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kubo.konecny@gmail.com

Specialty section:

This article was submitted to

Optimization,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 24 October 2016

Accepted: 08 May 2017

Published: 23 May 2017

Citation:

Konečný J and Richtárik P (2017)

Semi-Stochastic Gradient Descent

Methods. Front. Appl. Math. Stat. 3:9.

doi: 10.3389/fams.2017.00009

Semi-Stochastic Gradient Descent
Methods
Jakub Konečný* and Peter Richtárik

School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom

In this paper we study the problem of minimizing the average of a large number of smooth

convex loss functions. We propose a new method, S2GD (Semi-Stochastic Gradient

Descent), which runs for one or several epochs in each of which a single full gradient and

a random number of stochastic gradients is computed, following a geometric law. For

strongly convex objectives, the method converges linearly. The total work needed for the

method to output an epsilon-accurate solution in expectation, measured in the number

of passes over data, is proportional to the condition number of the problem and inversely

proportional to the number of functions forming the average. This is achieved by running

the method with number of stochastic gradient evaluations per epoch proportional to

conditioning of the problem. The SVRGmethod of Johnson and Zhang arises as a special

case. To illustrate our theoretical results, S2GD only needs the workload equivalent to

about 2.1 full gradient evaluations to find a 10e-6 accurate solution for a problem with

10e9 functions and a condition number of 10e3.

Keywords: stochastic gradient, variance reduction, empirical risk minimization, linear convergence, convex

optimization

1. INTRODUCTION

Many problems in data science (e.g., machine learning, optimization, and statistics) can be cast as
loss minimization problems of the form

min
x∈Rd

f (x), (1)

where

f (x)
def= 1

n

n
∑

i= 1

fi(x). (2)

Here d typically denotes the number of features / coordinates, n the number of examples, and fi(x)
is the loss incurred on example i. That is, we are seeking to find a predictor x ∈ R

d minimizing the
average loss f (x). In big data applications, n is typically very large; in particular, n≫ d.

Note that this formulation includes more typical formulation of L2-regularized objectives—

f (x) = 1
n

∑n
i= 1 f̃i(x) + λ

2 ‖x‖2. We hide the regularizer into the function fi(x) for the sake of
simplicity of resulting analysis.
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1.1. Motivation
Let us now briefly review two basic approaches to solving
problem (1).

1. Gradient Descent. Given xk ∈ R
d, the gradient descent (GD)

method sets

xk+1 = xk − hf ′(xk),

where h is a stepsize parameter and f ′(xk) is the gradient of
f at xk. We will refer to f ′(x) by the name full gradient. In
order to compute f ′(xk), we need to compute the gradients of
n functions. Since n is big, it is prohibitive to do this at every
iteration.

2. Stochastic Gradient Descent (SGD). Unlike gradient descent,
stochastic gradient descent [1, 2] instead picks a random i
(uniformly) and updates

xk+1 = xk − hf ′i (xk).

Note that this strategy drastically reduces the amount of work
that needs to be done in each iteration (by the factor of n).
Since

E(f ′i (xk)) = f ′(xk),

we have an unbiased estimator of the full gradient. Hence,
the gradients of the component functions f1, . . . , fn will be
referred to as stochastic gradients. A practical issue with SGD
is that consecutive stochastic gradients may vary a lot or even
point in opposite directions. This slows down the performance
of SGD. On balance, however, SGD is preferable to GD in
applications where low accuracy solutions are sufficient. In
such cases usually only a small number of passes through the
data (i.e., work equivalent to a small number of full gradient
evaluations) are needed to find an acceptable x. For this
reason, SGD is extremely popular in fields such as machine
learning.

In order to improve upon GD, one needs to reduce the cost of
computing a gradient. In order to improve upon SGD, one has to
reduce the variance of the stochastic gradients. In this paper we
propose and analyze a Semi-Stochastic Gradient Descent (S2GD)
method. Our method combines GD and SGD steps and reaps the
benefits of both algorithms: it inherits the stability and speed of
GD and at the same time retains the work-efficiency of SGD.

1.2. Brief Literature Review
Several recent papers, e.g., Richtárik and Takáč [3], Roux
et al. [4], Schmidt et al. [5], Shalev-Shwartz and Zhang
[6], and Johnson and Zhang [7] proposed methods which
achieve similar variance-reduction effect, directly or
indirectly. These methods enjoy linear convergence rates
when applied to minimizing smooth strongly convex loss
functions.

The method in Richtárik and Takáč [3] is known as
Random Coordinate Descent for Composite functions (RCDC),
and can be either applied directly to Equation (1), or to
a dual version of Equation (1). Unless specific conditions

on the problem structure are met, application to the primal
directly is not as computationally efficient as its dual version1.
Application of a coordinate descent method to the dual
formulation of Equation (1) is generally referred to as
Stochastic Dual Coordinate Ascent (SDCA) [9]. The algorithm
in Shalev-Shwartz [6] exhibits this duality, and the method in
Takáč et al. [10] extends the primal-dual framework to the
parallel/mini-batch setting. Parallel and distributed stochastic
coordinate descent methods were studied in Richtárik and
Takáč [11], Fercoq and Richtárik [12], and Richtárik and Takáč
[13].

Stochastic Average Gradient (SAG) by Roux et al. [4], is one
of the first SGD-type methods, other than coordinate descent
methods, which were shown to exhibit linear convergence. The
method of Johnson and Zhang [7], called Stochastic Variance
Reduced Gradient (SVRG), arises as a special case in our
setting for a suboptimal choice of a single parameter of our
method. The Epoch Mixed Gradient Descent (EMGD) method,
Zhang et al. [14], is similar in spirit to SVRG, but achieves a
quadratic dependence on the condition number instead of a
linear dependence, as is the case with SDCA, SAG, SVRG and
with our method.

Earlier works of Friedlander and Schmidt [15], Deng
and Ferris [16], and Bastin et al. [17] attempt to interpolate
between GD and SGD and decrease variance by varying
the sample size. These methods however do not realize
the kind of improvements as the recent methods above.
For partially related classical work on semi-stochastic
approximation methods we refer2 the reader to the papers
of Marti and Fuchs [18, 19], which focus on general stochastic
optimization.

