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We consider the learning algorithms under general source condition with the polynomial
decay of the eigenvalues of the integral operator in vector-valued function setting. We
discuss the upper convergence rates of Tikhonov regularizer under general source
condition corresponding to increasing monotone index function. The convergence
issues are studied for general regularization schemes by using the concept of operator
monotone index functions in minimax setting. Further we also address the minimum
possible error for any learning algorithm.
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1. INTRODUCTION

Learning theory [1-3] aims to learn the relation between the inputs and outputs based on finite
random samples. We require some underlying space to search the relation function. From the
experiences we have some idea about the underlying space which is called hypothesis space.
Learning algorithms tries to infer the best estimator over the hypothesis space such that f(x) gives
the maximum information of the output variable y for any unseen input x. The given samples
{xi, ¥}, are not exact in the sense that for underlying relation function f(x;) # y; but f(x;) ~ y;.
We assume that the uncertainty follows the probability distribution p on the sample space X x Y
and the underlying function (called the regression function) for the probability distribution p is
given by

o) = /Y Ypylx), x € X,

where p(y|x) is the conditional probability measure for given x. The problem of obtaining
estimator from examples is ill-posed. Therefore, we apply the regularization schemes [4-7] to
stabilize the problem. Various regularization schemes are studied for inverse problems. In the
context of learning theory [2, 3, 8-10], the square loss-regularization (Tikhonov regularization)
is widely considered to obtain the regularized estimator [9, 11-16]. Gerfo et al. [6] introduced
general regularization in the learning theory and provided the error bounds under Hélder’s source
condition [5]. Bauer et al. [4] discussed the convergence issues for general regularization under
general source condition [17] by removing the Lipschitz condition on the regularization considered
in Gerfo et al. [6]. Caponnetto and De Vito [12] discussed the square-loss regularization under the
polynomial decay of the eigenvalues of the integral operator Lx with Holder’s source condition. For
the inverse statistical learning problem, Blanchard and Miicke [18] analyzed the convergence rates
for general regularization scheme under Holder’s source condition in scalar-valued function setting.
Here we are discussing the convergence issues of general regularization schemes under general
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source condition and the polynomial decay of the eigenvalues of
the integral operator in vector-valued framework. We present the
minimax upper convergence rates for Tikhonov regularization
under general source condition 4 r, for a monotone increasing
index function ¢. For general regularization the minimax rates
are obtained using the operator monotone index function ¢. The
concept of effective dimension [19, 20] is exploited to achieve
the convergence rates. In the choice of regularization parameters,
the effective dimension plays the important role. We also discuss
the lower convergence rates for any learning algorithm under the
smoothness conditions. We present the results in vector-valued
function setting. Therefore, in particular they can be applied to
multi-task learning problems.

The structure of the paper is as follows. In the second
section, we introduce some basic assumptions and notations for
supervised learning problems. In Section 3, we present the upper
and lower convergence rates under the smoothness conditions in
minimax setting.

2. LEARNING FROM EXAMPLES:
NOTATIONS AND ASSUMPTIONS

In the learning theory framework [2, 3, 8-10], the sample space
Z = X x Y consists of two spaces: The input space X (locally
compact second countable Hausdorff space) and the output space
(Y, (-,-)y) (the real separable Hilbert space). The input space X
and the output space Y are related by some unknown probability
distribution p on Z. The probability measure can be split as
p(x,y) = p(y|x)px(x), where p(y|x) is the conditional probability
measure of y given x and py is the marginal probability measure
on X. The only available information is the random i.i.d. samples
z = ((x1,91)>- - (Xm>¥m)) drawn according to the probability
measure p. Given the training set z, learning theory aims to
develop an algorithm which provides an estimator f, : X —
Y such that f,(x) predicts the output variable y for any given
input x. The goodness of the estimator can be measured by the
generalization error of a function f which can be defined as

aﬁ:@mzévwnw@mn )

where V: Y x Y — Ris the loss function. The minimizer of £(f)
for the square loss function V(f(x),y) = [[f(x) — y||% is given by

Jo(x): Z/Y}/dp(ylx), )

where f, is called the regression function. The regression function
f» belongs to the space of square integrable functions provided
that

émﬁmmw<w 3)

We search the minimizer of the generalization error over a
hypothesis space H,

fr: = argmln {/ I Go) = y3dp(x, )’)} (4)

where fp¢ is called the target function. In case f, € M, fi
becomes the regression function f,,.

Because of inaccessibility of the probability distribution p, we
minimize the regularized empirical estimate of the generalization
error over the hypothesis space H,

Jan: _argmln{ ZHf(xz )’i||%f+)‘|lf||’2)-(}’ ®)

where A is the positive regularization parameter. The
regularization schemes [4-7, 10] are used to incorporate various
features in the solution such as boundedness, monotonicity
and smoothness. In order to optimize the vector-valued
regularization functional, one of the main problems is to choose
the appropriate hypothesis space which is assumed to be a source
to provide the estimator.

2.1. Reproducing Kernel Hilbert Space as a

Hypothesis Space

Definition 2.1. (Vector-valued reproducing kernel Hilbert
space) For non-empty set X and the real Hilbert space (Y, (-,*)y),
the Hilbert space (H, (-,-)3¢) of functions from X to Y is called
reproducing kernel Hilbert space if for any x € X and y € Y the
linear functional which maps f € H to (y,f(x))y is continuous.

By Riesz lemma [21], for every x € X and y € Y there exists a
linear operator K, : Y — H such that

W f))y = (K i, Yf e H.

Therefore, the adjoint operator K} : H — Y is given by K}f =
f(x). Through the linear operator K,:Y — H we define the linear
operator K(x,t): Y — Y,

K(x, t)y: = Ky(x).

From Proposition 2.1 [22], the linear operator K(x,t) € L(Y)
(the set of bounded linear operators on Y), K(x,t) = K(t,x)*
and K(x,x) is non-negative bounded linear operator. For any
me N{xi:1 <i<mjelX{y:1=<1i=<m}eyY, we

m
have that (vi» K(xi, xj)y;) > 0. The operator valued function
ij=1
K:X x X — L(Y) is called the kernel.

