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Recently, the regularized functional matching pursuit (RFMP) was introduced as a

greedy algorithm for linear ill-posed inverse problems. This algorithm incorporates the

Tikhonov-Phillips regularization which implies the necessity of a parameter choice.

In this paper, some known parameter choice methods are evaluated with respect

to their performance in the RFMP and its enhancement, the regularized orthogonal

functional matching pursuit (ROFMP). As an example of a linear inverse problem, the

downward continuation of gravitational field data from the satellite orbit to the Earth’s

surface is chosen, because it is exponentially ill-posed. For the test scenarios, different

satellite heights with several noise-to-signal ratios and kinds of noise are combined. The

performances of the parameter choice strategies in these scenarios are analyzed. For

example, it is shown that a strongly scattered set of data points is an essentially harder

challenge for the regularization than a regular grid. The obtained results yield, as a first

orientation, that the generalized cross validation, the L-curve method and the residual

method could be most appropriate for the RFMP and the ROFMP.
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1. INTRODUCTION

The gravitational field of the Earth is an important reference in the geosciences. It is an indicator
for mass transports andmass reallocation on the Earth’s surface. These displacements of masses can
be caused by ocean currents, evaporation, changes of the groundwater level, ablating of continental
ice sheets, changes in the mean sea level or climate change (see e.g., [1, 2]).
However, it is difficult to model the gravitational field, because terrestrial measurements are not
globally available. In addition, the points of measurement on the sea are more scattered than
those on the continents. This has motivated the launch of satellite missions with a focus on the
gravitational field (see e.g., [3–6]). Naturally, those data are given at a satellite orbit, not on the
Earth’s surface. Additionally, the measurements are only given pointwise and are afflicted with
noise. The problem of getting the potential from the satellite orbit onto the Earth’s surface is the
so-called downward continuation problem, which is a severely unstable and, therefore, ill-posed
inverse problem (see e.g., [7, 8]).

Traditionally, the gravitational potential of the Earth has been represented in terms of
orthogonal spherical polynomials (i.e., spherical harmonics Yn,j, see e.g., [9–11]) as in the case
of the Earth Gravitational Model 2008 (EGM2008, see [12]). An advantage of this representation
is that the upward continuation operator 9 which maps a potential F from the Earth’s surface
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(which we assume here to be the unit sphere �) to the orbit r�
with r > 1 has the singular value decomposition

(9F) (x) =
∞
∑

n= 0

n
∑

j=−n

〈

F,Yn,j

〉

L2(�)
r−n Yr

n,j (x) , (1)

where Yr
n,j(x) := 1

rYn,j

(

x
r

)

, x ∈ r�. Its inverse is, therefore, given

by

9+G =
∞
∑

n= 0

n
∑

j=−n

〈

G,Yr
n,j

〉

L2(r�)
rnYn,j

=
∞
∑

n= 0

n
∑

j=−n

〈

G,Yr
n,j

〉

L2(r�)
σ−1
n Yn,j (2)

in the sense of L2(�) and for all G ∈ 9(L2(�)) ⊂ L2(r�). Note
that the singular values of 9+, which are given by (σ−1

n )n =
(rn)n, increase exponentially. For details, see [8, 13].

Numerous methods have been developed for solving such
linear ill-posed inverse problems. Recently, the RFMP and the
ROFMP were constructed as more flexible algorithms which
can iteratively construct a kind of a “best basis” for such
problems. This yields additional features like a multi-scale
analysis and a locally adapted resolution. The methods are
based on techniques which were constructed for approximation
problemsmainly on the Euclidean space (see [14–16]). One of the
enhancements of the RFMP and the ROFMP is the introduction
of a Tikhonov-Phillips regularization for handling ill-posed
problems.

So far, the choice of the regularization parameter of the
RFMP and the ROFMP, which weights the regularization term
relative to the data misfit, has not been addressed sufficiently,
which is why we report here about our corresponding numerical
experiments for the regularization of the downward continuation
problem with the RFMP and the ROFMP. For this purpose,
numerous parameter choice strategies were compared regarding
their performance for some selected scenarios.

A parameter choice strategy is a method that determines
a value for the regularization parameter. Its input leads to a
classification (see e.g., [17]):

• a-priori methods use information on the noise level and the
noise-free solution which is usually not known in practice.
Therefore, we do not consider such methods.

• a-posteriorimethods require the noisy data and the noise level
or at least an estimate of it.

• data-driven methods (sometimes also called “heuristic
methods”) only work with the noisy data.

Many methods yield a parameter λ such that a function f (λ) falls
below a prescribed threshold or such that λ minimizes a function
f . Sometimes a tuning parameter (such as the aforementioned
threshold) is required. Note that, for stochastic noise, data-driven
methods yield converging regularization methods with good
performance in practice (cf. [18, 19]).

The outline of this paper is as follows. Section 2 gives a short
introduction to the RFMP and its enhancement, the ROFMP. For

both algorithms, the essential theoretical results are recapitulated.
In Section 3, the parameter choice methods under consideration
for the RFMP and ROFMP are summarized and details of their
implementation for the test cases are explained. In Section 4,
the relevant details of the considered test scenarios are outlined.
Section 5 analyzes and compares the results for the various
parameter choice strategies.

2. RFMP

In this section, we briefly recapitulate the RFMP, which was
introduced in [20–23], and an orthogonalized modification of it
(see [13, 24]). It is an algorithm for the regularization of linear
inverse problems.