1.3. Outline
We start in Section 2 by describing two algorithms: S2GD,
which we analyze, and S2GD+, which we do not analyze, but
which exhibits superior performance in practice. We then move
to summarizing some of the main contributions of this paper
in Section 3. Section 4 is devoted to establishing expectation
and high probability complexity results for S2GD in the case
of a strongly convex loss. The results are generic in that
the parameters of the method are set arbitrarily. Hence, in
Section 5 we study the problem of choosing the parameters
optimally, with the goal of minimizing the total workload
(# of processed examples) sufficient to produce a result of
specified accuracy. In Section 6 we establish high probability
complexity bounds for S2GD applied to a non-strongly
convex loss function. Discussion of efficient implementation
for sparse data is in Section 7. Finally, in Section 8 we
perform very encouraging numerical experiments on real and
artificial problem instances. A brief conclusion can be found in
Section 9.

1The question of whether or when primal or dual version is better has recently been

studied in Csiba and Richtárik [8] to which we refer the reader for further details.
2We thank Zaid Harchaoui who pointed us to these papers a few days before we

posted our work to arXiv.
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2. SEMI-STOCHASTIC GRADIENT
DESCENT

In this section we describe two novel algorithms: S2GD and
S2GD+. We analyze the former only. The latter, however, has
superior convergence properties in our experiments.

These following two assumption are regarded as basic setting
for smooth convex optimization, under which analysis of
methods is typically presented first3. We assume throughout the
paper that the functions fi are convex and L-smooth.

Assumption 1. The functions f1, . . . , fn have Lipschitz continuous
gradients with constant L > 0 (in other words, they are L-smooth).
That is, for all x, z ∈ R

d and all i = 1, 2, . . . , n,

fi(z) ≤ fi(x)+ 〈f ′i (x), z − x〉 + L

2
‖z − x‖2.

(This implies that the gradient of f is Lipschitz with constant L, and
hence f satisfies the same inequality.)

In one part of the paper (Section 4) we also make the following
additional assumption:

Assumption 2. The average loss f is µ-strongly convex, µ > 0.
That is, for all x, z ∈ R

d,

f (z) ≥ f (x)+ 〈f ′(x), z − x〉 + µ

2
‖z − x‖2. (3)

(Note that, necessarily, µ ≤ L.)

2.1. S2GD
Algorithm 1 (S2GD) depends on three parameters: stepsize h,
constantm limiting the number of stochastic gradients computed
in a single epoch, and a ν ∈ [0,µ], whereµ is the strong convexity
constant of f . In practice, ν would be a known lower bound on µ.
Note that the algorithm works also without any knowledge of the
strong convexity parameter—the case of ν = 0.

Algorithm 1 Semi-Stochastic Gradient Descent (S2GD)

parameters: m = max # of stochastic steps per epoch, h =
stepsize, ν = lower bound on µ

for j = 0, 1, 2, . . . do
gj ← 1

n

∑n
i=1 f

′
i (xj)

yj,0 ← xj
Let tj ← t with probability (1 − νh)m−t/β for t =

1, 2, . . . ,m
for t = 0 to tj − 1 do

Pick i ∈ {1, 2, . . . , n}, uniformly at random
yj,t+1 ← yj,t − h

(

gj + f ′i (yj,t)− f ′i (xj)
)

end for

xj+1 ← yj,tj
end for

3Since the first version of our work, our proposed algorithm has been extended to

apply to a more broader class functions in Konečný et al. [20].

The method has an outer loop, indexed by epoch counter j,
and an inner loop, indexed by t. In each epoch j, the method
first computes gj—the full gradient of f at xj. Subsequently,
the method produces a random number tj ∈ [1,m] of steps,
following a geometric law, where

β
def=

m
∑

t=1
(1− νh)m − t , (4)

with only two stochastic gradients computed in each step4. For
each t = 0, . . . , tj − 1, the stochastic gradient f ′i (xj) is subtracted
from gj, and f ′i (yj,t−1) is added to gj, which ensures that, one has

E(gj + f ′i (yj,t)− f ′i (xj)) = f ′(yj,t),

where the expectation is with respect to the random variable i.
Hence, the algorithm is stochastic gradient descent—albeit

executed in a nonstandard way (compared to the traditional
implementation described in the introduction).

Note that for all j, the expected number of iterations of the
inner loop, E(tj), is equal to

ξ = ξ (m, h)
def=

m
∑

t=1
t
(1− νh)m − t

β
. (5)

Also note that ξ ∈ [m+12 ,m), with the lower bound attained for
ν = 0, and the upper bound for νh→ 1.

2.2. S2GD+

We also implement Algorithm 2, which we call S2GD+. In our
experiments, the performance of this method is superior to all
methods we tested, including S2GD. However, we do not analyze
the complexity of this method and leave this as an open problem.

Algorithm 2 S2GD+

parameters: α ≥ 1 (e.g., α = 1)
1. Run SGD for a single pass over the data (i.e., n iterations);
output x
2. Starting from x0 = x, run a version of S2GD in which
tj = αn for all j

In brief, S2GD+ starts by running SGD for 1 epoch (1 pass over
the data) and then switches to a variant of S2GD in which the
number of the inner iterations, tj, is not random, but fixed to be
n or a small multiple of n.

The motivation for this method is the following. It is common
knowledge that SGD is able to progress much more in one
pass over the data than GD (where this would correspond to a
single gradient step). However, the very first step of S2GD is the
computation of the full gradient of f . Hence, by starting with a

4It is possible to get away with computing only a single stochastic gradient per

inner iteration, namely f ′i (yj,t), at the cost of having to store in memory f ′i (xj) for
i = 1, 2, . . . , n. This, however, can be impractical for big n.
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TABLE 1 | Comparison of performance of selected methods suitable for

solving Equation (1).

Algorithm Complexity/work

Nesterov’s algorithm O
(√

κn log(1/ε)
)

EMGD O
(

(n+ κ2) log(1/ε)
)

SAG O
(

max{n, κ} log(1/ε)
)

SDCA O
(

(n+ κ ) log(1/ε)
)

SVRG O
(

(n+ κ ) log(1/ε)
)

S2GD O
(

(n+ κ ) log(1/ε)
)

The complexity/work is measured in the number of stochastic gradient evaluations needed

to find an ε-solution.

single pass over data using SGD and then switching to S2GD, we
obtain a superior method in practice5.

3. SUMMARY OF RESULTS

In this section we summarize some of the main results and
contributions of this work.

1. Complexity for strongly convex f . If f is strongly convex,
S2GD needs

W = O((n+ κ) log(1/ε)) (6)

work (measured as the total number of evaluations of
the stochastic gradient, accounting for the full gradient
evaluations as well) to output an ε-approximate solution (in
expectation or in high probability), where κ = L/µ is the
condition number. This is achieved by running S2GD with
stepsize h = O(1/L), j = O(log(1/ε)) epochs (this is also
equal to the number of full gradient evaluations) and m =
O(κ) (this is also roughly equal to the number of stochastic
gradient evaluations in a single epoch). The complexity results
are stated in detail in Sections 4 and 5 (see Theorems 4, 5 and
6; see also Equations 26 and 27).

