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We consider the learning algorithms under general source condition with the polynomial

decay of the eigenvalues of the integral operator in vector-valued function setting. We

discuss the upper convergence rates of Tikhonov regularizer under general source

condition corresponding to increasing monotone index function. The convergence

issues are studied for general regularization schemes by using the concept of operator

monotone index functions in minimax setting. Further we also address the minimum

possible error for any learning algorithm.
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1. INTRODUCTION

Learning theory [1–3] aims to learn the relation between the inputs and outputs based on finite
random samples. We require some underlying space to search the relation function. From the
experiences we have some idea about the underlying space which is called hypothesis space.
Learning algorithms tries to infer the best estimator over the hypothesis space such that f (x) gives
the maximum information of the output variable y for any unseen input x. The given samples
{xi, yi}mi=1 are not exact in the sense that for underlying relation function f (xi) 6= yi but f (xi) ≈ yi.
We assume that the uncertainty follows the probability distribution ρ on the sample space X × Y
and the underlying function (called the regression function) for the probability distribution ρ is
given by

fρ(x) =
∫

Y
ydρ(y|x), x ∈ X,

where ρ(y|x) is the conditional probability measure for given x. The problem of obtaining
estimator from examples is ill-posed. Therefore, we apply the regularization schemes [4–7] to
stabilize the problem. Various regularization schemes are studied for inverse problems. In the
context of learning theory [2, 3, 8–10], the square loss-regularization (Tikhonov regularization)
is widely considered to obtain the regularized estimator [9, 11–16]. Gerfo et al. [6] introduced
general regularization in the learning theory and provided the error bounds under Hölder’s source
condition [5]. Bauer et al. [4] discussed the convergence issues for general regularization under
general source condition [17] by removing the Lipschitz condition on the regularization considered
in Gerfo et al. [6]. Caponnetto and De Vito [12] discussed the square-loss regularization under the
polynomial decay of the eigenvalues of the integral operator LK with Hölder’s source condition. For
the inverse statistical learning problem, Blanchard and Mücke [18] analyzed the convergence rates
for general regularization scheme under Hölder’s source condition in scalar-valued function setting.
Here we are discussing the convergence issues of general regularization schemes under general
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source condition and the polynomial decay of the eigenvalues of
the integral operator in vector-valued framework.We present the
minimax upper convergence rates for Tikhonov regularization
under general source condition �φ,R, for a monotone increasing
index function φ. For general regularization the minimax rates
are obtained using the operator monotone index function φ. The
concept of effective dimension [19, 20] is exploited to achieve
the convergence rates. In the choice of regularization parameters,
the effective dimension plays the important role. We also discuss
the lower convergence rates for any learning algorithm under the
smoothness conditions. We present the results in vector-valued
function setting. Therefore, in particular they can be applied to
multi-task learning problems.

The structure of the paper is as follows. In the second
section, we introduce some basic assumptions and notations for
supervised learning problems. In Section 3, we present the upper
and lower convergence rates under the smoothness conditions in
minimax setting.

2. LEARNING FROM EXAMPLES:

NOTATIONS AND ASSUMPTIONS

In the learning theory framework [2, 3, 8–10], the sample space
Z = X × Y consists of two spaces: The input space X (locally
compact second countable Hausdorff space) and the output space
(Y , 〈·, ·〉Y ) (the real separable Hilbert space). The input space X
and the output space Y are related by some unknown probability
distribution ρ on Z. The probability measure can be split as
ρ(x, y) = ρ(y|x)ρX(x), where ρ(y|x) is the conditional probability
measure of y given x and ρX is the marginal probability measure
on X. The only available information is the random i.i.d. samples
z = ((x1, y1), . . . , (xm, ym)) drawn according to the probability
measure ρ. Given the training set z, learning theory aims to
develop an algorithm which provides an estimator fz : X →
Y such that fz(x) predicts the output variable y for any given
input x. The goodness of the estimator can be measured by the
generalization error of a function f which can be defined as

E(f ): = Eρ(f ) =
∫

Z
V(f (x), y)dρ(x, y), (1)

where V :Y ×Y → R is the loss function. The minimizer of E(f )
for the square loss function V(f (x), y) = ||f (x)− y||2Y is given by

fρ(x): =
∫

Y
ydρ(y|x), (2)

where fρ is called the regression function. The regression function
fρ belongs to the space of square integrable functions provided
that

∫

Z
||y||2Y dρ(x, y) <∞. (3)

We search the minimizer of the generalization error over a
hypothesis space H,

fH: = argmin
f∈H

{∫

Z
||f (x)− y||2Ydρ(x, y)

}
, (4)

where fH is called the target function. In case fρ ∈ H, fH
becomes the regression function fρ .

Because of inaccessibility of the probability distribution ρ, we
minimize the regularized empirical estimate of the generalization
error over the hypothesis space H,

fz,λ: = argmin
f∈H

{
1

m

m∑

i=1

||f (xi)− yi||2Y + λ||f ||2
H

}
, (5)

where λ is the positive regularization parameter. The
regularization schemes [4–7, 10] are used to incorporate various
features in the solution such as boundedness, monotonicity
and smoothness. In order to optimize the vector-valued
regularization functional, one of the main problems is to choose
the appropriate hypothesis space which is assumed to be a source
to provide the estimator.

2.1. Reproducing Kernel Hilbert Space as a

Hypothesis Space
Definition 2.1. (Vector-valued reproducing kernel Hilbert

space) For non-empty set X and the real Hilbert space (Y , 〈·, ·〉Y ),
the Hilbert space (H, 〈·, ·〉H) of functions from X to Y is called
reproducing kernel Hilbert space if for any x ∈ X and y ∈ Y the
linear functional which maps f ∈ H to 〈y, f (x)〉Y is continuous.

By Riesz lemma [21], for every x ∈ X and y ∈ Y there exists a
linear operator Kx : Y → H such that

〈y, f (x)〉Y = 〈Kxy, f 〉H, ∀f ∈ H.

Therefore, the adjoint operator K∗
x : H → Y is given by K∗

x f =
f (x). Through the linear operatorKx :Y → H we define the linear
operator K(x, t) : Y → Y ,

K(x, t)y: = Kty(x).

From Proposition 2.1 [22], the linear operator K(x, t) ∈ L(Y)
(the set of bounded linear operators on Y), K(x, t) = K(t, x)∗

and K(x, x) is non-negative bounded linear operator. For any
m ∈ N, {xi : 1 ≤ i ≤ m} ∈ X, {yi : 1 ≤ i ≤ m} ∈ Y , we

have that
m∑

i,j=1
〈yi,K(xi, xj)yj〉 ≥ 0. The operator valued function

K : X × X → L(Y) is called the kernel.
There is one to one correspondence between the kernels and

reproducing kernel Hilbert spaces [22, 23]. So a reproducing
kernel Hilbert space H corresponding to a kernel K can be
denoted as HK and the norm in the space H can be denoted as
|| · ||HK . In the following article, we suppress K by simply using
H for reproducing kernel Hilbert space and || · ||H for its norm.

Throughout the paper we assume the reproducing kernel
Hilbert space H is separable such that

(i) Kx : Y → H is a Hilbert-Schmidt operator for all x ∈ X and

κ: =
√
sup
x∈X

Tr(K∗
xKx) <∞.

(ii) The real function from X × X to R, defined by (x, t) 7→
〈Ktv,Kxw〉H, is measurable ∀v,w ∈ Y .
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By the representation theorem [22], the solution of the penalized
regularization problem (5) will be of the form:

fz,λ =
m∑

i=1

Kxici, for (c1, . . . , cm) ∈ Ym.