According to [13, 23, 25], we use an arbitrary Hilbert
space H ⊂ L2(�). This space can be L2(�) itself, but it
can, for instance, also be a Sobolev subspace of L2(�). It
is chosen for the regularization term (see below) based on
numerical experiences or prior knowledge about the solution if
available.

Let an operator F : H → R
l be given which is

continuous and linear. Concerning the downward continuation,
we have a vector y ∈ R

l of measurements at a satellite
orbit, that means our data are given pointwise. The inverse
problem consists of the determination of a function F ∈ H

such that

FF = y = ((9F)(xj))j=1,...,l, (3)

where (xj)j=1,...,l is a set of points at satellite height. In the

following, we use bold letters for vectors in R
l.

To find an approximation for our function F, we need to
have a set of trial functions D ⊂ H \ {0}, which we call the
dictionary. Our unknown function F is expanded in terms of
dictionary elements, that means we can represent it as F =
∑∞

k=1 αkdk with αk ∈ R and dk ∈ D for all k ∈ N.

2.1. The Algorithm
The idea of the RFMP is the iterative construction of a
sequence of approximations (Fn)n. This means that we add a
basis function dk from the dictionary to the approximation in
each step. This basis function is furthermore equipped with a
coefficient αk.

Since the considered inverse problem is ill-posed, we use the
Tikhonov-Phillips regularization, that is, our task is to find a
function F which minimizes

∥

∥y − FF
∥

∥

2

Rl + λ ‖F‖2H . (4)

That means, if we have the approximation Fn up to step n,
our greedy algorithm chooses αn+1 ∈ R and dn+1 ∈ D such
that

∥

∥y − F
(

Fn + αn+1dn+1

)∥

∥

2

Rl + λ
∥

∥Fn + αn+1dn+1

∥

∥

2

H
(5)

is minimized. Here, λ > 0 is the regularization parameter.
We can state the following algorithm for the RFMP.
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Algorithm 2.1 Let y ∈ R
l and an operator F : H → R

l (linear
and continuous) be given.

(1) Initialization Set n := 0, F0 := 0 and R0 := y − FF0 = y,
choose a stopping criterion (we stop, if ‖Rn+1‖ < ̺ for a
given ̺ > 0 or |αn+1| < δ for a given δ > 0 or n+1 > N
for a given N ∈ N, see also Section 4.1), and choose a
regularization parameter λ ∈ R

+.

(2) Iteration Build Fn+1 := Fn + αn+1dn+1 such that the
following is fulfilled:

dn+1 := argmax
d∈D

(〈

Rn,Fd
〉

Rl − λ
〈

Fn, d
〉

H

)2

∥

∥Fd
∥

∥

2

Rl + λ
∥

∥d
∥

∥

2

H

, (6)

αn+1 :=
〈

Rn,Fdn+1

〉

Rl − λ
〈

Fn, dn+1

〉

H
∥

∥Fdn+1

∥

∥

2

Rl + λ
∥

∥dn+1

∥

∥

2

H

. (7)

Set Rn+1 := Rn − αn+1Fdn+1.

(3) Stopping criterion Fn+1 is the output, if the stopping
criterion is fulfilled. Otherwise, increase n and go to
step 2.

The maximization, which is necessary to get dn+1, is
implemented by evaluating the fraction for all d ∈ D in
each iteration and picking a maximizer. Since many involved
terms can be calculated in a preprocessing, the numerical
expenses can be kept low (see [22]). For a convergence proof of
the RFMP, we refer to [25]. Briefly, under certain conditions, one
can show that the sequence (Fn)n converges to the solution F∞
of the Tikhonov-regularized normal equation

(F∗
F + λI)F∞ = F

∗y, (8)

where I is the identity operator and F∗ is the adjoint operator to
F .

2.2. ROFMP
The ROFMP is an advancement of the RFMP from the previous
section.

The basic idea is to project the residual onto the span of the
chosen vectors, i.e.,

Vn := span{Fd1, . . . ,Fdn} ⊂ R
l , (9)

and then adjust the previously chosen coefficients in such a
way that the residual is afterwards contained in the orthogonal
complement of the span. Since this so-called backfitting (cf.
[14, 15]) might not be optimal, we implement the so-called
prefitting (cf. [16]), where the next function and all coefficients
are chosen simultaneously to guarantee optimality at every single
stage of the algorithm. Moreover, let Wn := V⊥

n and let the
orthogonal projections on Vn and Wn be denoted by PVn and

PWn , respectively. All in all, our aim is to find

(

αn+ 1, dn+ 1

)

=

argmin
α∈R, d∈D

(

∥

∥Rn − αPWnFd
∥

∥

2

Rl + λ
∥

∥Fn − αBn(d)+ αd
∥

∥

2

H

)

.

(10)

Here,

n
∑

i= 1

β
(n)
i (d)Fdi = PVn (Fd) (11)

and, thereby, we set

Bn(d) :=
n

∑

i= 1

β
(n)
i (d)di ∈ H. (12)

The updated coefficients for the expansion at step n + 1 are
given by

α
(n+ 1)
i := α

(n)
i − αn+ 1β

(n)
i (dn+ 1), i = 1, . . . , n, (13)

α
(n+ 1)
n+ 1 := αn+1. (14)

The ROFMP is summarized in Algorithm 2.2. For practical
details of the implementation, see [13].