2. Comparison with existing results. This complexity result
(Equation 6) matches the best-known results obtained for
strongly convex losses in recent work such as Roux et
al. [4], Johnson and Zhang [7], and Zhang and Mahdavi
[14]. Our treatment is most closely related to Johnson
and Zhang [7], and contains their method (SVRG) as a
special case. In Table 1 we summarize our results in the
strongly convex case with other existing results for different
algorithms.

We should note that the rate of convergence of Nesterov’s
algorithm [21] is a deterministic result. EMGD and S2GD
results hold with high probability (see Theorem 5 for precise
statement). Complexity results for stochastic coordinate
descent methods are also typically analyzed in the high
probability regime [3]. The remaining results hold in

5Using a single pass of SGD as an initialization strategy was already considered in

Roux et al. [4]. However, the authors claim that their implementation of vanilla

SAG did not benefit from it. S2GD does benefit from such an initialization due to

it starting, in theory, with a (heavy) full gradient computation.

expectation. Notion of κ is slightly different for SDCA,
which requires explicit knowledge of the strong convexity
parameter µ to run the algorithm. In contrast, other methods
do not algorithmically depend on this, and thus their
convergence rate can adapt to any additional strong convexity
locally.

3. Complexity for convex f . If f is not strongly convex, then
we propose that S2GD be applied to a perturbed version of
the problem, with strong convexity constant µ = O(L/ε). An
ε-accurate solution of the original problem is recovered with
arbitrarily high probability (see Theorem 8 in Section 6). The
total work in this case is

W = O
((

n+ L/ε)
)

log (1/ε)
)

,

that is, Õ(1/ǫ), which is better than the standard rate of SGD.
4. Optimal parameters. We derive formulas for optimal

parameters of the method which (approximately) minimize
the total workload, measured in the number of stochastic
gradients computed (counting a single full gradient evaluation
as n evaluations of the stochastic gradient). In particular, we
show that the method should be run for O(log(1/ε)) epochs,
with stepsize h = O(1/L) andm = O(κ). No such results were
derived for SVRG in Johnson and Zhang [7].

5. One epoch. Consider the case when S2GD is run for 1
epoch only, effectively limiting the number of full gradient
evaluations to 1, while choosing a target accuracy ǫ. We show
that S2GD with ν = µ needs

O(n+ (κ/ε) log(1/ε))

work only (see Table 2). This compares favorably with the
optimal complexity in the ν = 0 case (which reduces to
SVRG), where the work needed is

O(n+ κ/ε2).

For two epochs one could just say that we need
√

ε

decrease in each epoch, thus having complexity of O(n +
(κ/
√

ε) log(1/
√

ε)). This is already better than general rate of
SGD (O(1/ε)).

6. Special cases. GD and SVRG arise as special cases of S2GD,
form = 1 and ν = 0, respectively6.

7. Low memory requirements. Note that SDCA and SAG,
unlike SVRG and S2GD, need to store all gradients f ′i (or dual
variables) throughout the iterative process. While this may
not be a problem for a modest sized optimization task, this
requirement makes such methods less suitable for problems
with very large n.

8. S2GD+. We propose a “boosted” version of S2GD, called
S2GD+, which we do not analyze. In our experiments,
however, it performs vastly superior to all other methods we
tested, including GD, SGD, SAG and S2GD. S2GD alone is
better than both GD and SGD if a highly accurate solution

6While S2GD reduces to GD for m = 1, our analysis does not say anything

meaningful in the m = 1 case—it is too coarse to cover this case. This is also the

reason behind the empty space in the “Complexity” box column for GD in Table 2.
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TABLE 2 | Summary of complexity results and special cases.

Parameters Method Complexity

ν = µ, j = O(log( 1ε ))

& m = O(κ ) Optimal S2GD O((n+ κ ) log( 1ε ))

m = 1 GD —

ν = 0 SVRG [7] O((n+ κ ) log( 1ε ))

ν = 0, j = 1, m = O( κ

ε2
) Optimal SVRG with 1 epoch O(n+ κ

ε2
)

ν = µ, j = 1, m = O( κε log( 1ε )) Optimal S2GD with 1 epoch O(n+ κ
ε log( 1ε ))

Condition number: κ = L/µ if f is µ-strongly convex and κ = 2L/ε if f is not strongly

convex and ǫ ≤ L.

is required. The performance of S2GD and SAG is roughly
comparable, even though in our experiments S2GD turned to
have an edge.

4. COMPLEXITY ANALYSIS: STRONGLY
CONVEX LOSS

For the purpose of the analysis, let

Fj,t
def= σ (x1, x2, . . . , xj; yj,1, yj,2, . . . , yj,t) (7)

be the σ -algebra generated by the relevant history of S2GD. We
first isolate an auxiliary result.

Lemma 3. Consider the S2GD algorithm. For any fixed epoch
number j, the following identity holds:

E(f (xj+1)) =
1

β

m
∑

t=1
(1− νh)m−tE

(

f (yj,t−1)
)

. (8)

Proof. By the tower law of conditional expectations and the
definition of xj+1 in the algorithm, we obtain

E(f (xj+1)) = E
(

E(f (xj+1) | Fj,m)
)

= E

(

m
∑

t= 1

(1− νh)m−t

β
f (yj,t− 1)

)

= 1

β

m
∑

t= 1

(1− νh)m−tE
(

f (yj,t− 1)
)

.

We now state and prove the main result of this section.

Theorem 4. Let Assumptions 1 and 2 be satisfied. Consider the
S2GD algorithm applied to solving problem (1). Choose 0 ≤ ν ≤
µ, 0 < h < 1

2L , and let m be sufficiently large so that

c
def= (1− νh)m

βµh(1− 2Lh)
+ 2(L− µ)h

1− 2Lh
< 1. (9)

Then we have the following convergence in expectation:

E
(

f (xj)− f (x∗)
)

≤ cj(f (x0)− f (x∗)). (10)

Before we proceed to proving the theorem, note that in the special
case with ν = 0, we recover the result of Johnson and Zhang [7]
(with a minor improvement in the second term of c where L is
replaced by L− µ), namely

c = 1

µh(1− 2Lh)m
+ 2(L− µ)h

1− 2Lh
. (11)

If we set ν = µ, then c can be written in the form (see Equation 4)

c = (1− µh)m

(1− (1− µh)m)(1− 2Lh)
+ 2(L− µ)h

1− 2Lh
. (12)

Clearly, the latter c is a major improvement on the former one.
We shall elaborate on this further later.