Definition 2.2. let H be a separable Hilbert space and {ek}∞k=1
be an orthonormal basis of H. Then for any positive operator

A ∈ L(H) we define Tr(A) =
∞∑
k=1

〈Aek, ek〉. It is well-known that

the number Tr(A) is independent of the choice of the orthonormal
basis.

Definition 2.3. An operator A ∈ L(H) is called Hilbert-Schmidt
operator if Tr(A∗A) < ∞. The family of all Hilbert-Schmidt
operators is denoted byL2(H). For A ∈ L2(H), we define Tr(A) =
∞∑
k=1

〈Aek, ek〉 for an orthonormal basis {ek}∞k=1
of H.

It is well-known thatL2(H) is the separable Hilbert space with
the inner product,

〈A,B〉L2(H) = Tr(B∗A)

and its norm satisfies

||A||L(H) ≤ ||A||L2(H) ≤ Tr(|A|),

where |A| =
√
A∗A and ||·||L(H) is the operator norm (For more

details see [24]).
For the positive trace class operator KxK

∗
x , we have

||KxK
∗
x ||L(H) ≤ ||KxK

∗
x ||L2(H) ≤ Tr(KxK

∗
x ) ≤ κ2.

Given the ordered set x = (x1, . . . , xm) ∈ Xm, the sampling
operator Sx : H → Ym is defined by Sx(f ) = (f (x1), . . . , f (xm))

and its adjoint S∗x :Ym → H is given by S∗xy = 1
m

m∑
i=1

Kxiyi, ∀ y =

(y1, . . . , ym) ∈ Ym.
The regularization scheme (5) can be expressed as

fz,λ = argmin
f∈H

{
||Sxf − y||2m + λ||f ||2

H

}
, (6)

where ||y||2m = 1
m

m∑
i=1

||yi||2Y .

We obtain the explicit expression of fz,λ by taking the
functional derivative of above expression over RKHS H.

Theorem 2.1. For the positive choice of λ, the functional (6) has
unique minimizer:

fz,λ =
(
S∗xSx + λI

)−1
S∗xy. (7)

Define fλ as the minimizer of the optimization functional,

fλ: = argmin
f∈H

{∫

Z
||f (x)− y||2Ydρ(x, y)+ λ||f ||

2
H

}
. (8)

Using the fact E(f ) = ||L1/2K (f − fH)||2
H

+ E(fH), we get the
expression of fλ,

fλ = (LK + λI)−1LK fH, (9)

where the integral operator LK : L
2
ρX

→ L
2
ρX

is a self-adjoint,
non-negative, compact operator, defined as

LK(f )(x): =
∫

X
K(x, t)f (t)dρX(t), x ∈ X.

The integral operator LK can also be defined as a self-adjoint
operator on H. We use the same notation LK for both the

operators defined on different domains. It is well-known that L
1/2
K

is an isometry from the space of square integrable functions to
reproducing kernel Hilbert space.

In order to achieve the uniform convergence rates for learning
algorithms we need some prior assumptions on the probability
measure ρ. Following the notion of Bauer et al. [4] and
Caponnetto and De Vito [12], we consider the class of probability
measures Pφ which satisfies the assumptions:

(i) For the probability measure ρ on X × Y ,

∫

Z
||y||2Y dρ(x, y) <∞. (10)

(ii) The minimizer of the generalization error fH (4) over the
hypothesis space H exists.

(iii) There exist some constants M,6 such that for almost all
x ∈ X,

∫

Y

(
e||y−fH (x)||Y/M −

||y− fH(x)||Y
M

− 1

)
dρ(y|x) ≤

62

2M2
.

(11)
(iv) The target function fH belongs to the class�φ,R with

�φ,R: =
{
f ∈ H : f = φ(LK)g and ||g||H ≤ R

}
, (12)

where φ is a continuous increasing index function defined
on the interval [0, κ2] with the assumption φ(0) = 0. This
condition is usually referred to as general source condition
[17].

In addition, we consider the set of probability measures
Pφ,b which satisfies the conditions (i), (ii), (iii), (iv) and the
eigenvalues tn’s of the integral operator LK follow the polynomial
decay: For fixed positive constants α,β and b > 1,

αn−b ≤ tn ≤ βn−b ∀n ∈ N. (13)

Under the polynomial decay of the eigenvalues the effective
dimension N (λ), to measure the complexity of RKHS, can be
estimated from Proposition 3 [12] as follows,

N (λ): = Tr
(
(LK + λI)−1LK

)
≤

βb

b− 1
λ−1/b, for b > 1 (14)

and without the polynomial decay condition (13), we have

N (λ) ≤ ||(LK + λI)−1||L(H)Tr (LK) ≤
κ2

λ
.
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We discuss the convergence issues for the learning algorithms
(z → fz ∈ H) in probabilistic sense by exponential tail
inequalities such that

Probz

{
||fz − fρ ||ρ ≤ ε(m) log

(
1

η

)}
≥ 1− η

for all 0 < η ≤ 1 and ε(m) is a positive decreasing function ofm.
Using these probabilistic estimates we can obtain error estimates
in expectation by integration of tail inequalities:

Ez
(
||fz − fρ ||ρ

)
=

∞∫

0

Probz
(
||fz − fρ ||ρ > t

)
dt

≤
∞∫

0

exp

(
−

t

ε(m)

)
dt = ε(m),

where ||f ||ρ = ||f ||
L

2
ρX

= {
∫
X ||f (x)||2YdρX(x)}1/2 and Ez(ξ ) =

∫
Zm ξdρ(z1) . . . dρ(zm).

3. CONVERGENCE ANALYSIS

In this section, we analyze the convergence issues of the
learning algorithms on reproducing kernel Hilbert space under
the smoothness priors in the supervised learning framework.
We discuss the upper and lower convergence rates for vector-
valued estimators in the standardminimax setting. Therefore, the
estimates can be utilized particularly for scalar-valued functions
and multi-task learning algorithms.

3.1. Upper Rates for Tikhonov

Regularization
In General, we consider Tikhonov regularization in learning
theory. Tikhonov regularization is briefly discussed in the
literature [7, 9, 10, 25]. The error estimates for Tikhonov
regularization are discussed theoretically under Hölder’s source
condition [12, 15, 16]. We establish the error estimates for
Tikhonov regularization scheme under general source condition
fH ∈ �φ,R for some continuous increasing index function φ and
the polynomial decay of the eigenvalues of the integral operator
LK .

In order to estimate the error bounds, we consider the
following inequality used in the papers [4, 12] which is based on
the results of Pinelis and Sakhanenko [26].

Proposition 3.1. Let ξ be a random variable on the probability
space (�,B, P) with values in real separable Hilbert space H. If
there exist two constants Q and S satisfying

E
{
||ξ − E(ξ )||n

H

}
≤

1

2
n!S2Qn−2 ∀n ≥ 2, (15)

then for any 0 < η < 1 and for all m ∈ N,

Prob

{
(ω1, . . . ,ωm) ∈ �m

:

∣∣∣∣∣

∣∣∣∣∣
1

m

m∑

i=1

[ξ (ωi)− E(ξ (ωi))]

∣∣∣∣∣

∣∣∣∣∣
H

≤ 2

(
Q

m
+

S
√
m

)
log

(
2

η

)}
≥ 1− η.

In particular, the inequality (15) holds if

||ξ (ω)||H ≤ Q and E(||ξ (ω)||2
H
) ≤ S2.