Remark 2.1. If we choose di ∈ D and αi as in Algorithm 2.2 and
update the coefficients as in Equations (13) and (14), we obtain for
the regularized case (λ > 0) that Rn is, in general, not orthogonal
to Vn for all n ∈ N0, that means

Rn /∈ Wn. (17)

In [13], it was shown that, with the assumptions from
Remark 2.1, there exists a number N := N(λ) such that

Rn = RN for all n ≥ N. (18)

That means we get a stagnation of the residual. This is a problem
since the ROFMP is not able to reconstruct a certain contribution
of the signal which lies in Vn. Therefore, we modify the algorithm
based on iterated Tikhonov-Phillips regularization. That means
we run the algorithm for a given number of iterations (in our case
K > 0), then interrupt the process and start the algorithm with
the latest residual RK . This action is called restart (or repetition)
and it is recurringly executed after every K iterations. In order
not to lose information we want to maintain the entire expansion
Fn during the process. For this purpose, we need an additional
notation: we add a further subscript j to the expansion Fn. Note
that we have two levels of iterations here. The upper level is
associated to the restart procedure and is enumerated by the
second subscript j. The lower iteration level is the previously
described ROFMP iteration with the first subscript n. We denote
the current expansion by

Fn,j := FK,j− 1 +
n

∑

i= 1

α
(n)
i,j di,j, (19)
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Algorithm 2.2 Let a dictionaryD ⊂ H \ {0}, a data vector y ∈ R
l

and an operator F : H → R
l (linear and continuous) be given.

(1) Initialization Set n := 0, F0 := 0 and R0 := y, choose a
stopping criterion (we stop, if ‖Rn+1‖ < ̺ for a given
̺ > 0 or |αn+1| < δ for a given δ > 0 or n + 1 > N
for a given N ∈ N, see also Section 4.1), and choose a
regularization parameter λ ∈ R

+.

(2) Iteration Choose a function

dn+1 :=

argmax
d∈D

(〈

Rn,PWnFd
〉

Rl + λ
(〈

Fn,Bn(d)
〉

H
−

〈

Fn, d
〉

H

))2

∥

∥PWnFd
∥

∥

2

Rl + λ
∥

∥d − Bn(d)
∥

∥

2

H

,

(15)

and calculate the corresponding coefficient

αn+1 :=
〈

Rn,PWnFdn+1

〉

Rl + λ
(〈

Fn,Bn(dn+1)
〉

H
−

〈

Fn, dn+1

〉

H

)

∥

∥PWnFdn+1

∥

∥

2

Rl + λ
∥

∥dn+1 − Bn(dn+1)
∥

∥

2

H

,

(16)

where Bn(d) is defined according to (11) and (12). Then
update the coefficients following (13) and (14) and build

Fn+1 :=
∑n+1

i=1 α
(n+1)
i di. Finally, update the residual

Rn+1 := Rn − αn+1PWnFdn+1.

(3) Stopping criterion Fn+1 is the output, if the stopping
criterion is fulfilled. Otherwise, increase n and go to
step 2.

where F0,1 := 0 and F0,j := FK,j−1. In analogy to the previous
definitions, the residual can be defined in the following way:

Rn,j := y− FFn,j, 1 ≤ n ≤ K, j ≥ 1 and

R0,j := y− FFK,j−1 = RK,j−1. (20)

That means, after K iterations, we keep the previously chosen
coefficients fixed and restart the ROFMP with the residual of the
step before. All in all, we have to solve

(

αn+ 1,j, dn+ 1,j

)

= argmin
α∈R, d∈D

(

∥

∥Rn,j − αPWn,jFd
∥

∥

2

Rl + λ
∥

∥Fn+1,j

∥

∥

2

H

)

(21)

and update the coefficients in the following way

α
(n+1)
i,j := α

(n)
i,j − αn+1,jβ

(n)
i,j (dn+1,j), i = 1, . . . , n. (22)

We summarize for the expansion FK,m, which is the
approximation produced by the ROFMP afterm restarts:

Tm := FK,m =
m

∑

j= 1

K
∑

i= 1

α
(K)
i,j di,j. (23)

In analogy to the RFMP, we obtain a similar convergence result
for the ROFMP. That is, under certain technical conditions, the
sequence (Tm)m converges in the Hilbert space H. For further
details, we refer to [13, 24].

3. PARAMETER CHOICE METHODS

The choice of the regularization parameter λ is crucial for the
RFMP and the ROFMP, as for every other regularization method.
In this section, we briefly summarize the parameter choice
methods which we test for the RFMP and the ROFMP. This
section is basically conform to [18, 19].

3.1. Introduction
The Earth Gravitational Model 2008 (EGM2008, see [12]) is a
spherical harmonics model of the gravitational potential of the
Earth up to degree 2190 and order 2159. We use this model up to
degree 100 for the solution F in our numerical tests. For checking
the parameter choice methods, we generate different test cases
that means test scenarios which vary in the satellite height, the
noise-to-signal ratio and the data grid. Based on the chosen
function F, our dictionary contains all spherical harmonics up to
degree 100 that means our approximation F from the algorithm
has the following representation

F =
100
∑

n= 0

n
∑

j=−n

αn,jYn,j, where not all αn,j vanish. (24)

This is a strong limitation, but higher degrees would essentially
enlarge the computational expenses.