There is one to one correspondence between the kernels and
reproducing kernel Hilbert spaces [22, 23]. So a reproducing
kernel Hilbert space H corresponding to a kernel K can be
denoted as Hk and the norm in the space H can be denoted as
[ - |l7x- In the following article, we suppress K by simply using
‘H for reproducing kernel Hilbert space and || - ||4¢ for its norm.

Throughout the paper we assume the reproducing kernel
Hilbert space H is separable such that

(i) Ky:Y — "H is a Hilbert-Schmidt operator for all x € X and
sup Tr(K¥Ky) < oo.
xeX
(ii) The real function from X x X to R, defined by (x,t) +—>
(Kyv, Kyw) 3¢, is measurable Vv, w € Y.
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By the representation theorem [22], the solution of the penalized
regularization problem (5) will be of the form:

m
for = ZK"iCi’ for (c1,...,¢cm) € Y™,

i=1

Definition 2.2. let M be a separable Hilbert space and {ex}}2

be an orthonormal basis of H. Then for any positive operator
[.°]

A € L(H) we define Tr(A) = > (Aey, ex). It is well-known that
k=1

the number Tr(A) is independent of the choice of the orthonormal

basis.

Definition 2.3. An operator A € L(H) is called Hilbert-Schmidt
operator if Tr(A*A) < oo. The family of all Hilbert-Schmidt
operators is denoted by L,(H). For A € L,(H), we define Tr(A) =
o

1;1 (Aey, ex) for an orthonormal basis {ex}}2 | of M.

It is well-known that £, (H) is the separable Hilbert space with
the inner product,

(A,B) £y () = Tr(B*A)
and its norm satisfies
Al zer) < NAll gy < Tr(|AD,

where |[A| = v/A*A and ||| £(7¢) is the operator norm (For more
details see [24]).
For the positive trace class operator KK}, we have

KK 2ory < KK 2y) < Tr(KeK}) < K%

Given the ordered set x = (x,...,Xxp) € X", the sampling

operator Sy : H — Y™ is defined by Sx(f) = (f(x1),...,f(xm))
m

and its adjoint S : Y™ — M is given by Sty = % > Kyyi Vy=
i=1

W1s-esym) € Y™
The regularization scheme (5) can be expressed as

for = argmin {[|Sxf — yII5, + Allfl5¢} > (6)
feH
m
where [ly[|2, = = 3 |[yill3.
i=1

i=
We obtain the explicit expression of f,, by taking the
functional derivative of above expression over RKHS H.

Theorem 2.1. For the positive choice of A, the functional (6) has
unique minimizer:

o = (SESx +AT) ' Sty. 7)

Define f; as the minimizer of the optimization functional,

Jr: = argmin {/Z f (o) — ¥l dp(xy) + ?»Ilfllgu} )

feH

Using the fact £(f) = ||L}</2(f — 3¢ + E(fr), we get the

expression of fj,
fr =Lk + AD " L fw )

where the integral operator Ly : jf)x — ;.%%X is a self-adjoint,
non-negative, compact operator, defined as

Ly()(x): = /X K(x, Of ()dpx (), x € X.

The integral operator Lg can also be defined as a self-adjoint
operator on H. We use the same notation Lg for both the
operators defined on different domains. It is well-known that L11</2
is an isometry from the space of square integrable functions to
reproducing kernel Hilbert space.

In order to achieve the uniform convergence rates for learning
algorithms we need some prior assumptions on the probability
measure p. Following the notion of Bauer et al. [4] and
Caponnetto and De Vito [12], we consider the class of probability
measures Py which satisfies the assumptions:

(i) For the probability measure p on X x Y,

fz 11 dp(x,y) < oo. (10)

(ii) The minimizer of the generalization error f3¢ (4) over the
hypothesis space H exists.

(iii) There exist some constants M, X such that for almost all
x € X,

2
ety _ [y = fr@lly R
A(e i dp(ylx) < e

(11)
(iv) The target function f3¢ belongs to the class €24 r with

Qpr:={f € H:f =¢(Lx)gand [[g]lx <R}, (12)

where ¢ is a continuous increasing index function defined
on the interval [0, 2] with the assumption ¢(0) = 0. This
condition is usually referred to as general source condition
[17].

In addition, we consider the set of probability measures
Py which satisfies the conditions (i), (ii), (iii), (iv) and the
eigenvalues f,,’s of the integral operator Lx follow the polynomial
decay: For fixed positive constants o, f and b > 1,

an”? <t, < ,anb Vn e N. (13)

Under the polynomial decay of the eigenvalues the effective
dimension N(1), to measure the complexity of RKHS, can be
estimated from Proposition 3 [12] as follows,

NO): = Tr ((Lx + 2D 'Lg) < %x*l/b, forb>1 (14)

and without the polynomial decay condition (13), we have

2
NG < 1Lk +AD ™Y 2o Tr (Li) < ”7
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We discuss the convergence issues for the learning algorithms
(z — f € 'H) in probabilistic sense by exponential tail
inequalities such that

1
Prob, {Hfz — follp < e(m)log (;)’ >1—-n
forall 0 < n < 1 and e(m) is a positive decreasing function of m.

Using these probabilistic estimates we can obtain error estimates
in expectation by integration of tail inequalities:

E, (Ilfe = follp) = | Proby (Ilfe — foll, > t)dt

< / exp (—T;)) dt = e(m),
0

where |Ifll, = IIfll & = {[x W @)3dpx (x)}!/? and E,(§) =
me &dp(zy)...dp(zm).

0\8

3. CONVERGENCE ANALYSIS

In this section, we analyze the convergence issues of the
learning algorithms on reproducing kernel Hilbert space under
the smoothness priors in the supervised learning framework.
We discuss the upper and lower convergence rates for vector-
valued estimators in the standard minimax setting. Therefore, the
estimates can be utilized particularly for scalar-valued functions
and multi-task learning algorithms.

3.1. Upper Rates for Tikhonov

Regularization
In General, we consider Tikhonov regularization in learning
theory. Tikhonov regularization is briefly discussed in the
literature [7, 9, 10, 25]. The error estimates for Tikhonov
regularization are discussed theoretically under Hélder’s source
condition [12, 15, 16]. We establish the error estimates for
Tikhonov regularization scheme under general source condition
fr € Qg g for some continuous increasing index function ¢ and
the polynomial decay of the eigenvalues of the integral operator
Lk.