We estimate the error bounds for the regularized estimators by
measuring the effect of random sampling and the complexity
of fH. The quantities described in Proposition 3.2 express
the probabilistic estimates of the perturbation measure due to
random sampling. The expressions of Proposition 3.3 describe
the complexity of the target function fH which are usually
referred to as the approximation errors. The approximation
errors are independent of the samples z.

Proposition 3.2. Let z be i.i.d. samples drawn according to the
probability measure ρ satisfying the assumptions (10), (11) and

κ =
√
sup
x∈X

Tr(K∗
xKx). Then for all 0 < η < 1, we have

||(LK + λI)−1/2{S∗xy− S∗xSxfH}||H

≤ 2


 κM

m
√
λ
+

√
62N (λ)

m


 log

(
4

η

)
(16)

and

||S∗xSx − LK ||L2(H) ≤ 2

(
κ2

m
+

κ2
√
m

)
log

(
4

η

)
. (17)

with the confidence 1− η.

The proof of the first expression is the content of the step 3.2
of Theorem 4 [12] while the proof of the second expression can
be obtained from Theorem 2 in De Vito et al. [25].

Proposition 3.3. Suppose fH ∈ �φ,R. Then,

(i) Under the assumption that φ(t)
√
t and

√
t/φ(t) are non-

decreasing functions, we have

||fλ − fH||ρ ≤ Rφ(λ)
√
λ. (18)

(ii) Under the assumption that φ(t) and t/φ(t) are non-decreasing
functions, we have

||fλ − fH||ρ ≤ Rκφ(λ) (19)

and

||fλ − fH||H ≤ Rφ(λ). (20)

Under the source condition fH ∈ �φ,R, the proposition can be
proved using the ideas of Theorem 10 [4].

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 March 2017 | Volume 3 | Article 3

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Rastogi and Sampath Optimal Rates for the Regularized Learning Algorithms

Theorem 3.1. Let z be i.i.d. samples drawn according to the
probability measure ρ ∈ Pφ where φ is the index function
satisfying the conditions that φ(t), t/φ(t) are non-decreasing
functions. Then for all 0 < η < 1, with confidence 1 − η, for
the regularized estimator fz,λ (7) the following upper bound holds:

||fz,λ − fH||H ≤ 2



Rφ(λ)+

2κM

mλ
+

√
462N (λ)

mλ



 log

(
4

η

)

provided that

√
mλ ≥ 8κ2 log(4/η). (21)

Proof. The error of regularized solution fz,λ can be estimated in
terms of the sample error and the approximation error as follows:

||fz,λ − fH||H ≤ ||fz,λ − fλ||H + ||fλ − fH||H. (22)

Now fz,λ − fλ can be expressed as

fz,λ − fλ = (S∗xSx + λI)
−1{S∗xy− S∗xSxfλ − λfλ}.

Then fλ = (LK + λI)−1LK fH implies

LK fH = LK fλ + λfλ.

Therefore,

fz,λ − fλ = (S∗xSx + λI)
−1{S∗xy− S∗xSxfλ − LK(fH − fλ)}.

Employing RKHS-norm we get,

||fz,λ − fλ||H ≤ ||(S∗xSx + λI)
−1{S∗xy− S∗xSxfH

+ (S∗xSx − LK)(fH − fλ)}||H (23)

≤ I1I2 + I3||fλ − fH||H/λ,

where I1 = ||(S∗xSx + λI)−1(LK + λI)1/2||L(H), I2 = ||(LK +
λI)−1/2(S∗xy− S∗xSxfH)||H and I3 = ||S∗xSx − LK ||L(H).

The estimates of I2, I3 can be obtained from Proposition 3.2
and the only task is to bound I1. For this we consider

(S∗xSx + λI)
−1(LK + λI)1/2 = {I − (LK + λI)−1(LK − S∗xSx)}

−1

(LK + λI)−1/2

which implies

I1 ≤
∞∑

n=0

||(LK + λI)−1(LK − S∗xSx)||
n
L(H)||(LK + λI)−1/2||L(H)

(24)
provided that ||(LK +λI)−1(LK − S∗xSx)||L(H) < 1. To verify this
condition, we consider

||(LK + λI)−1(S∗xSx − LK)||L(H) ≤ I3/λ.

Now using Proposition 3.2 we get with confidence 1− η/2,

||(LK + λI)−1(S∗xSx − LK)||L(H) ≤
4κ2
√
mλ

log

(
4

η

)
.

From the condition (21) we get with confidence 1− η/2,

||(LK + λI)−1(S∗xSx − LK)||L(H) ≤
1

2
. (25)

Consequently, using (25) in the inequality (24) we obtain with
probability 1− η/2,

I1 = ||(S∗xSx + λI)
−1(LK + λI)1/2||L(H)

≤ 2||(LK + λI)−1/2||L(H) ≤
2
√
λ
. (26)

From Proposition 3.2 we have with confidence 1− η/2,

||S∗xSx − LK ||L(H) ≤ 2

(
κ2

m
+

κ2
√
m

)
log

(
4

η

)
.

Again from the condition (21) we get with probability 1− η/2,

I3 = ||S∗xSx − LK ||L(H) ≤
λ

2
. (27)

Therefore, the inequality (23) together with (16), (20), (26), (27)
provides the desired bound.

The following theorem discuss the error estimates in L
2-

norm. The proof is similar to the above theorem.

Theorem 3.2. Let z be i.i.d. samples drawn according to the
probability measure ρ ∈ Pφ and fz,λ is the regularized solution (7)
corresponding to Tikhonov regularization. Then for all 0 < η < 1,
with confidence 1− η, the following upper bounds holds:

(i) Under the assumption that φ(t),
√
t/φ(t) are non-decreasing

functions,

||fz,λ − fH||ρ ≤ 2



Rφ(λ)

√
λ+

2κM

m
√
λ
+

√
462N (λ)

m





log

(
4

η

)

(ii) Under the assumption that φ(t), t/φ(t) are non-decreasing
functions,

||fz,λ − fH||ρ ≤



R(κ +

√
λ)φ(λ)+

4κM

m
√
λ
+

√
1662N (λ)

m





log

(
4

η

)

provided that

√
mλ ≥ 8κ2 log(4/η). (28)

We derive the convergence rates of Tikhonov regularizer based
on data-driven strategy of the parameter choice of λ for the class
of probability measure Pφ,b.

Theorem 3.3. Under the same assumptions of Theorem 3.2 and
hypothesis (13), the convergence of the estimator fz,λ (7) to the
target function fH can be described as:
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(i) If φ(t) and
√
t/φ(t) are non-decreasing functions. Then under

the parameter choice λ ∈ (0, 1], λ = 9−1(m−1/2) where

9(t) = t
1
2+

1
2b φ(t), we have

Probz

{
||fz,λ − fH||ρ ≤ C(9−1(m−1/2))1/2φ

(9−1(m−1/2)) log
(
4
η

)
}
≥ 1− η

and

lim
τ→∞

lim sup
m→∞

sup
ρ∈Pφ,b

Probz
{
||fz,λ − fH||ρ

> τ (9−1(m−1/2))1/2φ(9−1(m−1/2))
}
= 0,

(ii) If φ(t) and t/φ(t) are non-decreasing functions. Then under
the parameter choice λ ∈ (0, 1], λ = 2−1(m−1/2) where

2(t) = t
1
2b φ(t), we have

Probz

{
||fz,λ − fH||ρ ≤ C′φ(2−1(m−1/2)) log

(
4

η

)}
≥ 1−η

and

lim
τ→∞

lim sup
m→∞

sup
ρ∈Pφ,b

Probz
{
||fz,λ − fH||ρ

> τφ(2−1(m−1/2))
}
= 0.

