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Background:Hemorrhagic fever with renal syndrome (HFRS) is highly endemic in China,

especially in Heilongjiang province (90% of all reported HFRS cases worldwide occur in

China). The dynamic identification of high HFRS incidence spatiotemporal regions and

the quantitative assessment of HFRS associations with climate change in Heilongjiang

province can provide valuable guidance for HFRSmonitoring, preventing and control. Yet,

so far there exist very few and of limited scope quantitative studies of the spatiotemporal

HFRS spread and its climatic associations in Heilongjiang province. Making up for this

lack of quantitative studies is the reason for the development of the present work.

Method: To address this need, the well-known Bayesian maximum entropy (BME)

method of space-timemodeling andmapping together with its recently proposed variant,

the projected BME (P-BME) method, were employed in this work to perform a composite

space-time analysis and mapping of HFRS incidence in Heilongjiang province during the

years 2005–2013. Also, using multivariate El Niño-Southern Oscillation index as a proxy,

we proposed a combination of Hilbert-Huang transform and wavelet analysis to study

the “HFRS incidence-climate change” associations.

Results: The main results of this work were two-fold: (1) three core areas were identified

with high HFRS incidences that were spatially distributed and exhibited distinct biomodal

temporal patterns in the eastern, western, and southern parts of Heilongjiang province;

and (2) there exists a considerable association between HFRS incidence and climate

change, particularly, an ∼6 months period coherency was clearly detected.

Conclusions: The combination of modern space-time modeling and mapping

techniques (P-BME theory, Hilbert-Huang spectrum analysis, and wavelet analysis) used

in this work led to valuable quantitative findings concerning the spatiotemporal spread

of HFRS incidence in Heilongjiang province and its association with climate change. Our

essential findings include the identification of three core areas with high HFRS incidences

in Heilongjiang province, and considerable evidence that HFRS incidence is closely

related to climate change.

Keywords: hemorrhagic fever with renal syndrome, spatiotemporal, mapping, Bayesian maximum entropy,
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INTRODUCTION

Hemorrhagic fever with renal syndrome (HFRS) is a rodent-
borne zoonosis caused by Hantavirus (belonging to the
Bunyaviridae family). In China, the Hantaan and Seoul viruses
dominate HFRS infection, the leading rodent hosts of which
are Apodemus agrarius and Rattus norvegicus, respectively [1, 2].
The virus is transmitted from rodents to humans via inhalation
of aerosols contaminated by rodents’ urine, saliva, excreta, and
dung, possibly through ingestion of contaminated food and by
direct contact of contaminated materials with broken skin or
mucous membranes, or by rodent bites [3, 4]. Clinical HFRS
manifestations include fever, headache, nausea, and abdominal
pain. Complications, like adverse kidney effects and subsequent
pulmonary edema, shock, renal insufficiency, encephalopathy,
hemorrhages, and cardiac complications, can cause death [5, 6].
The disease goes through five stages: febrile, hypotensive shock,
oliguric, polyuric, and convalescent, which last, respectively, 1–7
days, 1–3 days, 2–6 days, 2 weeks, and 3–6 months [7].

Historically, numerous HFRS-like cases have occurred in
China going back to the tenth century AD. Currently, about
20,000–50,000 cases/year are reported in mainland China, which
account for 90% of all reported cases worldwide [5, 8, 9]. The
foci of HFRS often locates in rural areas, which constitute more
than 70% of the total number of cases, because of poor housing
conditions and abundant rodent hosts [10, 11]. According to the
data of the National Health and Family Planning Commission
of China, the HFRS death rate was 2.89% during 1950–2014 [7].
Rattus norvegicus, which hosts the Seoul virus, is regarded as one
of the most damaging invasive species around the world, and it is
closely associated with humans, particularly in largemetropolitan
areas [12, 13]. As HFRS remains a severe public health problem,
it is necessary to study historical HFRS evidence to provide
rigorous scientific support to current disease monitoring and
control procedures. Yet, so far there exists a very limited
number of quantitative studies regarding the spatiotemporal
HFRS distribution and spread in Heilongjiang province. In fact,
the reason for the development of the present work is to make up
the lack of such quantitative studies.

Based on province-level data, a number of nationwide studies
have been carried out in China. Their results indicated that
the geographical distribution of HFRS incidences was clustered,
particularly in the northeastern, central and eastern parts of
China. The observed hotspots shifted and expanded from
year to year, whereas most HFRS cases were mainly reported
during the spring and the autumn-winter seasons [14–16].
In these studies, global indicators of spatial autocorrelation
(GISA), local indicators of spatial association (LISA) and
Kulldorff ’s scan statistic were employed to characterize the
spatial variation of HFRS incidence during several time periods.
However, these studies suffered from certain drawbacks: (a) they
considered neither the temporal nor the combined space-time
(spatiotemporal) correlation of HFRS incidences, and (b) a fine
temporal resolution (i.e., monthly data) was assumed, whereas
the spatial resolution used for mapping purposes was rather
coarse (i.e., at the province-level).