Proof. It is well-known [21, Theorem 2.1.5] that since the
functions fi are L-smooth, they necessarily satisfy the following
inequality:

‖f ′i (x)− f ′i (x∗)‖2 ≤ 2L
[

fi(x)− fi(x∗)− 〈f ′i (x∗), x− x∗〉
]

.

By summing these inequalities for i = 1, . . . , n, and using
f ′(x∗) = 0, we get

1

n

n
∑

i= 1

‖f ′i (x)− f ′i (x∗)‖2 ≤ 2L
[

f (x)− f (x∗)− 〈f ′(x∗), x− x∗〉
]

= 2L(f (x)− f (x∗)). (13)

Let Gj,t
def= gj + f ′i (yj,t− 1) − f ′i (xj) be the direction of update

at jth iteration in the outer loop and tth iteration in the inner
loop. Taking expectation with respect to i, conditioned on the
σ -algebra Fj,t− 1 Equation (7), we obtain7

E
(

‖Gj,t‖2
)

= E
(

‖f ′i (yj,t− 1)− f ′i (x∗)− f ′i (xj)+ f ′i (x∗)+ gj‖2
)

≤ 2E
(

‖f ′i (yj,t− 1)− f ′i (x∗)‖2
)

+ 2E
(

‖
[

f ′i (xj)− f ′i (x∗)
]

− f ′(xj)‖2
)

= 2E
(

‖f ′i (yj,t− 1)− f ′i (x∗)‖2
)

+2E
(

‖f ′i (xj)− f ′i (x∗)‖2
)

−4E
(〈

f ′(xj), f
′
i (xj)− f ′i (x∗)

〉)

+ 2‖f ′(xj)‖2

(13)
≤ 4L

[

f (yj,t− 1)− f (x∗)+ f (xj)− f (x∗)
]

− 2‖f ′(xj)‖2 − 4〈f ′(xj), f ′(x∗)〉
(3)
≤ 4L

[

f (yj,t− 1)− f (x∗)
]

+ 4(L− µ)
[

f (xj)− f (x∗)
]

. (14)

Above we have used the bound ‖x′ + x′′‖2 ≤ 2‖x′‖2 + 2‖x′′‖2
and the fact that

E(Gj,t | Fj,t− 1) = f ′(yj,t− 1). (15)

7For simplicity, we supress the E(· | Fj,t− 1) notation here.
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We now study the expected distance to the optimal solution
(a standard approach in the analysis of gradient methods):

E(‖yj,t − x∗‖2 | Fj,t− 1) = ‖yj,t− 1 − x∗‖2 − 2h〈E(Gj,t | Fj,t− 1), yj,t− 1 − x∗〉
+h2E(‖Gj,t‖2 | Fj,t− 1)

(14)+(15)
≤ ‖yj,t− 1 − x∗‖2 − 2h〈f ′(yj,t− 1), yj,t− 1 − x∗〉

+4Lh2
[

f (yj,t− 1)− f (x∗)
]

+ 4(L− µ)h2
[

f (xj)− f (x∗)
]

(3)
≤ ‖yj,t− 1 − x∗‖2 − 2h

[

f (yj,t− 1)− f (x∗)
]

− νh‖yj,t− 1 − x∗‖2

+4Lh2
[

f (yj,t− 1)− f (x∗)
]

+ 4(L− µ)h2
[

f (xj)− f (x∗)
]

= (1− νh)‖yj,t− 1 − x∗‖2 − 2h(1− 2Lh)[f (yj,t− 1)− f (x∗)]

+4(L− µ)h2[f (xj)− f (x∗)]. (16)

By rearranging the terms in Equation (16) and taking expectation
over the σ -algebra Fj,t− 1, we get the following inequality:

E(‖yj,t − x∗‖2)+ 2h(1− 2Lh)E(f (yj,t− 1)− f (x∗))

≤ (1− νh)E(‖yj,t− 1 − x∗‖2)
+ 4(L− µ)h2E(f (xj)− f (x∗)). (17)

Finally, we can analyze what happens after one iteration of the
outer loop of S2GD, i.e., between two computations of the full
gradient. By summing up inequalities Equation (17) for t =
1, . . . ,m, with inequality t multiplied by (1 − νh)m−t , we get the
left-hand side

LHS = E(‖yj,m − x∗‖2)+ 2h(1− 2Lh)

m
∑

t= 1

(1− νh)m−tE(f (yj,t− 1)− f (x∗))

(8)= E(‖yj,m − x∗‖2)+ 2βh(1− 2Lh)E(f (xj+1)− f (x∗)),

and the right-hand side

RHS = (1− νh)mE(‖xj − x∗‖2)
+ 4β(L− µ)h2E(f (xj)− f (x∗))

(3)
≤ 2(1− νh)m

µ
E(f (xj)− f (x∗))

+ 4β(L− µ)h2E(f (xj)− f (x∗))

= 2

(

(1− νh)m

µ
+ 2β(L− µ)h2

)

E(f (xj)− f (x∗)).

Since LHS ≤ RHS, we finally conclude with

E(f (xj+1)− f (x∗)) ≤ cE(f (xj)− f (x∗))

−
E(‖yj,m − x∗‖2)
2βh(1− 2Lh)

≤ cE(f (xj)− f (x∗)).

Since we have established linear convergence of expected values,
a high probability result can be obtained in a straightforward way
using Markov inequality.

Theorem 5. Consider the setting of Theorem 4. Then, for any
0 < ρ < 1, 0 < ε < 1 and

j ≥
log

(

1
ερ

)

log
(

1
c

) , (18)

we have

P

(

f (xj)− f (x∗)

f (x0)− f (x∗)
≤ ε

)

≥ 1− ρ. (19)

Proof. This follows directly from Markov inequality and
Theorem 4:

P(f (xj)−f (x∗) > ε(f (x0)−f (x∗))
(10)
≤

E(f (xj)− f (x∗))

ε(f (x0)− f (x∗))
≤ cj

ε

(18)
≤ ρ

This result will be also useful when treating the non-strongly
convex case.

5. OPTIMAL CHOICE OF PARAMETERS

The goal of this section is to provide insight into the choice of
parameters of S2GD; that is, the number of epochs (equivalently,
full gradient evaluations) j, the maximal number of steps in each
epoch m, and the stepsize h. The remaining parameters (L,µ, n)
are inherent in the problem and we will hence treat them in this
section as given.