Proof. (i) Let9(t) = t
1
2+

1
2b φ(t). Then it follows,

lim
t→0

9(t)
√
t

= lim
t→0

t2

9−1(t)
= 0.

Under the parameter choice λ = 9−1(m−1/2) we have,

lim
m→∞

mλ = ∞.

Therefore, for sufficiently largem,

1

mλ
=
λ

1
2b φ(λ)
√
mλ

≤ λ
1
2b φ(λ).

Under the fact λ ≤ 1 from Theorem 3.2 and Equation (14)
follows that with confidence 1− η,

||fz,λ − fH||ρ ≤ C(9−1(m−1/2))1/2φ(9−1(m−1/2)) log

(
4

η

)
,

(29)
where C = 2R+ 4κM + 4

√
βb62/(b− 1).

Now defining τ : = C log
(
4
η

)
gives

η = ητ = 4e−τ/C.

The estimate (29) can be reexpressed as

Probz{||fz,λ − fH||ρ > τ (9−1(m−1/2))1/2φ(9−1(m−1/2))} ≤ ητ .
(30)

(ii) Suppose2(t) = t
1
2b φ(t). Then the condition (28) follows that

√
mλ ≥

8κ2 log (4/η)
√
λ

≥
8κ2
√
λ
.

Hence under the parameter choice λ ∈ (0, 1], λ = 2−1(m−1/2)
we have

1

m
√
λ
≤

√
λ

8κ2
√
m

≤
λ

1
2+

1
2b φ(λ)

8κ2
≤
φ(λ)

8κ2
.

From Theorem 3.2 and Equation (14), it follows that with
confidence 1− η,

||fz,λ − fH||ρ ≤ C′φ(2−1(m−1/2)) log

(
4

η

)
, (31)

where C′
: = R(κ + 1)+M/2κ + 4

√
βb62/(b− 1).

Now defining τ : = C′ log
(
4
η

)
gives

η = ητ = 4e−τ/C
′
.

The estimate (31) can be reexpressed as

Probz
{
||fz,λ − fH||ρ > τφ(2−1(m−1/2))

}
≤ ητ . (32)

Then from Equations (30) and (32) our conclusions follow.

Theorem 3.4. Under the same assumptions of Theorem 3.1 and
hypothesis (13) with the parameter choice λ ∈ (0, 1], λ =
9−1(m−1/2) where 9(t) = t

1
2+

1
2b φ(t), the convergence of the

estimator fz,λ (7) to the target function fH can be described as

Probz

{
||fz,λ − fH||H ≤ Cφ(9−1(m−1/2)) log

(
4

η

)}
≥ 1− η

and

lim
τ→∞

lim sup
m→∞

sup
ρ∈Pφ,b

Probz
{
||fz,λ − fH||H > τφ(9−1(m−1/2))

}

= 0.

The proof of the theorem follows the same steps as of Theorem
3.3 (i). We obtain the following corollary as a consequence of
Theorem 3.3, 3.4.

Corollary 3.1. Under the same assumptions of Theorem 3.3, 3.4
for Tikhonov regularization with Hölder’s source condition fH ∈
�φ,R, φ(t) = tr , for all 0 < η < 1, with confidence 1 − η, for the

parameter choice λ = m− b
2br+b+1 , we have

||fz,λ − fH||H ≤ Cm− br
2br+b+1 log

(
4

η

)
for 0 ≤ r ≤ 1,

||fz,λ − fH||ρ ≤ Cm− 2br+b
4br+2b+2 log

(
4

η

)
for 0 ≤ r ≤

1

2

and for the parameter choice λ = m− b
2br+1 , we have

||fz,λ − fH||ρ ≤ C′m− br
2br+1 log

(
4

η

)
for 0 ≤ r ≤ 1.
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3.2. Upper Rates for General

Regularization Schemes
Bauer et al. [4] discussed the error estimates for general
regularization schemes under general source condition. Here
we study the convergence issues for general regularization
schemes under general source condition and the polynomial
decay of the eigenvalues of the integral operator LK . We define
the regularization in learning theory framework similar to
considered for ill-posed inverse problems (See Section 3.1 [4]).

Definition 3.1. A family of functions gλ : [0, κ2] → R, 0 <

λ ≤ κ2, is said to be the regularization if it satisfies the following
conditions:

• ∃D : sup
σ∈(0,κ2]

|σ gλ(σ )| ≤ D.

• ∃B : sup
σ∈(0,κ2]

|gλ(σ )| ≤ B
λ
.

• ∃γ : sup
σ∈(0,κ2]

|1− gλ(σ )σ | ≤ γ .

• The maximal p satisfying the condition:

sup
σ∈(0,κ2]

|1− gλ(σ )σ |σ p ≤ γpλ
p

is called the qualification of the regularization gλ, where γp does
not depend on λ.

The properties of general regularization are satisfied by the
large class of learning algorithms which are essentially all the
linear regularization schemes. We refer to Section 2.2 [10]
for brief discussion of the regularization schemes. Here we
consider general regularized solution corresponding to the above
regularization:

fz,λ = gλ(S
∗
xSx)S

∗
xy. (33)

Here we are discussing the connection between the qualification
of the regularization and general source condition [17].

Definition 3.2. The qualification p covers the index function φ if

the function t → tp

φ(t)
on t ∈ (0, κ2] is non-decreasing.

The following result is a restatement of Proposition 3 [17].

Proposition 3.4. Suppose φ is a non-decreasing index function
and the qualification of the regularization gλ covers φ. Then

sup
σ∈(0,κ2]

|1− gλ(σ )σ |φ(σ ) ≤ cgφ(λ), cg = max(γ , γp).

Generally, the index function φ is not stable with respect to
perturbation in the integral operator LK . In practice, we are only
accessible to the perturbed empirical operator S∗xSx but the source
condition can be expressed in terms of LK only. So we want
to control the difference φ(LK) − φ(S∗xSx). In order to obtain
the error estimates for general regularization, we further restrict
the index functions to operator monotone functions which is
defined as

Definition 3.3. A function φ1 : [0, d] → [0,∞) is said to be
operator monotone index function if φ1(0) = 0 and for every non-
negative pair of self-adjoint operators A,B such that ||A||, ||B|| ≤ d
and A ≤ B we have φ1(A) ≤ φ1(B).

We consider the class of operator monotone index functions:

Fµ = {φ1 : [0, κ2] → [0,∞) operator monotone,

φ1(0) = 0,φ1(κ
2) ≤ µ}.

For the above class of operator monotone functions from
Theorem 1 [4], given φ1 ∈ Fµ there exists cφ1 such that

||φ1(S∗xSx)− φ1(LK)||L(H) ≤ cφ1φ1(||S∗xSx − LK ||L(H)).

Here we observe that the rate of convergence of φ1(S
∗
xSx) to

φ1(LK) is slower than the convergence rate of S∗xSx to LK .
Therefore, we consider the following class of index functions:

F = {φ = φ2φ1 : φ1 ∈ Fµ,φ2 : [0, κ2]

→ [0,∞) non-decreasing Lipschitz,φ2(0) = 0}.

The splitting of φ = φ2φ1 is not unique. So we can take φ2
as a Lipschitz function with Lipschitz constant 1. Now using
Corollary 1.2.2 [27] we get

||φ2(S∗xSx)− φ2(LK)||L2(H) ≤ ||S∗xSx − LK ||L2(H).

General source condition fH ∈ �φ,R corresponding to index
class functions F covers wide range of source conditions as
Hölder’s source condition φ(t) = tr , logarithm source condition
φ(t) = tp log−ν

(
1
t

)
. Following the analysis of Bauer et al. [4] we

develop the error estimates of general regularization for the index
class function F under the suitable priors on the probability
measure ρ.