In order to estimate the error bounds, we consider the
following inequality used in the papers [4, 12] which is based on
the results of Pinelis and Sakhanenko [26].

Proposition 3.1. Let & be a random variable on the probability
space (K2, B, P) with values in real separable Hilbert space H. If
there exist two constants Q and S satisfying

E{II-‘E—E(é)II%}S%n!SZQ”‘Z Vnz2,  (15)

then for any 0 < n < 1 and for allm € N,

Prob:(wl,...,wm) e Q™

1 m
Im D &) — EE (@) ’ ’H

i=1

(@ e

In particular, the inequality (15) holds if

1€ (@)l < Qand E(||€(w)]]3,) < S*

We estimate the error bounds for the regularized estimators by
measuring the effect of random sampling and the complexity
of fy. The quantities described in Proposition 3.2 express
the probabilistic estimates of the perturbation measure due to
random sampling. The expressions of Proposition 3.3 describe
the complexity of the target function fz; which are usually
referred to as the approximation errors. The approximation
errors are independent of the samples z.

Proposition 3.2. Let z be i.i.d. samples drawn according to the
probability measure p satisfying the assumptions (10), (11) and

k = [sup Tr(KKy). Then for all0 < n < 1, we have
xeX

1Lk + AD ™Sty — SiSxfrc) I

<2 M + NG lo <é>
“\mva Vom s n

115%S, — Li| <2 (4 Y og (2
XX KILy(H) = m \/ﬁ g n .

with the confidence 1 — 1.

(16)

and

The proof of the first expression is the content of the step 3.2
of Theorem 4 [12] while the proof of the second expression can
be obtained from Theorem 2 in De Vito et al. [25].

Proposition 3.3. Suppose f31 € Qp r. Then,

(i) Under the assumption that d(H)/t and Vt/$(t) are non-
decreasing functions, we have

i — frellp, < RO(GIVA. (18)

(ii) Under the assumption that ¢(t) and t/p(t) are non-decreasing
functions, we have
I — frllp = Reegp(1) (19)
and
I — frlln < Ro(A). (20)

Under the source condition f3y € Qg g, the proposition can be
proved using the ideas of Theorem 10 [4].
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Theorem 3.1. Let z be iid. samples drawn according to the
probability measure p € Py where ¢ is the index function
satisfying the conditions that ¢(t), t/¢(t) are non-decreasing
functions. Then for all 0 < n < 1, with confidence 1 — 1, for
the regularized estimator f,; (7) the following upper bound holds:

2k M 432N (N) 4
o e =2 gy 22 [N ] 0

provided that

Jmi > 8k?log(4/n). (21)

Proof. The error of regularized solution f,; can be estimated in
terms of the sample error and the approximation error as follows:

Wen = frllm = Wan = fillm + 1 — el (22)
Now fz — fo. can be expressed as
for = fir = (SESx + AT {Sky — SiSxfi — M)
Then f, = (Lg + AI) 7! Lgfp implies
Lxfr = Lxfo + Afr..
Therefore,
for = fr = (SESx 4+ AD) " H{Sky — SiSufs — L (fre — fi))-

Employing RKHS-norm we get,

Wur — fill < 11(SESx 4+ AD™H{Sky — SESyfr
+ (SiSx — L) (f — i)l
< LL + Bl|fi — frll=/2

(23)

where I = [|(SiSx + A MLk + AD'Y2|| ), b = [I(Lk +
A TV2(Sty — SiSxfr)l I and Is = ||SSx — Li| | £(30)-

The estimates of I, I3 can be obtained from Proposition 3.2
and the only task is to bound I;. For this we consider

(SiSx 4+ AD N Lk + ADY? = {I — (L + AN (Lx =SS0} !
(Lx +AD)~Y?
which implies
o
I < Y Ik + 2D Lk = SESN 1Lk + AD ™2 22
n=0 24

provided that ||(Lx 4+ A~} (Lg — SiSllzry < 1. To verify this
condition, we consider

(L + 2D (858 = Lol o) < Is /A

Now using Proposition 3.2 we get with confidence 1 — /2,

1(Lx + 2D~ (S Sy — Li) | 2oy < A
K X OX KL(H)_ﬁAgn-

From the condition (21) we get with confidence 1 — /2,

(L 4+ 2D~ (SESx — Lidl ey < (25)

N[ =

Consequently, using (25) in the inequality (24) we obtain with
probability 1 — n/2,

I = [I(SESx + AD) "MLk + ADY?|| (20

-~ 2
<2l|(Lg +AD "2y < —=.

Vi

From Proposition 3.2 we have with confidence 1 — /2,

11858s — Licll i) < 2 C L Y 1og (A
xYX KIL(H) = m ﬁ g n .

Again from the condition (21) we get with probability 1 — /2,

(26)

o>

I3 = 1S58x — Lkl cem) < (27)

Therefore, the inequality (23) together with (16), (20), (26), (27)
provides the desired bound. O

The following theorem discuss the error estimates in .#*-
norm. The proof is similar to the above theorem.

Theorem 3.2. Let z be i.i.d. samples drawn according to the
probability measure p € Py and fy ;. is the regularized solution (7)
corresponding to Tikhonov regularization. Then for all0 < n < 1,
with confidence 1 — ), the following upper bounds holds:

(i) Under the assumption that ¢(t), 1/ p(t) are non-decreasing
functions,

2kM 432N (A
W —frelly < 2 A ROOOVE + 22 4 @)

m/x m
2

(ii)) Under the assumption that ¢(t), t/¢(t) are non-decreasing

functions,
acM 162N (1)
ok — <Rk + V1)) + +
IWzr — frllp (ke )p(2) e -
log <é>
n
provided that
N 8K210g(4/n). (28)

We derive the convergence rates of Tikhonov regularizer based
on data-driven strategy of the parameter choice of A for the class
of probability measure Py .