Moreover, for the stabilization of the solution, we use the
norm of the Sobolev space H := H((an)n;�) which is
constructed with

an :=
(

n+ 1

2

)2

, n ∈ N0, (25)

see [26]. This Sobolev space contains all functions F on � which
fulfill

∞
∑

n=0

n
∑

j=−n

a2n
〈

F,Yn,j

〉2

L2(�)
< ∞. (26)

The inner product of functions F,G ∈ H is given by

〈F,G〉H :=
∞
∑

n=0

n
∑

j=−n

a2n
〈

F,Yn,j

〉

L2(�)

〈

G,Yn,j

〉

L2(�)
. (27)

The particular sequence (an)n = ((n + 1
2 )

2)n was chosen,
because preliminary numerical experiments showed that the
associated regularization term yielded results with an appropriate
smoothness.

In our test scenarios, we use a finite set {λk}k=1,...,100 of
100 regularization parameters (for details, see Section 4.4). The
approximate solution of the inverse problem as an output of the
RFMP/ROFMP corresponding to the regularization parameter
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λk and the data vector y is denoted by xk. This notation is
introduced to avoid confusions with the functions Fn which occur
at the n-th step of the iteration within the RFMP.

In practice, we deal with noisy data yε where the noise level ε
is defined by

ε := N2S ·
∥

∥y
∥

∥

Rl /
√
l, (28)

where l is the length of the data vector y and N2S is
called the noise-to-signal ratio. The corresponding result of the
RFMP/ROFMP for the regularization parameter λk and the noisy
data vector yε is called xε

k
. Due to the convergence results for

the RFMP/ROFMP (see Equation 8), we introduce the linear

regularization operatorsRk : R
l → H,

Rk := (F∗
F + λkI)

−1
F

∗ (29)

and assume xk to be Rky and xε
k
to be Rky

ε , though this could
certainly only be guaranteed for an infinite number of iterations.

Due to the importance of the regularization parameter, we
summarize in the next section some methods for the choice of
this parameter λ. For the comparison of the methods, we have to
define the optimal regularization parameter λkopt . We do this by
minimizing the difference between the exact solution x and the
regularized solution xε

k
corresponding to the parameter λk and

TABLE 1 | The parameter choice methods and their specifications.

Name Selection criterion Specifications

Discrepancy Principle (DP) Choose the first k such that Tuning parameter τ > 1.

[27–29] ‖Fxε
k
− yε‖

Rl
≤ τε

√
l. (We choose τ = 1.5.)

Transformed Discrepancy Principle (TDP) Choose the first k such that Tuning parameter b > γ = ((1/4)(1/4)(3/4)(3/4))2,

[30, 31] ‖Rk (Fxε
k
− yε )‖H ≤ bε̂

√
l√

λk
. estimate ε̂ of ε. (We choose b = 1.5γ and ε̂ = ε.)

Quasi-optimality Criterion (QOC) k∗ = argmin

k≤K̂
‖xε
k
− xε

k+1‖H

[32, 33]

L-curve Method (LC) k∗ = argmin

k≤K̂
{‖Fxε

k
− yε‖

Rl
· ‖xε

k
‖H}

[34–36]

Extrapolated Error Method (EEM) k∗ = argmin

k≤K̂

{ ‖Fxε
k
−yε‖2

Rl

‖F∗ (Fxε
k
−yε )‖H

}

[37, 38]

Residual Method (RM) k∗ = argmin

k≤K̂

{ ‖Fxε
k
−yε‖

Rl

(trB∗B)1/4

}

,

[39] where B = F (I −RkF ).

Generalized Maximum Likelihood (GML) k∗ = argmin

k≤K̂

{ ‖Fxε
k
−yε‖2

Rl

(det+ (I−FRk ))
1/l1

}

l1 = rank(I −FRk ). (In our case l1 = l.)

[40] det+ is the product of the nonzero eigenvalues.

Generalized Cross Validation (GCV) k∗ = argmin

k≤K̂

{

∥

∥Fxε
k
−yε

∥

∥

2
Rl

(l−1tr(I−FRk ))
2

}

[41]

Robust GCV (RGCV) k∗ = argmin

k≤K̂

{

∥

∥Fxε
k
−yε

∥

∥

2
Rl

(l−1tr(I−FRk ))
2 Robustness parameter γ ∈ (0, 1).

[42, 43] ×
(

γ + (1− γ )l−1tr((FRk )
2)

) }

(We choose γ = 0.1.)

Strong RGCV (SRGCV) k∗ = argmin

k≤K̂

{

∥

∥Fxε
k
−yε

∥

∥

2
Rl

(l−1tr(I−FRk ))
2 Robustness parameter γ ∈ (0, 1).

[44] ×
(

γ + (1− γ )l−1tr((FRk )
2)

) }

(We choose γ = 0.95.)

Modified Generalized Cross Validation (MGCV) k∗ = argmin

k≤K̂

{

∥

∥Fxε
k
−yε

∥

∥

2
Rl

(l−1tr(I−cFRk ))
2

}

Stabilization parameter c > 1.

[45, 46] (We choose c = 3.)
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FIGURE 1 | Reuter grid with 8514 points (Left) and scattered grid with 8,500 points (Right).

FIGURE 2 | The track sets of the scattered grid (Left, Right). For the South pole, we have an analogous point distribution.