Theorem 3.5. Let z be i.i.d. samples drawn according to the
probability measure ρ ∈ Pφ . Suppose fz,λ is the regularized
solution (33) corresponding to general regularization and the
qualification of the regularization covers φ. Then for all 0 < η < 1,
with confidence 1− η, the following upper bound holds:

||fz,λ − fH||H ≤





Rcg(1+ cφ1 )φ(λ)+
4Rµγκ2√

m
+ 2

√
2ν1κM
mλ

+
√

8ν216
2N (λ)
mλ





log

(
4

η

)

provided that

√
mλ ≥ 8κ2 log(4/η). (34)

Proof. We consider the error expression for general regularized
solution (33),

fz,λ − fH = gλ(S
∗
xSx)(S

∗
xy− S∗xSxfH)− rλ(S

∗
xSx)fH, (35)

where rλ(σ ) = 1− gλ(σ )σ .
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Now the first term can be expressed as

gλ(S
∗
xSx)(S

∗
xy− S∗xSxfH) = gλ(S

∗
xSx)(S

∗
xSx + λI)

1/2

(S∗xSx + λI)
−1/2(LK + λI)1/2

(LK + λI)−1/2(S∗xy− S∗xSxfH).

On applying RKHS-norm we get,

||gλ(S∗xSx)(S
∗
xy− S∗xSxfH)||H ≤ I2I5||gλ(S∗xSx)

(S∗xSx + λI)
1/2||L(H), (36)

where I2 = ||(LK+λI)−1/2(S∗xy−S∗xSxfH)||H and I5 = ||(S∗xSx+
λI)−1/2(LK + λI)1/2||L(H).

The estimate of I2 can be obtained from the first estimate of
Proposition 3.2 and from the second estimate of Proposition 3.2
with the condition (34) we obtain with probability 1− η/2,

||(LK + λI)−1/2(LK − S∗xSx)(LK + λI)−1/2||L(H)

≤
1

λ
||S∗xSx − LK ||L(H) ≤

4κ2
√
mλ

log

(
4

η

)
≤

1

2
.

which implies that with confidence 1− η/2,

I5 = ||(S∗xSx + λI)
−1/2(LK + λI)1/2||L(H)

= ||(LK + λI)1/2(S∗xSx + λI)
−1(LK + λI)1/2||1/2

L(H)

= ||{I − (LK + λI)−1/2(LK − S∗xSx)

(LK + λI)−1/2}−1||1/2
L(H)

≤
√
2. (37)

From the properties of the regularization we have,

||gλ(S∗xSx)(S
∗
xSx)

1/2||L(H) ≤ sup
0<σ≤κ2

|gλ(σ )
√
σ |

=

(
sup

0<σ≤κ2
|gλ(σ )σ | sup

0<σ≤κ2
|gλ(σ )|

)1/2

≤
√
BD

λ
. (38)

Hence it follows,

||gλ(S∗xSx)(S
∗
xSx + λI)

1/2||L(H) ≤ sup
0<σ≤κ2

|gλ(σ )(σ + λ)1/2|

≤ sup
0<σ≤κ2

|gλ(σ )
√
σ | +

√
λ sup
0<σ≤κ2

|gλ(σ )| ≤
ν1√
λ
, (39)

where ν1: = B+
√
BD.

Therefore, using (16), (37) and (39) in Equation (36) we
conclude that with probability 1− η,

||gλ(S∗xSx)(S
∗
xy− S∗xSxfH)||H ≤ 2

√
2ν1




κM

mλ
+

√
62N (λ)

mλ





log

(
4

η

)
. (40)

Now we consider the second term,

rλ(S
∗
xSx)fH = rλ(S

∗
xSx)φ(LK)v = rλ(S

∗
xSx)φ(S

∗
xSx)v

+rλ(S
∗
xSx)φ2(S

∗
xSx)(φ1(LK)− φ1(S

∗
xSx))v

+rλ(S
∗
xSx)(φ2(LK)− φ2(S

∗
xSx))φ1(LK)v.

Employing RKHS-norm we get

||rλ(S∗xSx)fH||H ≤ Rcgφ(λ)+ Rcgcφ1φ2(λ)φ1

(||LK − S∗xSx||L(H))+ Rµγ ||LK − S∗xSx||L2(H).

Here we used the fact that if the qualification of the regularization
covers φ = φ1φ2, then the qualification also covers φ1 and φ2
both separately.

From Equations (17) and (34) we have with probability 1 −
η/2,

||S∗xSx − LK ||L(H) ≤
4κ2
√
m

log

(
4

η

)
≤ λ/2. (41)

Therefore, with probability 1− η/2,

||rλ(S∗xSx)fH||H ≤ Rcg(1+ cφ1 )φ(λ)+
4Rµγκ2
√
m

log

(
4

η

)
. (42)

Combining the bounds (40) and (42) we get the desired
result.

Theorem 3.6. Let z be i.i.d. samples drawn according to the
probability measure ρ ∈ Pφ and fz,λ is the regularized solution
(33) corresponding to general regularization. Then for all 0 < η <

1, with confidence 1− η, the following upper bounds holds:

(i) If the qualification of the regularization covers φ,

||fz,λ − fH||ρ ≤





Rcg(1+ cφ1 )(κ +
√
λ)φ(λ)

+ 4Rµγκ2(κ+
√
λ)√

m
+ 2

√
2ν2κM

m
√
λ

+
√

8ν226
2N (λ)
m




log

(
4

η

)
,

(ii) If the qualification of the regularization covers φ(t)
√
t,

||fz,λ − fH||ρ ≤





2Rcg(1+ cφ1 )φ(λ)
√
λ+ 4Rµ(γ+cg )κ

2
√
λ√

m

+ 2
√
2ν2κM

m
√
λ

+
√

8ν226
2N (λ)
m





log

(
4

η

)

provided that

√
mλ ≥ 8κ2 log(4/η). (43)

Proof. Here we establish L
2-norm estimate for the error

expression:

fz,λ − fH = gλ(S
∗
xSx)(S

∗
xy− S∗xSxfH)− rλ(S

∗
xSx)fH.
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On applying L
2-norm in the first term we get,

||gλ(S∗xSx)(S
∗
xy− S∗xSxfH)||ρ ≤ I2I5||L1/2K gλ(S

∗
xSx)

(S∗xSx + λI)
1/2||L(H), (44)

where I2 = ||(LK+λI)−1/2(S∗xy−S∗xSxfH)||H and I5 = ||(S∗xSx+
λI)−1/2(LK + λI)1/2||L(H).

The estimates of I2 and I5 can be obtained from Proposition
3.2 and Theorem 3.5 respectively. Now we consider

||L1/2K gλ(S
∗
xSx)(S

∗
xSx + λI)1/2||L(H) ≤ ||L1/2K

−(S∗xSx)
1/2||L(H)||gλ(S∗xSx)(S

∗
xSx + λI)

1/2

||L(H) + ||(S∗xSx)
1/2gλ(S

∗
xSx)

(S∗xSx + λI)
1/2||L(H).

Since φ(t) =
√
t is operator monotone function. Therefore, from

Equation (41) with probability 1− η/2, we get

||L1/2K − (S∗xSx)
1/2||L(H) ≤ (||LK − S∗xSx||L(H))

1/2 ≤
√
λ.