Theorem 3.3. Under the same assumptions of Theorem 3.2 and
hypothesis (13), the convergence of the estimator f,; (7) to the
target function fyy can be described as:
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(i) Ifp(t) and V(1) are non-decreasing functions. Then under
the parameter choice A € (0,1], » = U (m=1Y/2) where

U(t) = t%+71h¢(t), we have

) W — frellp < COU—H(m™1/2))1 2
Pro z (\p—l(m—l/Z)) 10g (%) >1- n

and

lim limsup sup Prob, {|[fm — frllp

T>00 00 PEP

> (W (m ™ P22 T2y} = o,

(ii) If ¢(t) and t/¢(t) are non-decreasing functions. Then under
the parameter choice A € (0,1], A = O Y (m=1Y2) where

o) = tﬁqb(t), we have

Prob, {I[fz,x — frllp < Cp(O© ' (m™"/))log (%)} =1-n

and

lim limsup sup Prob, {l[fz,x —fllp

T=>00 00 PEPy
> (@~ (m™ )} = 0.
Proof. (i) Let W(t) = 2% ¢(t). Then it follows,

W(t t?
l1mL =lim ——— =0.
t—0

=0 ./t wL(t)
Under the parameter choice » = W~ (m~1/2) we have,

lim mA = oo.
m— 00

Therefore, for sufficiently large m,

1 A%e() _
P N < A2 p(A).

Under the fact A < 1 from Theorem 3.2 and Equation (14)
follows that with confidence 1 — 7,

for = frellp < COU ™ m™2) 2w m1/2)) log (%)

(29)
where C = 2R + 4k M + 4,/BbX2/(b — 1).
Now defining 7: = Clog (%) gives

n=n= 4e7/C.
The estimate (29) can be reexpressed as

Proby{|[fur — frellpy > T V2N 2w ™)) < e
(30)

(ii) Suppose O(t) = tﬁ ¢(t). Then the condition (28) follows that

MZT_\/X-

Hence under the parameter choice A € (0,1], A = O Y m=1/?)
we have

8k2 log (4/n) - 8k 2

L YA _2TEe0) e
mvh T 8ki/m T 8% T 8k?

From Theorem 3.2 and Equation (14), it follows that with
confidence 1 — n,

o — frllp < Cp(@ (m™12)) log (%) (31)

where C': = R(k + 1) + M/2k + 4/BbX2/(b —1).

Now defining 7: = C'log (%) gives

The estimate (31) can be reexpressed as

Prob, {||fo. — frllp > (@ (™ /2)} < ;.

Then from Equations (30) and (32) our conclusions follow. [

(32)

Theorem 3.4. Under the same assumptions of Theorem 3.1 and
hypothesis (13) with the parameter choice . € (0,1], A =

U (m=1Y2) where W(t) = t%+ﬁ¢(t), the convergence of the
estimator f,; (7) to the target function fy; can be described as

Prob, {Hfz,k — frllr < CH(W ' (m™'72)) log <%)} =1—n

and

lim limsup sup Prob, {Hfz,k — el > t¢(\11*1(m*1/2))}

T=00 1 soo pEP

=0.

The proof of the theorem follows the same steps as of Theorem
3.3 (i). We obtain the following corollary as a consequence of
Theorem 3.3, 3.4.

Corollary 3.1. Under the same assumptions of Theorem 3.3, 3.4

for Tikhonov regularization with Holder’s source condition f31 €

Qgpr, ¢(t) =1, forall 0 < n < 1, with confidence 1 — n, for the
b

parameter choice A = m™ 2r+b+1, we have

___br 4
[fei. — |l < Cm™ 20551 log <7> foro<r<1,
n

0| =

_ 2br+b 4
fzr — frllp < Cm~ @rs2b2 Jog | — ) for0 <r <
n
. __b
and for the parameter choice A = m™ 2br+1, we have

br 4
Ifr. — frllp < C'm™ 2r41 log (;) foro<r<1.
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3.2. Upper Rates for General

Regularization Schemes

Bauer et al. [4] discussed the error estimates for general
regularization schemes under general source condition. Here
we study the convergence issues for general regularization
schemes under general source condition and the polynomial
decay of the eigenvalues of the integral operator Lx. We define
the regularization in learning theory framework similar to
considered for ill-posed inverse problems (See Section 3.1 [4]).

Definition 3.1. A family of functions g, : [0,k*] — R, 0 <
L < k2, is said to be the regularization if it satisfies the following
conditions:

e dD: sup |og. (o) <D.
oe(0,k2]

e dB: sup |gi(o)] < %
oe(0,k2]

e dy: sup [1—g(o)o| <y.
oe(0,k2]

e The maximal p satisfying the condition:

sup |1 —gu(o)olof < ypa?
oe(0,k2]

is called the qualification of the regularization g, where y), does
not depend on A.

The properties of general regularization are satisfied by the
large class of learning algorithms which are essentially all the
linear regularization schemes. We refer to Section 2.2 [10]
for brief discussion of the regularization schemes. Here we
consider general regularized solution corresponding to the above
regularization:

S = 9.(55S0)S%y. (33)

Here we are discussing the connection between the qualification
of the regularization and general source condition [17].

Definition 3.2. The qualification p covers the index function ¢ if

. P 21 » .
the function t — s ont €0,k is non-decreasing.

The following result is a restatement of Proposition 3 [17].

Proposition 3.4. Suppose ¢ is a non-decreasing index function
and the qualification of the regularization g, covers ¢. Then

sup |1 —g(0)olg(0) < cgp(), cg = max(y,yp).

oe(0,k2]

Generally, the index function ¢ is not stable with respect to
perturbation in the integral operator L. In practice, we are only
accessible to the perturbed empirical operator S} Sy but the source
condition can be expressed in terms of Lx only. So we want
to control the difference ¢(Lg) — ¢(SiSx). In order to obtain
the error estimates for general regularization, we further restrict
the index functions to operator monotone functions which is
defined as

Definition 3.3. A function ¢, : [0,d] — [0,00) is said to be
operator monotone index function if ¢1(0) = 0 and for every non-
negative pair of self-adjoint operators A, B such that ||A||, ||B|| < d
and A < B we have ¢1(A) < ¢1(B).