FIGURE 3 | Reuter grid (Left) and scattered grid (Right). The values of the data points in the red area contain an N2S of 5% and the values of the data points in the

blue area an N2S of 1% for the local noise scenario.

noisy data.

kopt := argmin
k∈{1,...,100}

‖x− xε
k‖L2(�). (30)

Then we evaluate the results by computing the so-called
inefficiency by

∥

∥

∥
x− xε

k∗

∥

∥

∥

L2(�)
∥

∥

∥
x− xε

kopt

∥

∥

∥

L2(�)

, (31)

where λk∗ is the regularization parameter selected by the
considered parameter choice method. For the computation of the
inefficiency, we use the L2(�)-norm, since our numerical results
led to a better distinction of the different inefficiencies than by
using theH-norm. However, the tendency regarding “good” and
“bad” parameters were the same in both cases.

In practical cases, the exact solution is usually unknown such
that kopt is a theoretical object only. Parameter choice methods,
such as those which are used for the experiments here, provide us
with a way to estimate (in some sense) a regularization parameter
λk∗ which yields a solution which is expected to be close to
the unknown exact solution. The inefficiency quantifies the
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accuracy of this estimate by comparing xε
k∗

with the theoretically

optimal regularized solution xε
kopt

. The closer the obtained

inefficiency is to 1, the better the parameter choice method
performs.

Note that the norms which occur in the several parameter
choice methods can be computed with the help of the singular
value decomposition. However, we use the singular values of 9

(see Equations 1 and 3) for this purpose, because the singular
value decomposition of F is unavailable. This certainly causes an
inaccuracy in our calculations, but appears to be unavoidable for
the sake of practicability.

3.2. Parameter Choice Methods
Table 1 shows the different parameter choice methods
we tested and introduces their abbreviations. The
tuning parameters are chosen in accordance to
[18, 19]. For the choice of the maximal index K̂,
see Section 4.5.

The DP of [27–29] tries to balance the norm of the residual
and the noise level ε for a good regularization. It requires
knowledge of ε which we provide in our tests. The TDP of [30, 31]
tries to deal with the instability of the DP if the noise level is not
known. It is designed to work with an estimate ε̂ of ε.

The QOC goes back to [32, 33] and its continuous version

tries to minimize the norm ‖λ d
dλ
xε
λ‖. By using the difference

quotient instead of the derivative for our discrete parameters
λk = λ0q

k
λ (see Section 4.4), we obtain the method as in

Table 1.
The LC (cf. [34–36]) is based on the fact that a log-log plot

of (‖Fxε
k
− yε‖, ‖xε

k
‖) often is L-shaped. The points on the

vertical part correspond to under-smoothed solutions, where
the horizontal part consists of points due to over-smoothed
solutions. This suggests that the “corner” defines a good value
for the regularization parameter. Note that usually the method
is applied manually and its automating can be difficult.

The EEM of [37, 38] chooses the regularization parameter
by minimizing an estimate of the error ‖x − xε

k
‖ found by an

TABLE 2 | Overview of the implemented test cases.

Height (km) N2S (%) Noise Grid Shortcut

500 5 White Scattered (500,5,wn,S)

500 5 Colored Scattered (500,5,cn,S)

500 5 White Reuter (500,5,wn,R)

500 1 White Scattered (500,1,wn,S)

500 1 Colored Scattered (500,1,cn,S)

500 1 White Reuter (500,1,wn,R)

300 5 White Scattered (300,5,wn,S)

300 5 Colored Scattered (300,5,cn,S)

300 5 White Reuter (300,5,wn,R)

500 5/1 Local Scattered (500,5,ln,S)

500 5/1 Local Reuter (500,5,ln,R)

extrapolation procedure. The RM of [39] is based on minimizing
a certain weighted form of the norms of the residuals, where the
weighting penalizes under-smoothing parameter values.

It is known that the Tikhonov regularized solution for discrete
data with independent Gaussian errors can be interpreted as
a Bayes estimate of x if x is endowed with the prior of a
certain zero mean Gaussian stochastic process (cf. [47]). With
this interpretation, the GML estimate was derived by [40] and
formulated for stochastic white noise where knowledge of the
noise level ε is not needed.

The GCV of [41] uses the following idea: consider all the
“leave-one-out” regularized solutions and choose the parameter
which minimizes the average of the prediction errors using each
solution to predict the data value that was left out. Note that the
computation of all these regularized solutions is not necessary
for this. A detailed derivation can be found in [47]. Several
modifications and extensions of the method such as RGCV (cf.
[42, 43]), SRGCV (cf. [44]) and MGCV (cf. [45, 46]) have been
developed to deal with instabilities of the GCV. Note that for
certain choices of the robustness/stabilization parameter these
variants correspond to GCV.

4. EVALUATION

4.1. Specifications for the Algorithm
In Sections 2.1 and 2.2, we mentioned that we need to define
stopping criteria for our algorithm. We state the following
stopping criteria for the RFMP and ROFMP (see alsoAlgorithms

2.1 and 2.2).

• ‖Rn+1‖Rl < ̺ for a given ̺ > 0 (in our case, this is the N2S),
• n+1 > N for a givenN ∈ N (in our case,N = 10, 000 because

of our computing capacity),
• |αn+1| < δ for a given δ > 0 (in our case δ = 10−6).

In the case of the ROFMP, we choose K = 200 for the restart.