Then using the properties of the regularization and Equation (38)
we conclude that with probability 1− η/2,

|| L
1/2
K gλ(S

∗
xSx)(S

∗
xSx + λI)

1/2||L(H)

≤
√
λ sup
0<σ≤κ2

|gλ(σ )(σ + λ)1/2| + sup
0<σ≤κ2

|gλ(σ )(σ 2 + λσ )1/2|

≤ sup
0<σ≤κ2

|gλ(σ )σ | + λ sup
0<σ≤κ2

|gλ(σ )| + 2
√
λ sup
0<σ≤κ2

|gλ(σ )
√
σ |

≤ B+ D+ 2
√
BD = ν2(let). (45)

From Equations (44) with Equations (16), (37), and (45) we
obtain with probability 1− η,

||gλ(S∗xSx)(S
∗
xy− S∗xSxfH)||ρ ≤ 2

√
2ν2




κM

m
√
λ
+

√
62N (λ)

m





log

(
4

η

)
. (46)

The second term can be expressed as

|| rλ(S
∗
xSx)fH||ρ ≤ ||L1/2K − (S∗xSx)

1/2||L(H)||rλ(S∗xSx)fH||H
+||(S∗xSx)

1/2rλ(S
∗
xSx)fH||H

≤ ||LK − S∗xSx||
1/2
L(H)

||rλ(S∗xSx)fH||H
+||rλ(S∗xSx)(S

∗
xSx)

1/2φ(S∗xSx)v||H
+||rλ(S∗xSx)(S

∗
xSx)

1/2φ2(S
∗
xSx)(φ1(S

∗
xSx)− φ1(LK))v||H

+||rλ(S∗xSx)(S
∗
xSx)

1/2(φ2(S
∗
xSx)− φ2(LK))φ1(LK)v||H.

Here two cases arises:

Case 1. If the qualification of the regularization covers φ.
Then we get with confidence 1− η/2,

||rλ(S∗xSx)fH||ρ ≤ (κ +
√
λ)
(
Rcg(1+ cφ1 )φ(λ)

+Rµγ ||S∗xSx − LK ||L2(H)

)
.

Therefore, using Equation (17) we obtain with probability
1− η/2,

||rλ(S∗xSx)fH||ρ ≤ (κ +
√
λ)

(
Rcg(1+ cφ1 )φ(λ)+

4Rµγκ2
√
m

log

(
4

η

))
. (47)

Case 2. If the qualification of the regularization covers φ(t)
√
t,

we get with probability 1− η/2,

||rλ(S∗xSx)fH||ρ ≤ 2Rcg(1+ cφ1 )φ(λ)
√
λ

+4Rµ(γ + cg)κ
2

√
λ

m
log

(
4

η

)
. (48)

Combining the error estimates (46), (47) and (48) we get the
desired results.

We discuss the convergence rates of general regularizer based
on data-driven strategy of the parameter choice of λ for the class
of probability measure Pφ,b. The proof of Theorem 3.7, 3.8 are
similar to Theorem 3.3.

Theorem 3.7. Under the same assumptions of Theorem 3.5 and
hypothesis (13) with the parameter choice λ ∈ (0, 1], λ =
9−1(m−1/2) where 9(t) = t

1
2+

1
2b φ(t), the convergence of the

estimator fz,λ (33) to the target function fH can be described as

Probz

{
||fz,λ − fH||H ≤ C̃φ(9−1(m−1/2)) log

(
4

η

)}
≥ 1− η,

where C̃ = Rcg(1 + cφ1 ) + 4Rµγκ2 + 2
√
2ν1κM +√

8βbν216
2/(b− 1) and

lim
τ→∞

lim sup
m→∞

sup
ρ∈Pφ,b

Probz
{
||fz,λ − fH||H > τφ(9−1(m−1/2))

}

= 0.

Theorem 3.8. Under the same assumptions of Theorem 3.6 and
hypothesis (13), the convergence of the estimator fz,λ (33) to the
target function fH can be described as

(i) If the qualification of the regularization covers φ. Then under
the parameter choice λ ∈ (0, 1], λ = 2−1(m−1/2) where

2(t) = t
1
2b φ(t), we have

Probz

{
||fz,λ − fH||ρ ≤ C̃1φ(2

−1(m−1/2)) log

(
4

η

)}
≥1−η,

where C̃1 = Rcg(1 + cφ1 )(κ + 1) + 4Rµγκ2(κ + 1) +

ν2M/2
√
2κ +

√
8βbν226

2/(b− 1) and

lim
τ→∞

lim sup
m→∞

sup
ρ∈Pφ,b

Probz
{
||fz,λ − fH||ρ > τφ(2−1(m−1/2))

}

= 0,
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(ii) If the qualification of the regularization covers φ(t)
√
t. Then

under the parameter choice λ ∈ (0, 1], λ = 9−1(m−1/2)

where9(t) = t
1
2+

1
2b φ(t), we have

Probz
{
||fz,λ − fH||ρ ≤ C̃2(9

−1(m−1/2))1/2φ(9−1(m−1/2))

log

(
4

η

)}
≥ 1− η,

where C̃2 = 2Rcg(1+ cφ1 )+ 4Rµ(γ + cg)κ
2 + 2

√
2ν2κM +√

8βbν226
2/(b− 1) and

lim
τ→∞

lim sup
m→∞

sup
ρ∈Pφ,b

Probz
{
||fz,λ − fH||ρ

> τ (9−1(m−1/2))1/2φ(9−1(m−1/2))
}
= 0.

We obtain the following corollary as a consequence of Theorem
3.7, 3.8.

Corollary 3.2. Under the same assumptions of Theorem 3.7, 3.8
for general regularization of the qualification p withHölder’s source
condition fH ∈ �φ,R, φ(t) = tr , for all 0 < η < 1, with confidence

1− η, for the parameter choice λ = m− b
2br+b+1 , we have

||fz,λ − fH||H ≤ C̃m− br
2br+b+1 log

(
4

η

)
for 0 ≤ r ≤ p,

||fz,λ − fH||ρ ≤ C̃2m
− 2br+b

4br+2b+2 log

(
4

η

)
for 0 ≤ r ≤ p−

1

2

and for the parameter choice λ = m− b
2br+1 , we have

||fz,λ − fH||ρ ≤ C̃1m
− br

2br+1 log

(
4

η

)
for 0 ≤ r ≤ p.

Remark 3.1. It is important to observe from Corollary 3.1, 3.2
that using the concept of operator monotonicity of index function
we are able to achieve the same error estimates for general
regularization as of Tikhonov regularization up to a constant
multiple.

Remark 3.2. (Related work) Corollary 3.1 provides the order of
convergence same as of Theorem 1 [12] for Tikhonov regularization
under the Hölder’s source condition fH ∈ �φ,R for φ(t) =
tr

(
1
2 ≤ r ≤ 1

)
and the polynomial decay of the eigenvalues

(13). Blanchard and Mücke [18] addressed the convergence rates
for inverse statistical learning problem for general regularization
under the Hölder’s source condition with the assumption fρ ∈ H.
In particular, the upper convergence rates discussed in Blanchard

and Mücke [18] agree with Corollary 3.2 for considered learning
problem which is referred as direct learning problem in Blanchard

and Mücke[18]. Under the factN (λ) ≤ κ2

λ
from Theorem 3.5, 3.6

we obtain the similar estimates as of Theorem 10 [4] for general
regularization schemes without the polynomial decay condition of
the eigenvalues (13).

Remark 3.3. For the real valued functions and multi-task
algorithms (the output space Y ⊂ R

m for some m ∈ N) we
can obtain the error estimates from our analysis without imposing
any condition on the conditional probability measure (11) for the
bounded output space Y.

Remark 3.4. We can address the convergence issues of binary
classification problem [28] using our error estimates as similar to
discussed in Section 3.3 [4] and Section 5 [16].