We consider the class of operator monotone index functions:

Fu=1{¢1: [0,4%] — [0, 00) operator monotone,

$1(0) = 0,1(k?) < p}.

For the above class of operator monotone functions from
Theorem 1 [4], given ¢1 € F,, there exists cg, such that

[161(S5Sx) — d1Li)l £y < € D1(I1S5Sx — Lkl £(31))-

Here we observe that the rate of convergence of ¢1(SiSx) to
¢1(Lk) is slower than the convergence rate of SiSx to Lk.
Therefore, we consider the following class of index functions:

F = {¢=br1:¢1 € Fur2: [0,47]
— [0, 00) non-decreasing Lipschitz, ¢,(0) = 0}.

The splitting of ¢ = ¢2¢1 is not unique. So we can take ¢,
as a Lipschitz function with Lipschitz constant 1. Now using
Corollary 1.2.2 [27] we get

[12(SgSx) — 2Ll 57y < 1SxSx — Lkl £, (70)-

General source condition fiy € Q¢ r corresponding to index
class functions F covers wide range of source conditions as
Hélder’s source condition ¢(t) = t, logarithm source condition
o(t) = tPlog™” (%) Following the analysis of Bauer et al. [4] we
develop the error estimates of general regularization for the index
class function F under the suitable priors on the probability
measure p.

Theorem 3.5. Let z be i.i.d. samples drawn according to the
probability measure p € Pgy. Suppose f; is the regularized
solution (33) corresponding to general regularization and the
qualification of the regularization covers ¢. Then forall0 < n < 1,
with confidence 1 — 1, the following upper bound holds:

Reg(1+ ¢p (1) + —4R%K2 + 72*/5,;;”
_l’_
4
log [ —
«(;)

Jmh > 8K210g(4/n).

_ <
Ve = frellne = STENG)

mh

provided that
(34)

Proof. We consider the error expression for general regularized
solution (33),
Jor =t = (S8 (Sxy — SeSxfr) — 1 (ScS)f, - (35)

where (o) =1 —g.(0)o.
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Now the first term can be expressed as

G(SES(SEy — SiSxfr) = gu(SESx)(SESx + AD)'2
(S*S + AI)*I/Z(LK + )»1)1/2
(Lx + AD~Y2(Sky — SESyfm).

On applying RKHS-norm we get,

1182, (SxSx)(S5y — SySxfrolln < LIs||gi(SySx)

(SiSx + AD' | £(r)» (36)
where I = [|(Lx + A1) V2 (Sky — SSxfr) || 2¢ and Is = [|(SESx+
ADTVA(Lk + MDY £30)-

The estimate of I, can be obtained from the first estimate of

Proposition 3.2 and from the second estimate of Proposition 3.2
with the condition (34) we obtain with probability 1 — /2,

(L + AD 72 (Lg — S8 (Li + AD ™2 234

Lell - 42 | 4 _1
— (0]
X K E(’H)_ﬁA g 2

which implies that with confidence 1 — 7/2,

1
= XHSiS

= [1(SESx + AD) V2 (L + ADY?|| £ (3
= [|(Lx + AD)Y2(SE8x + A1)~ H(Lk + A1)V
= |{I — (Lx + 2D 72 (Lg — SESx)
(Lx + 2D 2y
<2

1/2
L(H)

(37)
From the properties of the regularization we have,

sup |gi(0)\/o|

0<o <k2

Y2 D
2Ig,\(d)l) < - (38)

1185, (SESx) (S22 i) <

:( sup |gi(o)o| sup
0<o <k?

O0<o <k
Hence it follows,

118 (SESx)(SESx + AN 23y < sup |ga(0)(o + M)

0<o<k2

< sup |g(0)Vo|+ A sup g (39)

0<o <k? 0<o <k?

(@)l = f

where v1: = B+ +/BD.
Therefore, using (16), (37) and (39) in Equation (36) we
conclude that with probability 1 — 7,

kM 2N (L)
mA mA

(l)

1181 (SESx)(Sky — SiSxfr)llm < 2v/2m;

(40)

Now we consider the second term,

r(SyS)fr = m(SES)P(Lr)v = 13 (SySx)P(SeSx)v
+1(SySx) P2 (S5Sx) (91 (Lk) — ¢1(S5Sx))v
+r1(S§S) (@2 (L) — h2(SeSx)) 1 (L)v.

Employing RKHS-norm we get

17 (SxS)fr |l < Reg(X) + Regeg, 2 (M)
(IILx — SgSxllz(ry) + Ruy 1Lk — SiSxll 2,(7)-

Here we used the fact that if the qualification of the regularization
covers ¢ = ¢)¢, then the qualification also covers ¢; and ¢,
both separately.

From Equations (17) and (34) we have with probability 1 —

n/2,

[1S%S Lil| <—1Io -1 < )\/2 (41)
X — — .
X [,(H) Vo g

Therefore, with probability 1 — /2,

|172(SxSx)frll# = Reg(1+cg,)p(1) +

4RpuyK? 4
NG log (;) (42)

Combining the bounds (40) and (42) we get the desired
result. O

Theorem 3.6. Let z be i.i.d. samples drawn according to the
probability measure p € Py and f ), is the regularized solution
(33) corresponding to general regularization. Then for all 0 < n <
1, with confidence 1 — n, the following upper bounds holds:

(i) If the qualification of the regularization covers ¢,

Reg(1+ c¢,1 )k + VA
4Ry K (k4++/2) 2fuz;<M
+ NG +

4
e e (1),
8V2T2N (M)
+ 2T

(ii) If the qualification of the regularization covers ¢(t)/1,

Wz — frllp <

2
T 2ch(1+c¢1)¢(x)ﬁ+w
zh — JHIlp = 252
2720k M 8vy 2N (A)
HECEE
4
log{ —
;)
provided that

Jmx = 8k? log(4/n). (43)

Proof. Here we establish .Z2-norm estimate for the error
expression:

S — = 2(S5S)(S5y — SiSxfr) — 1 (SeS)fH.-
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On applying .#%-norm in the first term we get,

1181 (SESO(SEy — SESyfr)llp < LoIs||LY g (SESx)

(SESx + ADYpry,  (44)

where I = ||(Lx +AI) ~Y2(Sky — SESxfr)||#¢ and Is = [|(SESx+
ADTY2(Lg + ADY2|| £(2g)-

The estimates of I, and I5s can be obtained from Proposition
3.2 and Theorem 3.5 respectively. Now we consider

LY g (SESO(SESx + MDY gy < IILY

—(8£80" 211 241181 (S5Sx) (S Sx + 2D
220 + 115580 *1.(S5Sx)
(SESx + 2D £(n0)-
Since ¢(t) = /t is operator monotone function. Therefore, from
Equation (41) with probability 1 — /2, we get

1/2

LY = (858021 £y < (1Lk — SESkll £r) Y < V.