4.2. The Data Grids
Figure 1 shows two data grids which we use for our experiments.
First of all, the Reuter grid (see [48]) is an example of a regular
data grid on the sphere. Second, we have a set of irregularly
distributed data points on a grid which we refer to as the scattered
grid in the following and which was first used in [13]. The latter
grid tries to imitate the distribution of measurements along the
tracks of a satellite. It possesses additional shorter tracks and,
thus, a higher accumulation of data points at the poles and only
fewer tracks in a belt around the equator.

4.3. Noise Generation
For our various scenarios, we get our noisy data if we add white
noise to our data values or we add colored noise that is obtained
by an autoregression process. Additionally, we test some local
noise.

4.3.1. White Noise Scenario

For white noise, we add Gaussian noise corresponding to a
certain noise-to-signal ratio N2S to the particular value of each
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FIGURE 4 | DP for the RFMP (Left-hand top) and the ROFMP (Right-hand top) and TDP for the RFMP (Left-hand bottom) and the ROFMP (Right-hand

bottom).

datum, that means we get our noisy data by

yε
i = (1+N2S · ǫi)yi = N2S · yiǫi + yi, i = 1, . . . , l, (32)

where yi are the components of y and ǫi ∼ N (0, 1), that means
every ǫi is a standard normally distributed random variable.

4.3.2. Colored Noise Scenario

Since our scattered grid tries to imitate tracks of satellites,
we can assume that we have a chronology of the data
points for each track. To obtain some sort of colored
noise, we use an autoregression process of order 1 (briefly:
AR(1)-process, see [49]) with whom we simulate correlated
noise.

A stochastic process {ǫi, i ∈ Z} is called an autoregressive
process of order 1, if ǫi = αǫi−1+εi, |α| < 1, where εi ∼ N (0, 1).
In the case of our simulation, we start with ǫ1 ∼ N (0, 1) and run
the recursion for a fixed α ∈ (−1, 1), which we determined at
random.

For each track of the scattered grid, we apply this
autoregression process (for the tracks, see Figure 2)
and obtain yε

i as in Equation (32) using the ǫi from
above.

4.3.3. Local Noise Scenario

For the local noise, we choose a certain area and add white noise
with an N2S = 5% relative to the particular value to each data
point. To the values of the remaining data points we add white
noise with an N2S = 1%. We choose this area as illustrated in
Figure 3. The choice of this area is a very rough approximation
of the domain of the South Atlantic Anomaly, where a dip in the
Earth’s magnetic field exists (see e.g., [50]). Since only a few points
of our grid would have been in the actual domain, we extended
the area toward the South pole. Table 2 shows our different test
cases for the RFMP and ROFMP.

4.4. Regularization Parameters
We constructed the admissible values λk for the parameter choice
as a monotonically decreasing sequence with 100 values from
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FIGURE 5 | QOC for the RFMP (Left-hand top) and the ROFMP (Right-hand top) and LC for the RFMP (Left-hand bottom) and the ROFMP (Right-hand

bottom).

λ1 = 1 to λ100 = 10−14 and a logarithmically equal spacing in
the following way

λk = λ0q
k
λ, k ∈ {1, . . . , 100}. (33)

Here, λ0 = 1.3849 and qλ = 0.7221. The test scenarios are
chosen such that the parameter range lies between 1 and 10−14

and includes the optimal parameter away from the boundaries
λ1 and λ100. For the choice of the parameters λk, we refer
to [18, 19].

4.5. Maximal Index
Most parameter choice methods either increase the index k until
a certain condition is satisfied or minimize a certain function
for all regularization parameters λ, i.e., after our discretization
(see Equation 33) they minimize for all k (see Table 1). For some
methods like the quasi-optimality criterion, the values of k have
to be constrained by a suitable maximal index K̂ which must be
chosen such that kopt < K̂. To increase computational efficiency,

such a maximal index can be used for other methods as well
without changing their performance. As in [18, 19], we define this
maximal index by

K̂ = max
{

k
∣

∣ ρ(k) < 0.5ρ(∞)
}

, (34)

where E‖xk − xε
k
‖2 = ε2ρ2(k) is the variance of the regularized

solution corresponding to noisy data and ε2ρ2(∞) is its largest
value. It is well-known that, in the case of white noise, ρ(k) for
the Tikhonov-Phillips regularization is generally given by

ρ2(k) =
∑

n

(

σn

σ 2
n + λk

)2

. (35)

Since our singular values occur with a multiplicity of 2n + 1 and
we restrict our tests to n = 0, . . . , 100, the sum above in our tests
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FIGURE 6 | EEM for the RFMP (Left-hand top) and the ROFMP (Right-hand top) and RM for the RFMP (Left-hand bottom) and the ROFMP (Right-hand

bottom).

is given by

ρ2(k) =
100
∑

n=0

(2n+ 1)

(

σn

σ 2
n + λk

)2

. (36)

For any colored noise, we use the estimate (cf. [19])

ε2ρ2(k) ≈ 2−1
∥

∥

∥
xε
k,1 − xε

k,2

∥

∥

∥

2

H
, (37)

with two independent data sets yε
1, y

ε
2 for the same regularization

parameter λk. Note that xε
k,1
, xε

k,2
are the regularized solutions

corresponding to the parameter λk and the noisy data sets
yε
1, y

ε
2.