In particular, ideally we wish to find parameters j, m and h
solving the following optimization problem:

min
j,m,h

W̃(j,m, h)
def= j(n+ 2ξ (m, h)), (20)

subject to

E(f (xj)− f (x∗)) ≤ ε(f (x0)− f (x∗)). (21)

Note that W̃(j,m, h) is the expected work, measured by the
number number of stochastic gradient evaluations, performed by
S2GD when running for j epochs. Indeed, the evaluation of gj is
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equivalent to n stochastic gradient evaluations, and each epoch
further computes on average 2ξ (m, h) stochastic gradients (see
Equation 5). Since m+1

2 ≤ ξ (m, h) < m, we can simplify and
solve the problem with ξ set to the conservative upper estimate
ξ = m.

In view of Equation (10), accuracy constraint Equation (21) is
satisfied if c (which depends on h andm) and j satisfy

cj ≤ ε. (22)

We therefore instead consider the parameter fine-tuning
problem:

min
j,m,h

W(j,m, h)
def= j(n+ 2m) subject to c ≤ ε1/j. (23)

In the following we (approximately) solve this problem in two
steps. First, we fix j and find (nearly) optimal h = h(j) and
m = m(j). The problem reduces to minimizing m subject to
c ≤ ε1/j by fine-tuning h. While in the ν = 0 case it is possible to
obtain closed form solution, this is not possible for ν > µ.

However, it is still possible to obtain a good formula for h(j)
leading to expression for good m(j) which depends on ε in the
correct way. We then plug the formula form(j) obtained this way
back into Equation (23), and study the quantityW(j,m(j), h(j)) =
j(n + 2m(j)) as a function of j, over which we optimize optimize
at the end.

Theorem 6 (Choice of parameters). Fix the number of epochs
j ≥ 1, error tolerance 0 < ε < 1, and let 1 = ε1/j. If we run
S2GD with the stepsize

h = h(j)
def= 1

4
1
(L− µ)+ 2L

(24)

and

m ≥ m(j)
def=
{

(

4(κ−1)
1
+ 2κ

)

log
(

2
1
+ 2κ−1

κ−1

)

, if ν = µ,

8(κ−1)
12 + 8κ

1
+ 2κ2

κ−1 , if ν = 0,

(25)
then E(f (xj)− f (x∗)) ≤ ε(f (x0)− f (x∗)).

In particular, if we choose j∗ = ⌈log(1/ε)⌉, then 1
1
≤ exp(1),

and hence m(j∗) = O(κ), leading to the workload

W(j∗,m(j∗), h(j∗)) = ⌈log
(

1
ε

)

⌉(n+O(κ)) = O
(

(n+ κ) log
(

1
ε

))

.
(26)

Proof. We only need to show that c ≤ 1, where c is given by
Equation (12) for ν = µ and by Equation (11) for ν = 0. We
denote the two summands in expressions for c as c1 and c2. We
choose the h and m so that both c1 and c2 are smaller than 1/2,
resulting in c1 + c2 = c ≤ 1.

The stepsize h is chosen so that

c2
def= 2(L− µ)h

1− 2Lh
= 1

2
,

and hence it only remains to verify that c1 = c − c2 ≤ 1
2 . In the

ν = 0 case,m(j) is chosen so that c− c2 = 1
2 . In the ν = µ case,

c − c2 = 1
2 holds for m = log

(

2
1
+ 2κ−1

κ−1

)

/ log
(

1
1−H

)

, where

H =
(

4(κ−1)
1
+ 2κ

)−1
. We only need to observe that c decreases

asm increases, and apply the inequality log
(

1
1−H

)

≥ H.

We now comment on the above result:

1. Workload. Notice that for the choice of parameters j∗,
h = h(j∗), m = m(j∗) and any ν ∈ [0,µ], the method
needs log(1/ε) computations of the full gradient (note this
is independent of κ), and O(κ log(1/ε)) computations of the
stochastic gradient. This result, and special cases thereof, are
summarized in Table 2.

2. Simpler formulas form. If κ ≥ 2, we can instead of Equation
(25) use the following (slightly worse but) simpler expressions
for m(j), obtained from Equation (25) by using the bounds
1 ≤ κ − 1, κ − 1 ≤ κ and 1 < 1 in appropriate places (e.g.,
8κ
1

< 8κ
12 ,

κ
κ−1 ≤ 2 < 2

12 ):

m ≥ m̃(j)
def=
{

6κ
1
log

(

5
1

)

, if ν = µ,
20κ
12 , if ν = 0.

(27)

3. Optimal stepsize in the ν = 0 case. Theorem 6 does not claim
to have solved problem (23); the problem in general does not
have a closed form solution. However, in the ν = 0 case a
closed-form formula can easily be obtained:

h(j) = 1
4
1
(L− µ)+ 4L

, m ≥ m(j)
def= 8(κ − 1)

12
+8κ

1
.

(28)
Indeed, for fixed j, Equation (23) is equivalent to finding h
that minimizes m subject to the constraint c ≤ 1. In view
of Equation (11), this is equivalent to searching for h > 0
maximizing the quadratic h→ h(1−2(1L+L−µ)h), which
leads to Equation (28).

Note that both the stepsize h(j) and the resulting m(j)
are slightly larger in Theorem 6 than in Equation (28). This
is because in the theorem the stepsize was for simplicity
chosen to satisfy c2 = 1

2 , and hence is (slightly) suboptimal.
Nevertheless, the dependence of m(j) on 1 is of the correct
(optimal) order in both cases. That is, m(j) = O

(

κ
1
log( 1

1
)
)

for ν = µ andm(j) = O
(

κ
12

)

for ν = 0.

4. Stepsize choice. In cases when one does not have a good
estimate of the strong convexity constant µ to determine
the stepsize via Equation (24), one may choose suboptimal
stepsize that does not depend on µ and derive similar results
to those above. For instance, one may choose h = 1

6L .

In Table 3 we provide comparison of work needed for small
values of j, and different values of κ and ε. Note, for instance,
that for any problem with n = 109 and κ = 103, S2GD outputs
a highly accurate solution (ε = 10−6) in the amount of work
equivalent to 2.12 evaluations of the full gradient of f !
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TABLE 3 | Comparison of work sufficient to solve a problem with n = 109, and various values of κ and ε.