Then using the properties of the regularization and Equation (38)
we conclude that with probability 1 — /2,

| L2 (SES)(SESy + 2D | 230

< V& sup |g(0) o + MY+ sup |gi(0)(0? + ro) 2

0<o<k? 0<o<k?
< sup |gi@)ol+2 sup |g(@)+2VA sup |gi(0)Vol
0<o <k2 0<o <k? 0<o <k?
< B+ D+ 2+v/BD = v,(let). (45)

From Equations (44) with Equations (16), (37), and (45) we

obtain with probability 1 — n,
SN (A
4. (*)
m

(46)

kM

m/a

(l)

The second term can be expressed as

1185, (SESx) (Sky — SESyfr)Ilp, < 2421,

I 7 (SESfrlle < LY = (S580 2l 2oy I (SESx )l

1S5S 21 (SESx)frel 17
< 1Lk = SESxll gy 17 (SESOfrel I
7 (SESx) (S50 2B (SES )Vl I
117 (SES)(SESx) 22 (SESx) (1(SiSx) — 1 (L)l I
12 (S5Sx) (S5 8x) 2 ($2(SESx) — P2 (L)1 (L )Vl |2

Here two cases arises:

Case 1. If the qualification of the regularization covers ¢.
Then we get with confidence 1 — /2,

7 (SESOfllp < (i + V) (Reg(1 + ¢y )p(2)
+Ruy l1SESx — Ll 2y(7)) -

Therefore, using Equation (17) we obtain with probability
1—n/2,

7 (SES) el lp < (i + +/2)

2
(chu o)) + 4R5%“ log (%)) _

(47)

Case 2. If the qualification of the regularization covers o)1,
we get with probability 1 — /2,

173, (SES )Nl < 2Reg(1 + ¢ )MV

+4Ru(y + Cg)KZ\/ZIOg <é> . (48)
m n

Combining the error estimates (46), (47) and (48) we get the
desired results. O

We discuss the convergence rates of general regularizer based
on data-driven strategy of the parameter choice of X for the class
of probability measure Py ;. The proof of Theorem 3.7, 3.8 are
similar to Theorem 3.3.

Theorem 3.7. Under the same assumptions of Theorem 3.5 and
hypothesis (13) with the parameter choice . € (0,1], » =

UL (m=12) where W(t) = t%"'ﬁ(p(t), the convergence of the
estimator f,; (33) to the target function fy can be described as

Prob, {Hfz,k — frllr < Co(¥ L (m™1/2)) log (%)} >1-n,

where C = Reg(1 + ¢p) + 4Ruyk? + 2V2vikM +
J/8BbVZE2/(b— 1) and

lim limsup sup Prob, {|[fz’)\ — frllm > t¢(\IJ_l(m_1/2))}

T=00 60 pEP

=0.

Theorem 3.8. Under the same assumptions of Theorem 3.6 and
hypothesis (13), the convergence of the estimator f,; (33) to the
target function fa¢ can be described as

(i) If the qualification of the regularization covers ¢. Then under
the parameter choice A € (0,1], A = O~ Y (m=Y?%) where

O) = tzibqb(t), we have
Prob, {ufu —frllp, <Cigp(@ 7 (m™ %)) log (%)} >1-1,

where C; = Reg(1 + ¢g)(c + 1) + 4Ruyr*(k + 1) +
VaM/2/ 2k + /8Bbv2E2/(b — 1) and

lim lim sup sup Prob, {Hfz,)» — frllp > r¢((~)_1(m_1/2))}

T—00 m—00 pePy)

:0,
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(ii) If the qualification of the regularization covers ¢ (t)«/t. Then
under the parameter choice A € (0,1], » = Ul(m=1/2)

where WV (t) = t%"'ﬁq)(t), we have

Proby {Ilfur — frellp < Co(¥ ™ m™Y2) (0 (m™V/2))

4
n

where 62 = 2Rcy(1 + cy,) + 4Ru(y + cg)/c2 + 220k M +

/8BbV3x2/(b — 1) and

lim limsup sup Prob, {||fo:. — frllp

T=00 1 soo pEPy,

> T V) P )} = 0,

We obtain the following corollary as a consequence of Theorem
3.7,3.8.

Corollary 3.2. Under the same assumptions of Theorem 3.7, 3.8

for general regularization of the qualification p with Holder’s source

conditionfyy € Qe r, ¢(t) =t', forall0 < n < 1, with confidence
b

1 — ), for the parameter choice A = m™ 2br+b+1, we have

~ br 4
[lfz. — frll < Cm™ 204557 log (*) for0 <r<p,
n

~ __2brib 4 1
Wfzr — frllp < Com @bz log| — | forO <r <p— 3
n
b
and for the parameter choice . = m™ 21, we have

~ br 4
[[for — frllp < Cim™ 2741 log (;) for0 <r<p.

Remark 3.1. It is important to observe from Corollary 3.1, 3.2
that using the concept of operator monotonicity of index function
we are able to achieve the same error estimates for general
regularization as of Tikhonov regularization up to a constant
multiple.

