard Vasicek mean-reverting process to describe the

dynamics of sovereign and bank CDS for different maturities by
using the information content of risk-free rates and sovereign
bonds term structure. We develop a unified framework in which
sovereign bonds and sovereign and bank CDS quotes can be
calibrated simultaneously (the approach could be also easily
extended to the analysis of bonds issued by banks). The analysis
is conducted by considering the dynamics of the driving factors
under the risk-neutral measure, and it is repeated using either the
Euribor-swap or the Eonia as discount factors.

For each country, we quantify the sovereign-specific credit
risk factor by considering the sovereign bond term structure,
while we explore the behavior of the sovereign CDS-bond basis by
calibrating the spread between sovereign CDS quotes and bond
yields. Then, we examine the dynamics of the short-term specific
risk of banks, disentangling it from the sovereign risk factor that
is common to all domestic banks in one country. We obtain this
by following two different approaches: (1) the first one based
on the sovereign bond yields only; (2) the second one based on
both sovereign bond yields and sovereign CDS quotes. Note that
while the estimated factors may give an idea on the short-term
behavior of both credit and basis risk, the estimated parameter
can be useful to capture the average slope and curvature of
the term structure throughout the sample period. It is worth
mentioning that, even if we assume that the dynamics of the risk
factors are driven by Gaussian processes, the model calibration
performance is satisfactory, although the calibration error varies
across countries and banks.

From a practical perspective, disentangling the dynamics
of a systemic risk factor and a bank-specific risk factor in
the credit spread of banks debt instruments allows to timely
monitor markets implicit assessment of the bank-sovereign
nexus for selected institutions in each country. This is relevant
from a micro-prudential perspective, as provides a more
comprehensive measure of sovereign risk for individual banks
than, for instance, direct exposures. At the same time, from a
macro-prudential perspective, having a country-level instrinsic
measure of the interconnectedness between sovereigns and
their major domestic institutions allows to timely monitor
one of the main risks to financial stability over recent
years.

Future scenarios necessary for a proper assessment of different
risks. Finally, even if we assume that the dynamics of the risk
factors are driven by Gaussian processes, the model calibration
performance is satisfactory. However, the calibration error varies
across countries and banks.
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