ε = 10−3, κ = 103 ε = 10−6, κ = 103 ε = 10−9, κ = 103

j Wµ(j) W0(j) j Wµ(j) W0(j) j Wµ(j) W0(j)

1 1.06n 17.0n 1 116n 107n 2 7.58n 104n

2 2.00n 2.03n 2 2.12n 34.0n 3 3.18n 51.0n

3 3.00n 3.00n 3 3.01n 3.48n 4 4.03n 6.03n

4 4.00n 4.00n 4 4.00n 4.06n 5 5.01n 5.32n

5 5.00n 5.00n 5 5.00n 5.02n 6 6.00n 6.09n

ε = 10−3, κ = 106 ε = 10−6, κ = 106 ε = 10−9, κ = 106

j Wµ(j) W0(j) j Wµ(j) W0(j) j Wµ(j) W0(j)

2 4.14n 35.0n 4 8.29n 70.0n 5 17.3n 328n

3 3.77n 8.29n 5 7.30n 26.3n 8 10.9n 32.5n

4 4.50n 6.39n 6 7.55n 16.5n 10 11.9n 21.4n

5 5.41n 6.60n 8 9.01n 12.7n 13 14.3n 19.1n

6 6.37n 7.28n 10 10.8n 13.2n 20 21.0n 23.5n

ε = 10−3, κ = 109 ε = 10−6, κ = 109 ε = 10−9, κ = 109

j Wµ(j) W0(j) j Wµ(j) W0(j) j Wµ(j) W0(j)

6 378n 1, 293n 13 737n 2, 409n 15 1, 251n 4, 834n

8 358n 1, 063n 16 717n 2, 126n 24 1,076n 3, 189n

11 376n 1,002n 19 727n 2, 025n 30 1, 102n 3, 018n

15 426n 1, 058n 22 752n 2, 005n 32 1, 119n 3,008n

20 501n 1, 190n 30 852n 2, 116n 40 1, 210n 3, 078n

The work was computed using formula (23), with m(j) as in Equation (27). The notation Wν (j) indicates what parameter ν was used, and optimal values are highlighted in bold.

6. COMPLEXITY ANALYSIS: CONVEX LOSS

If f is convex but not strongly convex, we define f̂i(x)
def= fi(x) +

µ
2 ‖x − x0‖2, for small enough µ > 0 (we shall see below how
the choice of µ affects the results), and consider the perturbed
problem

min
x∈Rd

f̂ (x), (29)

where

f̂ (x)
def= 1

n

n
∑

i=1
f̂i(x) = f (x)+ µ

2
‖x− x0‖2. (30)

Note that f̂ is µ-strongly convex and (L + µ)-smooth. In
particular, the theory developed in the previous section applies.
We propose that S2GD be instead applied to the perturbed
problem, and show that an approximate solution of Equation (29)
is also an approximate solution of Equation (1) (we will assume
that this problem has a minimizer).

Let x̂∗ be the (necessarily unique) solution of the perturbed
problem (29). The following result describes an important
connection between the original problem and the perturbed
problem.

Lemma 7. If x̂ ∈ R
d satisfies f̂ (x̂) ≤ f̂ (x̂∗)+ δ, where δ > 0, then

f (x̂) ≤ f (x∗)+
µ

2
‖x0 − x∗‖2 + δ.

Proof. The statement is almost identical to Lemma 9 in Richtárik
and Takáč [3]; its proof follows the same steps with only minor
adjustments.

We are now ready to establish a complexity result for non-
strongly convex losses.

Theorem 8. Let Assumption 1 be satisfied. Choose µ > 0, 0 ≤
ν ≤ µ, stepsize 0 < h < 1

2(L+µ)
, and let m be sufficiently large so

that

ĉ
def= (1− νh)m

βµh(1− 2(L+ µ)h)
+ 2Lh

1− 2(L+ µ)h
< 1. (31)

Pick x0 ∈ R
d and let x̂0 = x0, x̂1, . . . , x̂j be the sequence of

iterates produced by S2GD as applied to problem (29). Then, for
any 0 < ρ < 1, 0 < ε < 1 and

j ≥
log

(

1/(ερ)
)

log(1/ĉ)
, (32)

we have

P
(

f (x̂j)− f (x∗) ≤ ε(f (x0)− f (x∗))+
µ

2
‖x0 − x∗‖2

)

≥ 1− ρ.

(33)
In particular, if we choose µ = ǫ < L and parameters j∗, h(j∗),
m(j∗) as in Theorem 6, the amount of work performed by S2GD to
guarantee Equation (33) is

W(j∗, h(j∗),m(j∗)) = O
(

(n+ L
ε
) log( 1

ε
)
)

,
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which consists of O( 1
ε
) full gradient evaluations and O( L

ǫ
log( 1

ε
))

stochastic gradient evaluations.

Proof. We first note that

f̂ (x̂0)− f̂ (x̂∗)
(30)= f (x̂0)− f̂ (x̂∗) ≤ f (x̂0)− f (x̂∗) ≤ f (x0)− f (x∗),

(34)
where the first inequality follows from f ≤ f̂ , and the second
one from optimality of x∗. Hence, by first applying Lemma 7 with
x̂ = x̂j and δ = ε(f (x0)−f (x∗)), and then Theorem 5, with c← ĉ,

f ← f̂ , x0 ← x̂0, x∗ ← x̂∗, we obtain

P
(

f (x̂j)− f (x∗) ≤ δ + µ

2
‖x0 − x∗‖2

)

(Lemma 7)
≥ P

(

f̂ (x̂j)− f̂ (x̂∗) ≤ δ
)

(34)
≥ P

(

f̂ (x̂j)− f̂ (x̂∗)

f̂ (x̂0)− f̂ (x̂∗)
≤ ε

)

(19)
≥ 1− ρ.

The second statement follows directly from the second part
of Theorem 6 and the fact that the condition number of the
perturbed problem is κ = L+ǫ

ǫ
≤ 2L

ǫ
.

7. IMPLEMENTATION FOR SPARSE DATA

In our sparse implementation of Algorithm 1, described in
this section and formally stated as Algorithm 3, we make the
following structural assumption:

Assumption 9. The loss functions arise as the composition of a
univariate smooth loss function φi, and an inner product with a
data point/example ai ∈ R

d:

fi(x) = φi(a
T
i x), i = 1, 2, . . . , n.

In this case, f ′i (x) = φ′i(a
T
i x)ai.

This is the structure in many cases of interest, including linear or
logistic regression.

A natural question one might want to ask is whether S2GD
can be implemented efficiently for sparse data.

Let us first take a brief detour and look at SGD, which
performs iterations of the type:

xj+1 ← xj − hφ′i(a
T
i x)ai. (35)

Let ωi be the number of nonzero features in example ai, i.e., ωi
def=

‖ai‖0 ≤ d. Assuming that the computation of the derivative
of the univariate function φi takes O(1) amount of work, the
computation of ∇fi(x) will take O(ωi) work. Hence, the update
step Equation (35) will cost O(ωi), too, which means the method
can naturally speed up its iterations on sparse data.