Remark 3.2. (Related work) Corollary 3.1 provides the order of
convergence same as of Theorem 1 [12] for Tikhonov regularization
under the Holder’s source condition fry € Qg for ¢(t) =
t (% <r<1) and the polynomial decay of the eigenvalues
(13). Blanchard and Miicke [18] addressed the convergence rates
for inverse statistical learning problem for general regularization
under the Holder’s source condition with the assumption f, € H.
In particular, the upper convergence rates discussed in Blanchard
and Miicke [18] agree with Corollary 3.2 for considered learning

problem which is referred as direct learning problem in Blanchard

and Miicke[18]. Under the fact N'(1) < ’;—2 from Theorem 3.5, 3.6
we obtain the similar estimates as of Theorem 10 [4] for general
regularization schemes without the polynomial decay condition of
the eigenvalues (13).

Remark 3.3. For the real valued functions and multi-task
algorithms (the output space Y C R™ for some m € N) we
can obtain the error estimates from our analysis without imposing
any condition on the conditional probability measure (11) for the
bounded output space Y.

Remark 3.4. We can address the convergence issues of binary
classification problem [28] using our error estimates as similar to
discussed in Section 3.3 [4] and Section 5 [16].

3.3. Lower Rates for General Learning
Algorithms

In this section, we discuss the estimates of minimum possible
error over a subclass of the probability measures Py
parameterized by suitable functions f € H. Throughout this
section we assume that Y is finite-dimensional.

Let {vj}]‘-i=1 be abasis of Y and f € Q4 r. Then we parameterize
the probability measure based on the function f,

1

/Of(x>)/)3 = ﬁ :

d
j=

(008 any, + b8y ary ) V(). (49)
1

where aj(x) =L — (f,Kij)’H, b](x) =L+ (f,Kij)'H, L =
4k p(k*)R and 8¢ denotes the Dirac measure with unit mass at
&. It is easy to observe that the marginal distribution of p; over X
is v and the regression function for the probability measure oy is
f (see Proposition 4 [12]). In addition to this, for the conditional
probability measure pf(y|x) we have,

/Y (eny—f(x)ny/M _ W - 1) dpy(ylx)

. (dL 2y
< (L = f™)II3) ; % = r

provided that
dL+L/4 < Mand v2dL < ¥.

We assume that the eigenvalues of the integral operator L
follow the polynomial decay (13) for the marginal probability
measure v. Then we conclude that the probability measure py
parameterized by f belongs to the class Pg,.

The concept of information theory such as the Kullback-
Leibler information and Fano inequalities (Lemma 3.3 [29])
are the main ingredients in the analysis of lower bounds. In
the literature [12, 29], the closeness of probability measures
is described through Kullback-Leibler information: Given two
probability measures p; and p,, it is defined as

K(p1, pa): = /Z log(g(2))dp1 (2),

where g is the density of p; with respect to p, that is, p1(E) =
/i £ 8(2)dpa(z) for all measurable sets E.

Following the analysis of Caponnetto and De Vito [12] and
DeVore et al. [29] we establish the lower rates of accuracy that
can be attained by any learning algorithm.
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To estimate the lower rates of learning algorithms, we generate
N¢-functions belonging to Q¢ r for given & > 0 such that (53),
(54) holds. Then we construct the probability measures p; € Py,
from Equation (49), parameterized by these functions f;’s (1 <
i < Ng). On applying Lemma 3.3 [29], we obtain the lower
convergence rates using Kullback-Leibler information.

Theorem 3.9. Let z be i.i.d. samples drawn according to the
probability measure p € Py, under the hypothesis dim(Y) =

00. Then for any learning algorithm (z — f, € H) there exists
a probability measure p, € Pyy and f,, € H such that for all
0 < & < &, f, can be approximated as

1 te

Proby {Ilfy = fy.llre > /2} = min § - ve

— 64
Where v = e 3/8, Cc W (1 2[771) af’ld 6 =
N .\
2\ ¢~ 1(e/R) '

Proof. For given ¢ > 0, we define

en

et f (p(ty)’

where o = (o1, ob) € {=1,+1}%, t,’s are the eigenvalues of
the integral operator L, e,’s are the eigenvectors of the integral
operator Lg and the orthonormal basis of RKHS H. Under the
decay condition on the eigenvalues o < n’t,, we get

20 2 20 2 2

€ e e
lgllde= D, 5~ < D < :
Won ) TS e (%) T 62 (5)

Hence f = ¢(Lx)g € K4r provided that ||g|ly < R or

equivalently,
1 o 1/b
< -\ ——— . 50
<3 (7em) &
1/b
Fort =¢, = \: ( 1‘("8/R)) J, choose ¢, such that £, > 16.

Then according to Proposition 6 [12], for every positive ¢ <
g (s > Lg,) there exists No € Nand o7, . .. € {—1,+1}t
such that

Le

n ny2
D (ol o)
n=1

,ON,

>l foralll <i,j <N, i#j (51)

and

N, > e/, (52)

Now we suppose f; = ¢(Lk)gi and for ¢ > 0,

28, n Z;

,fori=1,...

\/_¢( n)

)Né‘)
n=~L;+1

where 0; = (oil, . ,oiee) € {—1,+1}%. Then from Equation
(51) we get,
e < |Ifi — fillw, forall1 <i,j < N, i #j. (53)
For1 <i,j < N, we have
25; ,38 ( n— Zg _ OH—ZE)Z 2@F 4/3 5
: ; : e
Wi =fllp g = 2 <>
X b b
v n=~lg+1 ten n=~Lz+1 ten
482 26 1 &2
< p f —dx=d—, (54)
e Jo, xb b

_1
2b-1J*

I
A,-:{z;|[fz—ﬁ||7.‘<E],for1§i§NE.

where ¢/ = % (1 —
We define the sets,

It is clear from Equation (53) that A;’s are disjoint sets. On
applying Lemma 3.3 [29] with probability measures pjfi”, 1<i<
N,, we obtain that either

c Ne
p_lg,1<N f(A)_N+1 (55)
or
. m
1?}5{]@ Ng Z K( pf P ) = Yn, (p), (56)

i=1,i#j

where Wy, (p) = log(N;) + (1 — p)log (1’%}7) — plog (?)
Further,

Wy, (p) = (1 —p)log(N;) + (1 — p)log(1 — p) — log(p)

+2plog(p) > —log(p) + log(y/N) — 3/e.  (57)

Since minimum value of xlog(x) is —1/e on [0, 1].
For the joint probability measures pﬁf’, pj%” (o> pf; € Ppp 1 <
i,j < N;) from Proposition 4 [12] and the Equation (54) we get,

16m cme?
K(pf's pf") = mKAos 05) < 7o i = fill'ga ) < o
(58)
where ¢ = 16¢//15dL?.
Therefore, Equations (55), (56), together with Equations (57)

and (58) implies
),

_ cme?
i

From Equation (52) for the probability measure p, such that
p = p'(AS) follows the result. O

max
1<i<N,

p:

(Prob{z: o — fillne >

. Ns *%
> min ,+/Nge
N, +1
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The lower estimates in .#%-norm can be obtained similar to
above theorem.