5. COMPARISON OF THE METHODS

For the error comparison, we compute the inefficiency (see
Equation 31) in each scenario (see Table 2 for an overview) for

each parameter choice method and compare the inefficiencies.
We generate 32 data sets for each of the eleven scenarios, i.e.,
we run each algorithm for 352 times for a single regularization
parameter. Figures 4–9 show the inefficiencies, collected based
on the parameter choice methods. The red middle band in
the box is the median and the red + symbol shows outliers.
The boxplots of our results are plotted at a logarithmic
scale.

5.1. Discrepancy Principle (DP)
We can see from Figure 4 that the DP leads to results which are in
the range from good to acceptable in all test cases. It yields better
results with a more uniformly distributed grid.

5.2. Transformed Discrepancy Principle
(TDP)
The results for the TDP (see Figure 4) for all test cases
are rather poor. We can remark that the results get better
with a more uniformly distributed data grid. Furthermore, the
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FIGURE 7 | GML for the RFMP (Left-hand top) and the ROFMP (Right-hand top) and GCV for the RFMP (Left-hand bottom) and the ROFMP (Right-hand

bottom).

colored noise leads to slightly bigger boxes than the white
noise.

5.3. Quasi-Optimality Criterion (QOC)
In Figure 5, the inefficiencies of the QOC show that the
performance of this method is rather poor. In the case of the
Reuter grid, the results reach from good to mediocre in contrast
to the scattered grid.

5.4. L-Curve Method (LC)
The LC (see Figure 5) yields good results in all test cases.
We can remark that there are a few outliers and bigger
boxes for the test cases with colored noise and the scattered
grid.

5.5. Extrapolated Error Method (EEM)
The EEM yields acceptable to rather poor results (see Figure 6).
We cannot observe any dependency on the grid or the kind of
noise related to the acceptable results. Moreover, in the test case

with a height of 300 km and an N2S of 5% with colored noise
we have some outliers for the RFMP and a large box for the
ROFMP.

5.6. Residual Method (RM)
The results for the RM (see Figure 6) are good to acceptable in all
test cases. We only have a few minor outliers.

5.7. Generalized Maximum Likelihood
(GML)
In Figure 7, we can see that the GML leads to acceptable results
only in the case of the Reuter grid. In all cases of the scattered
grid, its performance is rather bad.

5.8. Generalized Cross Validation (GCV)
From Figure 7, we can observe that the GCV yields good results
in all test cases. We only have, in the case of the ROFMP, some
minor outliers. It yields the best results with a more regularly
distributed data grid.
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FIGURE 8 | RGCV for the RFMP (Left-hand top) and the ROFMP (Right-hand top) and SRGCV for the RFMP (Left-hand bottom) and the ROFMP (Right-hand

bottom).

FIGURE 9 | MGCV for the RFMP (Left) and the ROFMP (Right).
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FIGURE 10 | The approximation from the RFMP for the best parameter (Left) and the difference to the EGM2008 up to degree 100 (Right). Values in m2/s2.

FIGURE 11 | The approximation from the RFMP for the parameter chosen by the GCV (Left) and the difference to the EGM2008 up to degree 100 (Right). Values in

m2/s2. The inefficiency amounts to 1.16.

FIGURE 12 | The approximation from the RFMP for the parameter chosen by the MGCV (Left) and the difference to the EGM2008 up to degree 100 (Right). Values

in m2/s2. The inefficiency amounts to 2.29.

5.9. Robust Generalized Cross Validation
(RGCV)
The RGCV yields good to acceptable results (see Figure 8) which
get slightly worse and show a larger variance for a higher N2S or
colored noise scenarios.

5.10. Strong Robust Generalized Cross
Validation (SRGCV)
The SRGCV (see Figure 8) has good to acceptable results in
all the test cases which are a little bit worse than for the
RGCV. The Reuter grid leads to good results whereas the

scattered grid seems to be more difficult to handle by the
method.

5.11. Modified Generalized Cross
Validation (MGCV)
The inefficiencies for the MGCV (see Figure 9) for the test
cases with white noise and the Reuter grid are good. In
particular, in several of the cases with colored noise the
boxes are so big that they partially do not fit in the figure.
Obviously, we get here a very large distribution of the
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FIGURE 13 | The approximation from the ROFMP for the best parameter (Left) and the difference to the EGM2008 up to degree 100 (Right). Values in m2/s2.

FIGURE 14 | The approximation from the ROFMP for the parameter chosen by the GCV (Left) and the difference to the EGM2008 up to degree 100 (Right). Values

in m2/s2. The inefficiency amounts to 1.14.

FIGURE 15 | The approximation from the ROFMP for the parameter chosen by the GML (Left) and the difference to the EGM2008 up to degree 100 (Right). Values

in m2/s2. The inefficiency amounts to 3.03.

inefficiencies. These cases seem to be very hard to handle for this
method.

5.12. Plots of the Results
In this section, we show briefly the approximations of the
gravitational potential which we obtain by the RFMP and the
ROFMP for one typical noisy data set considering a good or a
rather poor parameter choice.

For the test case (500 km, 5%, colored noise, scattered grid)
with α = 0.54 for the AR(1)-process, Figure 10 shows the

approximation which we obtain by the RFMP for the optimal
regularization parameter λ29 and the difference to the EGM2008
up to degree 100. Figure 11 shows the approximation belonging
to the regularization parameter λ22 which is chosen by the GCV.
In Figure 12, we can see the approximation belonging to the
parameter λ43 which is chosen by the MGCV. We can see that
the MGCV chooses the regularization parameter too small and
with this choice we obtain a solution which is underregularized.
North-South oriented anomalies occur in the reconstruction
which appear to be artifacts due to the noise along the simulated
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FIGURE 16 | The horizontal axis states the index k of the regularization

parameter and the vertical axis shows ‖x − xε
k
‖L2 (�) for the RFMP.