The situation is not as simple with S2GD, which for loss
functions of the type described in Assumption 9 performs inner
iterations as follows:

yj,t+1 ← yj,t − h
(

gj + φ′i(a
T
i yj,t)ai − φ′i(a

T
i xj)ai

)

. (36)

Indeed, note that gj = f ′(xj) is in general be fully dense even for
sparse data {ai}. As a consequence, the update in Equation (36)
might be as costly as d operations, irrespective of the sparsity level
ωi of the active example ai. However, we can use the following
“lazy/delayed” update trick. We split the update to the y vector
into two parts: immediate, and delayed. Assume index i = it was
chosen at inner iteration t. We immediately perform the update

ỹj,t+1 ← yj,t − h
(

φ′it (a
T
it
yj,t)− φ′it (a

T
it
xj)
)

ait ,

which costs O(ait ). Note that we have not computed the yj,t+1.
However, we “know” that

yj,t+1 = ỹj,t+1 − hgj,

without having to actually compute the difference. At the next
iteration, we are supposed to perform update Equation (36) for
i = it+1:

yj,t+2 ← yj,t+1 − hgj − h
(

φ′it+1 (a
T
it+1yj,t+1)− φ′it+1 (a

T
it+1xj)

)

ait+1 .

(37)

Algorithm 3 Semi-Stochastic Gradient Descent (S2GD) for
sparse data; “lazy” updates

parameters: m = max # of stochastic steps per epoch, h =
stepsize, ν = lower bound on µ

for j = 0, 1, 2, . . . do
gj ← 1

n

∑n
i=1 f

′
i (xj)

yj,0 ← xj

χ (s) ← 0 for s = 1, 2, . . . , d ⊲ Store when a coordinate
was updated last time

Let tj ← t with probability (1 − νh)m−t/β for t =
1, 2, . . . ,m

for t = 0 to tj − 1 do
Pick i ∈ {1, 2, . . . , n}, uniformly at random
for s ∈ nnz(ai) do

y
(s)
j,t ← y

(s)
j,t − (t − χ (s))hg

(s)
j ⊲ Update what will be

needed
χ (s) = t

end for

yj,t+1 ← yj,t − h
(

φ′i(a
T
i yj,t)− φ′i(a

T
i xj)

)

ai ⊲ A sparse
update

end for

for s = 1 to d do ⊲ Finish all the “lazy” updates

y
(s)
j,tj
← y

(s)
j,tj
− (tj − χ (s))hg

(s)
j

end for

xj+1 ← yj,tj
end for

However, notice that we can’t compute

φ′it+1 (a
T
it+1yj,t+1) (38)

as we never computed yj,t+1. However, here lies the trick: as ait+1
is sparse, we only need to know those coordinates s of yj,t+1 for
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FIGURE 1 | Least squares with n = 105, κ = 104. Comparison of theoretical result and practical performance for cases ν = µ (full red line) and ν = 0 (dashed blue

line).

which a
(s)
it+1 is nonzero. So, just before we compute the (sparse part

of) of the update Equation (37), we perform the update

y
(s)
j,t+1 ← ỹ

(s)
j,t+1 − hg

(s)
j

for coordinates s for which a
(s)
it+1 is nonzero. This way we know

that the inner product appearing in Equation (38) is computed
correctly (despite the fact that yj,t+1 potentially is not!). In turn,
this means that we can compute the sparse part of the update in
Equation (37).

We now continue as before, again only computing ỹj,t+3.
However, this time we have to be more careful as it is no longer
true that

yj,t+2 = ỹj,t+2 − hgj.

We need to remember, for each coordinate s, the last iteration
counter t for which a

(s)
it
6= 0. This way we will know how many

times did we “forget” to apply the dense update −hg(s)j . We do it

in a just-in-time fashion, just before it is needed.
Algorithm 3 (sparse S2GD) performs these lazy updates

as described above. It produces exactly the same result as
Algorithm 1 (S2GD), but is much more efficient for sparse data
as iteration picking example i only costs O(ωi). This is done
with a memory overhead of only O(d) (as represented by vector
χ ∈ R

d).

8. NUMERICAL EXPERIMENTS

In this section we conduct computational experiments to
illustrate some aspects of the performance of our algorithm. In
Section 8.1 we consider the least squares problem with synthetic
data to compare the practical performance and the theoretical
bound on convergence in expectations. We demonstrate that for

TABLE 4 | Datasets used in the experiments.

Dataset Training

examples (n)

Variables (d) L µ κ

ijcnn 49,990 23 1.23 1/n 61,696

rcv1 20,242 47,237 0.50 1/n 10,122

real-sim 72,309 20,959 0.50 1/n 36,155

url 2,396,130 3,231,962 128.70 100/n 3,084,052

both SVRG and S2GD, the practical rate is substantially better
than the theoretical one. In Section 8.2 we compare the S2GD
algorithm on several real datasets with other algorithms suitable
for this task. We also provide efficient implementation of the
algorithm, as described in Section 7, for the case of logistic
regression in the MLOSS repository8.

8.1. Comparison with Theory
Figure 1 presents a comparison of the theoretical rate and
practical performance on a larger problem with artificial data,
with a condition number we can control (and choose it to be
poor). In particular, we consider the L2-regularized least squares
with

fi(x) =
1

2
(aTi x− bi)

2 + λ

2
‖x‖2,

for some ai ∈ R
d, bi ∈ R and λ > 0 is the regularization

parameter.
We consider an instance with n = 100, 000, d = 1, 000 and

κ = 10, 000. We run the algorithm with both parameters ν = λ

(our best estimate of µ) and ν = 0. Recall that the latter choice

8http://mloss.org/software/view/556/
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FIGURE 2 | Practical performance for logistic regression and the following datasets: ijcnn, rcv (first row), realsim, url (second row).

leads to the SVRG method of [7]. We chose parameters m and
h as a (numerical) solution of the work-minimization problem
(20), obtaining m = 261, 063 and h = 1/11.4L for ν = λ

and m = 426, 660 and h = 1/12.7L for ν = 0. The practical
performance is obtained after a single run of the S2GD algorithm.

The figure demonstrates linear convergence of S2GD in
practice, with the convergence rate being significantly better
than the already strong theoretical result. Recall that the bound
is on the expected function values. We can observe a rather
strong convergence to machine precision in work equivalent
to evaluating the full gradient only 40 times. Needless to say,
neither SGD nor GD have such speed. Our method is also an
improvement over [7], both in theory and practice.