3.3. Lower Rates for General Learning

Algorithms
In this section, we discuss the estimates of minimum possible
error over a subclass of the probability measures Pφ,b

parameterized by suitable functions f ∈ H. Throughout this
section we assume that Y is finite-dimensional.

Let {vj}dj=1 be a basis of Y and f ∈ �φ,R. Then we parameterize

the probability measure based on the function f ,

ρf (x, y): =
1

2dL

d∑

j=1

(
aj(x)δy+dLvj + bj(x)δy−dLvj

)
ν(x), (49)

where aj(x) = L − 〈f ,Kxvj〉H, bj(x) = L + 〈f ,Kxvj〉H, L =
4κφ(κ2)R and δξ denotes the Dirac measure with unit mass at
ξ . It is easy to observe that the marginal distribution of ρf over X
is ν and the regression function for the probability measure ρf is
f (see Proposition 4 [12]). In addition to this, for the conditional
probability measure ρf (y|x) we have,

∫

Y

(
e||y−f (x)||Y/M −

||y− f (x)||Y
M

− 1

)
dρf (y|x)

≤
(
d2L2 − ||f (x)||2Y

) ∞∑

i=2

(dL+ ||f (x)||Y )i−2

Mii!
≤

62

2M2

provided that

dL+ L/4 ≤ M and
√
2dL ≤ 6.

We assume that the eigenvalues of the integral operator LK
follow the polynomial decay (13) for the marginal probability
measure ν. Then we conclude that the probability measure ρf
parameterized by f belongs to the class Pφ,b.

The concept of information theory such as the Kullback-
Leibler information and Fano inequalities (Lemma 3.3 [29])
are the main ingredients in the analysis of lower bounds. In
the literature [12, 29], the closeness of probability measures
is described through Kullback-Leibler information: Given two
probability measures ρ1 and ρ2, it is defined as

K(ρ1, ρ2): =
∫

Z
log(g(z))dρ1(z),

where g is the density of ρ1 with respect to ρ2, that is, ρ1(E) =∫
E g(z)dρ2(z) for all measurable sets E.
Following the analysis of Caponnetto and De Vito [12] and

DeVore et al. [29] we establish the lower rates of accuracy that
can be attained by any learning algorithm.
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To estimate the lower rates of learning algorithms, we generate
Nε-functions belonging to �φ,R for given ε > 0 such that (53),
(54) holds. Then we construct the probability measures ρi ∈ Pφ,b

from Equation (49), parameterized by these functions fi’s (1 ≤
i ≤ Nε). On applying Lemma 3.3 [29], we obtain the lower
convergence rates using Kullback-Leibler information.

Theorem 3.9. Let z be i.i.d. samples drawn according to the
probability measure ρ ∈ Pφ,b under the hypothesis dim(Y) = d <
∞. Then for any learning algorithm (z → fz ∈ H) there exists
a probability measure ρ∗ ∈ Pφ,b and fρ∗ ∈ H such that for all
0 < ε < εo, fz can be approximated as

Probz
{
||fz − fρ∗ ||H > ε/2

}
≥ min





1

1+ e−ℓε/24
,ϑe

(
ℓε
48−

cmε2

ℓbε

)



where ϑ = e−3/e, c = 64β
15(b−1)dL2

(
1− 1

2b−1

)
and ℓε =

⌊
1
2

(
α

φ−1(ε/R)

)1/b⌋
.

Proof. For given ε > 0, we define

g =
2ℓ∑

n=ℓ+1

εσ n−ℓen√
ℓφ(tn)

,

where σ = (σ 1, . . . , σ ℓ) ∈ {−1,+1}ℓ, tn’s are the eigenvalues of
the integral operator LK , en’s are the eigenvectors of the integral
operator LK and the orthonormal basis of RKHS H. Under the
decay condition on the eigenvalues α ≤ nbtn, we get

||g||2
H

=
2ℓ∑

n=ℓ+1

ε2

ℓφ2(tn)
≤

2ℓ∑

n=ℓ+1

ε2

ℓφ2
(
α

nb

) ≤
ε2

φ2
(

α

2bℓb

) .

Hence f = φ(LK)g ∈ �φ,R provided that ||g||H ≤ R or
equivalently,

ℓ ≤
1

2

(
α

φ−1(ε/R)

)1/b

. (50)

For ℓ = ℓε =
⌊
1
2

(
α

φ−1(ε/R)

)1/b⌋
, choose εo such that ℓεo > 16.

Then according to Proposition 6 [12], for every positive ε <

εo (ℓε > ℓεo ) there exists Nε ∈ N and σ1, . . . , σNε ∈ {−1,+1}ℓε
such that

ℓε∑

n=1

(σ n
i − σ n

j )
2 ≥ ℓε , for all 1 ≤ i, j ≤ Nε , i 6= j (51)

and

Nε ≥ eℓε/24. (52)

Now we suppose fi = φ(LK)gi and for ε > 0,

gi =
2ℓε∑

n=ℓε+1

εσ
n−ℓε
i en√
ℓεφ(tn)

, for i = 1, . . . ,Nε ,

where σi = (σ 1
i , . . . , σ

ℓε
i ) ∈ {−1,+1}ℓε . Then from Equation

(51) we get,

ε ≤ ||fi − fj||H, for all 1 ≤ i, j ≤ Nε , i 6= j. (53)

For 1 ≤ i, j ≤ Nε , we have

||fi − fj||2
L

2
ν (X)

≤
2ℓε∑

n=ℓε+1

βε2
(
σ
n−ℓε
i − σ n−ℓε

j

)2

ℓεnb
≤

2ℓε∑

n=ℓε+1

4βε2

ℓεnb

≤
4βε2

ℓε

∫ 2ℓε

ℓε

1

xb
dx = c′

ε2

ℓbε
, (54)

where c′ = 4β
(b−1)

(
1− 1

2b−1

)
.

We define the sets,

Ai =
{
z : ||fz − fi||H <

ε

2

}
, for 1 ≤ i ≤ Nε .

It is clear from Equation (53) that Ai’s are disjoint sets. On
applying Lemma 3.3 [29] with probability measures ρm

fi
, 1 ≤ i ≤

Nε , we obtain that either

p: = max
1≤i≤Nε

ρmfi
(Ac

i ) ≥
Nε

Nε + 1
(55)

or

min
1≤j≤Nε

1

Nε

Nε∑

i=1,i6=j

K(ρmfi , ρ
m
fj
) ≥ 9Nε (p), (56)

where 9Nε (p) = log(Nε) + (1 − p) log
(
1−p
p

)
− p log

(
Nε−p
p

)
.

Further,

9Nε (p) ≥ (1− p) log(Nε)+ (1− p) log(1− p)− log(p)

+2p log(p) ≥ − log(p)+ log(
√
Nε)− 3/e. (57)

Since minimum value of x log(x) is−1/e on [0, 1].
For the joint probability measures ρm

fi
, ρm

fj
(ρfi , ρfj ∈ Pφ,b, 1 ≤

i, j ≤ Nε) from Proposition 4 [12] and the Equation (54) we get,

K(ρmfi , ρ
m
fj
) = mK(ρfi , ρfj ) ≤

16m

15dL2
||fi − fj||2

L
2
ν (X)

≤
cmε2

ℓbε
,

(58)
where c = 16c′/15dL2.

Therefore, Equations (55), (56), together with Equations (57)
and (58) implies

p: = max
1≤i≤Nε

(
Prob

{
z : ||fz − fi||H >

ε

2

})

≥ min

{
Nε

Nε + 1
,
√
Nεe

− 3
e−

cmε2

ℓbε

}
.