FIGURE 17 | The horizontal axis states the index k of the regularization

parameter and the vertical axis shows ‖x − xε
k
‖L2 (�) for the ROFMP.

satellite tracks. In contrast, the approximation of the potential for
the GCV-based parameter is only slightly worse than the result
for the optimal parameter.

Furthermore, we show the same test case as above but with the
approximation from the ROFMP with α = 0.56 in the AR(1)-
process. Figure 13 shows the approximation for the optimal
parameter λ29 and the difference to EGM2008 up to degree 100.
In Figure 14, we see the approximation which belongs to the
parameter λ22 which is chosen by the GCV. Figure 15 shows
the approximation with the regularization parameter λ9 which
is chosen by the GML.

Here, the GML chooses a regularization parameter which is
too large, that means our approximation is overregularized. We
get less information and details about the gravitational potential.
Essential details such as signals due to the Andes or the region

around Indonesia occur in the difference plot—much stronglier
than for the other examples. Again the parameter choice of the
GCV yields a good approximation for the gravitational potential.

Finally, Figures 16, 17 show the difference ‖x − xε
k
‖L2(�)

between the original solution (i.e., EGM2008 up to degree
100) and the approximation xε

k
obtained for the different

regularization parameters which were chosen by the considered
strategies. The horizontal axis states the index k of the
regularization parameter λk. The plots refer to the same scenario
as Figures 10–15. The arrows show the parameters which are
chosen by the methods. The diagrams confirm our observations
that the GCV and the LC yield parameters which are closest to the
(theoretical) optimal parameter. We obtain almost equally good
results for the DP, the RM and the RGCV.

6. CONCLUSION AND OUTLOOK

We tested parameter choice methods for the regularized
(orthogonal) functional matching pursuit (RFMP/ROFMP) in
the context of the downward continuation problem. For the
evaluation of the parameter choice methods, we constructed
eleven different test cases with different satellite heights, data
grids, noise types and noise-to-signal ratios (see Table 2) for the
RFMP and ROFMP. For each test case, we generated 32 noisy
data sets. Altogether we ran each algorithm for 352 data sets and
for each data set for 100 different regularization parameters, that
means each algorithm was applied 35,200 times.

Our study shows that the GCV, the LC and the RM yield the
best results in all test cases, where the RGCV and the SRGCV are
almost equally good. The DP provides good to acceptable results.
The performance of the QOC seriously depends on the data grid,
that means a less regularly distributed grid does not lead to good
results. In our experiments, the QOC had good results with the
Reuter grid in most cases. The MGCV also obtains both good
and rather poor results in dependency on the grid and kind of
noise we used. Here, the irregularly distributed scattered grid and
the colored noise did not yield good results. At last, the TDP, the
EEM and the GML did not always lead to good results in our test
cases.

Note that not all results can be explained since some
methods are still of rather heuristic nature and convergence
analysis does not exist even for simpler regularizations such as
ordinary Tikhonov regularization (see [18, 19] for an overview).
Often these methods are formulated and investigated without
considering discretization and data distribution issues. As our
study shows, not all of them transfer well from the continuous
to the discrete setting. It should also be noted that the GCV is
known to work very well with data afflicted by white noise, but
cannot deal well with colored noise. Our colored noise scenario
using the AR(1)-process might be too mild to show these effects.
The variants of the GCV, i.e., RGCV, SRGCV, and MGCV, use
their tuning parameter to trade a little bit of performance in
the case of white noise problems for a large improvement in
the colored noise case. There might still be the chance for some
improvements using another tuning parameter than in [18, 19].

We want to remark that in average our results were better than
in [18, 19] for all methods. Some possible reasons for that can be:
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the colored noise in our test cases was different and maybe easier
to handle for the methods than in the two papers, because we
only had an AR(1)-process. There is a further difference to the
other cases in relation to the problem itself. Here we had a data
grid given which corresponds to a spatial discretization of the
problem. Furthermore, the RFMP and the ROFMP are iterative
methods and use stopping criteria which are also some kind of
regularization. Since we stop the algorithm at a certain point we
do not obtain the approximation of the potential in the limit. For
these reasons, the outcomes of our experiments and of those in
[18, 19] are not really comparable.

The purpose of this paper is to provide a first guideline for
the parameter choice for the RFMP and the ROFMP. Certainly,
further experiments should be designed in the future. Maybe,
the distribution of our regularization parameters λk could be
improved such that the relevant parameters themselves are not
too wide apart. Perhaps, the interval from 1 to 10−14 should be
chosen smaller such that the parameters are closer together.

Moreover, note that we have not addressed the stopping
criterion of the RFMP and the ROFMP here, though the maximal
number of iterations is another regularization parameter. A
detailed investigation of this criterion is a subject for future
research. Furthermore, an enhancement could be the extension
of the dictionary to localized trial functions. In addition, the

generation of the colored noise can, for example, use an AR(k)-
process for k > 1 or completely different types of noise can be
considered. Finally, we can test other tuning parameters for the
methods as far as these are required. Besides, it is possible that
the performance of the investigated parameter choice methods
in the RFMP/ROFMP depends on the considered inverse
problem.
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