8.2. Comparison with other Methods
The S2GD algorithm can be applied to several classes of
problems. We perform experiments on an important and in
many applications used L2-regularized logistic regression for
binary classification on several datasets. The functions fi in this
case are:

fi(x) = log
(

1+ exp
(

lia
T
i x
))

+ λ

2
‖x‖2,

where li is the label of i
th training exapmle ai. In our experiments

we set the regularization parameter λ = O(1/n) so that the

TABLE 5 | Time required to produce plots in Figure 2.

Time in seconds

Algorithm ijcnn rcv1 real-sim url

S2GDcon 0.25 0.43 1.01 125.53

S2GD 0.29 0.49 1.02 54.04

SAG 0.41 0.73 1.87 71.74

L-BFGS 0.15 0.67 0.76 309.14

SGD 0.39 0.57 1.54 62.73

SDCA 0.33 0.38 1.10 126.32

condition number κ = O(n), which is about the most ill-
conditioned problem used in practice. We added a (regularized)
bias term to all datasets.

All the datasets we used, listed in Table 4, are freely available9

benchmark binary classification datasets.
In the experiment, we compared the following algorithms:

• SGD: Stochastic Gradient Descent. After various experiments,
we decided to use a variant with constant step-size that gave
the best practical performance in hindsight.

9Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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FIGURE 3 | Practical performance of boosted methods on datasets ijcnn, rcv (first row), realsim, url (second row).

• L-BFGS: A publicly-available limited-memory quasi-Newton
method that is suitable for broader classes of problems. We
used a popular implementation by Mark Schmidt10.
• SAG: Stochastic Average Gradient, Schmidt et al. [5]. This is

the most important method to compare to, as it also achieves
linear convergence using only stochastic gradient evaluations.
Although the methods has been analyzed for stepsize h =
1/16L, we experimented with various stepsizes and chose
the one that gave the best performance for each problem
individually.
• SDCA: Stochastic Dual Coordinate Ascent, where we used

approximate solution to the one-dimensional dual step, as in
Section 6.2 of Shalev-Shwartz and Zhang [6].
• S2GDcon: The S2GD algorithm with conservative stepsize

choice, i.e., following the theory. We set m = O(κ) and h =
1/10L, which is approximately the value you would get from
Equation (24).
• S2GD: The S2GD algorithm, with stepsize that gave the best

performance in hindsight. The best value of m was between
n and 2n in all cases, but optimal h varied from 1/2L to
1/10L.

10http://www.di.ens.fr/~mschmidt/Software/minFunc.html

Note that SAG needs to store n gradients in memory in order
to run. In case of relatively simple functions, one can store only
n scalars, as the gradient of fi is always a multiple of ai. If we
are comparing with SAG, we are implicitly assuming that our
memory limitations allow us to do so. Although not included
in Algorithm (1), we could also store these gradients we used
to compute the full gradient, which would mean we would only
have to compute a single stochastic gradient per inner iteration
(instead of two).

We plot the results of these methods, as applied to various
different, in the Figure 2 for first 15–30 passes through the data
(i.e., amount of work work equivalent to 15–30 full gradient
evaluations).

There are several remarks we would like to make. First, our
experiments confirm the insight from Schmidt et al. [5] that for
this types of problems, reduced-variance methods consistently
exhibit substantially better performance than the popular L-
BFGS algorithm.

The performance gap between S2GDcon and S2GD differs

from dataset to dataset. A possible explanation for this can be

found in an extension of SVRG to proximal setting Xiao and

Zhang [22], released after the first version of this paper was put

onto arXiv (i.e., after December 2013) . Instead Assumption 1,
where all loss functions are assumed to be associated with the
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same constant L, the authors of Xiao and Zhang [22] instead
assume that each loss function fi has its own constant Li.
Subsequently, they sample proportionally to these quantities as
opposed to the uniform sampling. In our case, L = maxi Li. This
weighted sampling has an impact on the convergence: one gets
dependence on the average of the quantities Li and not in their
maximum.

The number of passes through data seems a reasonable way
to compare performance, but some algorithms could need more
time to do the same amount of passes through data than others.
In this sense, S2GD should be in fact faster than SAG due to the
following property. While SAG updates the test point after each
evaluation of a stochastic gradient, S2GD does not always make
the update—during the evaluation of the full gradient. This claim
is supported by computational evidence: SAG needed about 20–
40% more time than S2GD to do the same amount of passes
through data.

Finally, in Table 5 we provide the time it took the algorithm
to produce these plots on a desktop computer with Intel Core i7
3610QM processor, with 2 × 4 GB DDR3 1,600 MHz memory.
The numbers for the url dataset is are not representative, as
the algorithm needed extra memory, which slightly exceeded the
memory limit of our computer.

8.3. Boosted variants of S2GD and SAG
In this section we study the practical performance of boosted
methods, namely S2GD+ (Algorithm 2) and variant of SAG
suggested by its authors [5, Section 4.2].

SAG+ is a simple modification of SAG, where one does not
divide the sum of the stochastic gradients by n, but by the number
of training examples seen during the run of the algorithm, which
has the effect of producing larger steps at the beginning. The
authors claim that this method performed better in practice than
a hybrid SG/SAG algorithm.

We have observed that, in practice, starting SAG from a
point close to the optimum, leads to an initial “away jump.”
Eventually, the method exhibits linear convergence. In contrast,
S2GD converges linearly from the start, regardless of the starting
position.

Figure 3 shows that S2GD+ consistently improves over
S2GD, while SAG+ does not improve always: sometimes it

performs essentially the same as SAG. Although S2GD+ is
overall a superior algorithm, one should note that this comes
at the cost of having to choose stepsize parameter for SGD
initialization. If one chooses these parameters poorly, then
S2GD+ could perform worse than S2GD. The other three
algorithms can work well without any parameter tuning.

9. CONCLUSION

We have developed a new semi-stochastic gradient descent
method (S2GD) and analyzed its complexity for smooth
convex and strongly convex loss functions. Our methods need
O((κ/n) log(1/ε)) work only, measured in units equivalent to
the evaluation of the full gradient of the loss function, where
κ = L/µ if the loss is L-smooth and µ-strongly convex, and
κ ≤ 2L/ε if the loss is merely L-smooth.

Our results in the strongly convex case match or improve on a
few very recent results, while at the same time generalizing and
simplifying the analysis. Additionally, we proposed S2GD+—a
method which equips S2GD with an SGD pre-processing step—
which in our experiments exhibits superior performance to all
methods we tested. We leave the analysis of this method as an
open problem.
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