From Equation (52) for the probability measure ρ∗ such that
p = ρm∗ (A

c
i ) follows the result.
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The lower estimates in L
2-norm can be obtained similar to

above theorem.

Theorem 3.10. Let z be i.i.d. samples drawn according to the
probability measure ρ ∈ Pφ,b under the hypothesis dim(Y) = d <
∞. Then for any learning algorithm (z → fz ∈ H) there exists
a probability measure ρ∗ ∈ Pφ,b and fρ∗ ∈ H such that for all
0 < ε < εo, fz can be approximated as

Probz

{
||fz − fρ∗ ||L2

ν (X)
> ε/2

}

≥ min

{
1

1+ e−ℓε/24
,ϑe

(
ℓε
48−

64mε2

15dL2

)}

where ϑ = e−3/e, ℓε =
⌊(

α
ψ−1(ε/R)

)1/b⌋
and ψ(t) =

√
tφ(t).

Theorem 3.11. Under the same assumptions of Theorem 3.10

for ψ(t) = t1/2φ(t) and 9(t) = t
1
2+

1
2b φ(t), the estimator fz

corresponding to any learning algorithm converges to the regression
function fρ with the following lower rate:

lim
τ→0

lim inf
m→∞

inf
l∈A

sup
ρ∈Pφ,b

Probz

{
||f lz − fρ ||L2

ν (X)
> τψ

(
9−1(m−1/2)

)}
= 1,

whereA denotes the set of all learning algorithms l : z → f lz.

Proof. Under the condition ℓε =
⌊(

α
ψ−1(ε/R)

)1/b⌋
from

Theorem 3.10 we get,

Probz

{
||fz − fρ∗ ||L2

ν (X)
> ε

2

}

≥ min





1
1+e−ℓε/24

,ϑe−
1
48 e

{
1
48

(
α

ψ−1(ε/R)

)1/b
− 64mε2

15dL2

}

 .

Choosing εm = τRψ(9−1(m−1/2)), we obtain

Probz

{
||fz − fρ∗ ||L2

ν (X)
> τ

R

2
ψ(9−1(m−1/2))

}

≥ min

{
1

1+ e−ℓε/24
,ϑe−

1
48 ec(9

−1(m−1/2))−1/b
}
,

where c =
(
α1/b

48 − 64R2τ 2

15dL2

)
> 0 for 0 < τ < min

(√
5dLα

1
2b

32R , 1

)
.

Now as m goes to ∞, ε → 0 and ℓε → ∞. Therefore, for
c > 0 we conclude that

lim inf
m→∞

inf
l∈A

sup
ρ∈Pφ,b

Probz

{
||f lz − fρ ||L2

ν (X)
> τ

R

2
ψ(9−1(m−1/2))

}

= 1.

Choosing εm = τRφ(9−1(m−1/2)) we get the following
convergence rate from Theorem 3.9.

Theorem 3.12. Under the same assumptions of Theorem 3.9 for

9(t) = t
1
2+

1
2b φ(t), the estimator fz corresponding to any learning

algorithm converges to the regression function fρ with the following
lower rate:

lim
τ→0

lim inf
m→∞

inf
l∈A

sup
ρ∈Pφ,b

Probz

{
||f lz − fρ ||H > τφ

(
9−1(m−1/2)

)}

= 1.

We obtain the following corollary as a consequence of
Theorem 3.11, 3.12.

Corollary 3.3. For any learning algorithm under Hölder’s source
condition fρ ∈ �φ,R, φ(t) = tr and the polynomial decay
condition (13) for b > 1, the lower convergence rates can be
described as

lim
τ→0

lim inf
m→∞

inf
l∈A

sup
ρ∈Pφ,b

Probz

{
||f lz − fρ ||L2

ν (X)
> τm− 2br+b

4br+2b+2

}

= 1

and

lim
τ→0

lim inf
m→∞

inf
l∈A

sup
ρ∈Pφ,b

Probz

{
||f lz − fρ ||H > τm− br

2br+b+1

}
= 1.

If the minimax lower rate coincides with the upper convergence
rate for λ = λm. Then the choice of parameter is said to be
optimal. For the parameter choice λ = 9−1(m−1/2), Theorem
3.3 and Theorem 3.8 share the upper convergence rate with the
lower convergence rate of Theorem 3.11 in L

2-norm. For the
same parameter choice, Theorem 3.4 and Theorem 3.7 share
the upper convergence rate with the lower convergence rate
of Theorem 3.12 in RKHS-norm. Therefore, the choice of the
parameter is optimal.

It is important to observe that we get the same convergence
rates for b = 1.

3.4. Individual Lower Rates
In this section, we discuss the individual minimax lower rates
that describe the behavior of the error for the class of probability
measure Pφ,b as the sample sizem grows.

Definition 3.4. A sequence of positive numbers an (n ∈ N) is
called the individual lower rate of convergence for the class of
probability measure P , if

inf
l∈A

sup
ρ∈P

lim sup
m→∞



Ez

(
||f lz − fH||2

)

am


 > 0,

whereA denotes the set of all learning algorithms l : z 7→ f lz.

Theorem 3.13. Let z be i.i.d. samples drawn according to the
probability measure Pφ,b where φ is the index function satisfying
the conditions that φ(t)/tr1 , tr2/φ(t) are non-decreasing functions
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and dim(Y) = d < ∞. Then for every ε > 0, the following lower
bound holds:

inf
l∈A

sup
ρ∈Pφ,b

lim sup
m→∞



Ez

(
||f lz − fH||2

L
2
ν (X)

)

m−(bc2+ε)/(bc1+ε+1)


 > 0,

where c1 = 2r1 + 1 and c2 = 2r2 + 1.

We consider the class of probability measures such that the target
function fH is parameterized by s = (sn)

∞
n=1 ∈ {−1,+1}∞.

Suppose for ε > 0,

g =
∞∑

n=1

snR

√
ε

ε + 1

α

nbtn

(
φ(α/nb)

φ(tn)

)
n−(ε+1)/2en,

where s = (sn)
∞
n=1 ∈ {−1,+1}∞, tn’s are the eigenvalues

of the integral operator LK , en’s are the eigenvectors of the
integral operator LK and the orthonormal basis of RKHS H.
Then the target function fH = φ(LK)g satisfies the general
source condition. We assume that the conditional probability
measure ρ(y|x) follows the normal distribution centered at
fH and the marginal probability measure ρX = ν. Now
we can derive the individual lower rates over the considered
class of probability measures from the ideas of the literature
[12, 30].

Theorem 3.14. Let z be i.i.d. samples drawn according to the
probability measure Pφ,b where φ is the index function satisfying
the conditions that φ(t)/tr1 , tr2/φ(t) are non-decreasing functions

and dim(Y) = d < ∞. Then for every ε > 0, the following lower
bound holds:

inf
l∈A

sup
ρ∈Pφ,b

lim sup
m→∞




Ez

(
||f lz − fH||2

H

)

m−(bc2−b+ε)/(bc1+ε+1)


 > 0.

4. CONCLUSION

In our analysis we derive the upper and lower convergence
rates over the wide class of probability measures considering
general source condition in vector-valued setting. In particular,
our minimax rates can be used for the scalar-valued functions
and multi-task learning problems. The lower convergence rates
coincide with the upper convergence rates for the optimal
parameter choice based on smoothness parameters b,φ. We can
also develop various parameter choice rules such as balancing
principle [31], quasi-optimality principle [32], discrepancy
principle [33] for the regularized solutions provided in our
analysis.
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