Theorem 3.10. Let z be i.i.d. samples drawn according to the
probability measure p € Py, under the hypothesis dim(Y) = d <
00. Then for any learning algorithm (z — f, € H) there exists
a probability measure p, € Py and f,, € H such that for all
0 < & < &, f, can be approximated as

Prob, {Hfz —fp*”ﬁ(x) = 8/2]
1 )}

1+ e te/24
/b
{(m)1 Jand OENIO)

Le 64me?
48 15412

z?e(

zmin{

where ® = e3¢, ¢,

Theorem 3.11. Under the same assumptions of Theorem 3.10

for y(t) = 12¢(t) and W(t) = t2B(1), the estimator f,
corresponding to any learning algorithm converges to the regression
function f,, with the following lower rate:

lim liminf inf sup Prob,
T—=>0 m—0oo [ A P€P¢,b

1
{1 = foll oy > T
(\p—l(m—l/Z))} =1,
where A denotes the set of all learning algorithms: z — f..
N " 1/b
Proof. Under the condition ¢, = L(m) J from

Theorem 3.10 we get,

Prob, {Ilfz —foll 2 > %]

)1/ b oams?
15d12

1 o
i 1 -5 {E(w*(s/fo
> min W,ﬂe 8e

Choosing &, = TRy (W~ (m~1/2)), we obtain

R 1,
Prob, {Ilfz —foll gy > TS YW m 1/2))]

_L
e Be

. c(\y—l(m—l/Z))—l/b
me{il_{-e—@n/ﬂ’ N

1
~/5dLo 20
32R

al/b _ 64R%*7?
48 15dL2

wherec:( )>0for0<t<min< ,1)

Now as m goes to 00, ¢ — 0 and ¢, — o0. Therefore, for
¢ > 0 we conclude that

liminf inf sup Prob,
m—00 leApEPm,

R 1, -
{llle _fp”ﬁ(x) > TEW("IJ 1(7’” 1/2))

=1

O

Choosing &y, TRO(W 1 (m~1/%)) we get the following
convergence rate from Theorem 3.9.

Theorem 3.12. Under the same assumptions of Theorem 3.9 for
W(t) = t2t 3 @(t), the estimator f, corresponding to any learning
algorithm converges to the regression function f, with the following
lower rate:

lim liminf inf sup Prob,
7—0 m—oo I€Ap€73¢b

{1 = follne > 7o (0 0n71/)}

=1

We obtain the following corollary as a consequence of
Theorem 3.11, 3.12.

Corollary 3.3. For any learning algorithm under Holder’s source
condition f, € Qgpr, O(t) t" and the polynomial decay
condition (13) for b > 1, the lower convergence rates can be
described as

lim liminf inf sup Prob,
T—>0 m—>o0 Je A p€p¢b

{ . _ beHZJb ]
_ > Tm Tr+abia
Hfz fﬂ“,}fu(x)

=1
and

br
lim liminf inf sup Prob, {|[le — follr > Tm™ 2o+t ] =1

7—0 m—o0 ZEApEP¢b

If the minimax lower rate coincides with the upper convergence
rate for A = A,;. Then the choice of parameter is said to be
optimal. For the parameter choice A = W~!(m~!/2), Theorem
3.3 and Theorem 3.8 share the upper convergence rate with the
lower convergence rate of Theorem 3.11 in .Z%-norm. For the
same parameter choice, Theorem 3.4 and Theorem 3.7 share
the upper convergence rate with the lower convergence rate
of Theorem 3.12 in RKHS-norm. Therefore, the choice of the
parameter is optimal.

It is important to observe that we get the same convergence
rates for b = 1.

3.4. Individual Lower Rates

In this section, we discuss the individual minimax lower rates
that describe the behavior of the error for the class of probability
measure Py j, as the sample size m grows.

Definition 3.4. A sequence of positive numbers a, (n € N) is
called the individual lower rate of convergence for the class of
probability measure P, if

E, (Il — el

am

inf sup lim sup > 0,

leA peP m—o0

where A denotes the set of all learning algorithms 1 : z > f.

Theorem 3.13. Let z be i.i.d. samples drawn according to the
probability measure Py 1, where ¢ is the index function satisfying
the conditions that ¢(t)/t", t"2 /¢(t) are non-decreasing functions
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and dim(Y) = d < oo. Then for every ¢ > 0, the following lower
bound holds:

E, (|th’ —fm%x))

m—(bea+e)/(ber+e+1) >

inf sup limsup
ZEApePM, m—00

wherecy = 2r1 +1and cy = 2r, + 1.

We consider the class of probability measures such that the target
function f¢ is parameterized by s = (s,)72, € {—1,+1}*.
Suppose for ¢ > 0,

o b
&« a/n
g:anR — ¢la/m) n 02
—~ e+ 1nbt, \ o(tn)
where s = (5,)02, € {—L+1}*, t,s are the eigenvalues

of the integral operator Lk, e,’s are the eigenvectors of the
integral operator Lx and the orthonormal basis of RKHS H.
Then the target function fy ¢(Lk)g satisfies the general
source condition. We assume that the conditional probability
measure p(y|x) follows the normal distribution centered at
fr and the marginal probability measure px v. Now
we can derive the individual lower rates over the considered
class of probability measures from the ideas of the literature
[12, 30].

Theorem 3.14. Let z be i.i.d. samples drawn according to the
probability measure Py ), where ¢ is the index function satisfying
the conditions that ¢(t)/t", t'2 /¢ (t) are non-decreasing functions
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