For more than two decades, the Bayesian Maximum Entropy
theory of space-time data analysis and mapping (BME, [17–19])

has been proven to provide efficient and cost-effective methods
for characterizing, predicting and mapping disease attributes
(such as disease incidence) in a composite space-time domain
under conditions of in-situ uncertainty [20]. For example, Law et
al. [21] used BME to qualitatively and quantitatively detect core
areas with high syphilis incidence density in the city of Baltimore
(USA) between the years 1994 and 2002; also, based on age-
adjusted influenza mortality data at the county-level, Choi et al.
[22] used BME to represent the space-time disease dependence
structure of the disease, to map the influenza mortality rates and
to assess the associated disease risk in the state of California
(USA). In this work, wewill use both the original BME and a BME
variant (projected BME, P-BME) to study the spatiotemporal
HFRS dependence pattern in Heilongjiang province, including
the identification of particular disease features and the detection
of high incidence areas.

Since HFRS is transmitted by reservoir hosts (especially
rodents), it is expected that climatic factors (such as
precipitation, temperature, humidity, and global climate
pattern) should influence human HFRS morbidity by affecting
the reproduction and abundance of rodents [3, 23–27].
To some extent, understanding climate change can offer a
preliminarily assessment or an early warning concerning the
epidemic situation. Few studies have investigated the intrinsic
HFRS period and its inherent relationships with climate
attributes and factors. In recent years, the Hilbert–Huang
transformation (HHT, an adaptive method combining empirical
mode decomposition and spectral analysis) has been developed
for analyzing nonlinear and temporally non-stationary data,
in general [28–30]. With this method, the intrinsic mode and
intensity of a disease attribute is obtained that can provide useful
insight regarding the temporal regulation of disease variation.
Moreover, cross-wavelet transforms and wavelet coherence can
explore the relationship between two series in the time-frequency
domain [31]. As a matter of fact, the wavelet method has been
employed in the past to study disease incidence and climate
change. For example, Thai et al. [32] have found a strong non-
stationary association between El Niño-Southern Oscillation
(ENSO) indices and climate variables and the corresponding
dengue incidence in the Binh Thuan province (Vietnam) during
a 2–3 years period; also, Chowell et al. [33] have suggested that
in Peru the dengue incidence is significantly linked with the
seasonal cycle timing of mean temperature variations.

In view of the above considerations, the objective of this
work is two-fold: (1) to investigate the characteristics and
spatiotemporal distribution of HFRS incidence in Heilongjiang
province (China) using the BME and P-BMEmethods; and (2) to
assess the intrinsic mode and coherence similarities between the
HFRS incidence spread and the time series of key climatic factors
using the Hilbert-Huang spectrum method and wavelet analysis.

MATERIALS AND METHODS

Study Area and Data Collection
The Heilongjiang province is located in northeastern China, with
an area of ∼473,000 Km2 and a population of 38.35 million
people. Remarkably, the Heilongjiang province is one of the
highest HFRS morbidity regions in China [34]. The Heilongjiang
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basin includes four major river systems: the Heilong, Songhua,
Wusuli, and Suifen rivers (Figure 1). Monthly data of HFRS
cases (21,383 cases in total) were collected at 130 counties and
districts during the January 2005–December 2013 period by the
China Information System for Disease Control and Prevention
(CISDCP). Demographic data for each county were obtained
from the National Bureau of Statistics of China. Subsequently,
the HFRS cases were population-standardized and used in the
present work.

The multivariate ENSO Index (MEI) integrates 6 oceanic
and meteorologic variables over the tropical Pacific region
to represent global climatic cycles (i.e., El Niño-Southern
Oscillation): sea-level pressure, zonal and meridional
components of surface wind, sea surface temperature, surface
air temperature, and total cloudiness fraction of sky [35]. The
MEI has been used in the scientific literature to diagnose ENSO
phenomena that can cause global climate variability, including
world-wide correlations with temperature and precipitation data
[36]. In the present study, the MEI is employed as a proxy for
representing climatic factors in order to explore their effects on
HFRS incidence (MEI data is available at https://www.esrl.noaa.
gov/psd/enso/mei/table.html).

Spatiotemporal Analysis and Mapping
Methodologically, the standardized HFRS incidence was
regarded as a spatiotemporal random field (S/TRF, [19, 37]),
denoted as X(p), with arguments p = (s,t) ∈ R2 × T in a
composite space-time domain, where s = (s1, s2) ∈ R2 denote
the centroid coordinates of each administration unit and t ∈ T
denotes the time argument. In this quantitative modeling setting,
space (s) represents the order of co-existence and time (t)

represents the order of successive existence of HFRS incidence
distribution in Heilongjiang province. In-situ uncertainty
manifests itself as an ensemble of possible HFRS realizations x
regarding the space-time X(p) distribution, where the likelihood
that each one of these possible realizations occurs is expressed
by the corresponding HFRS probability density function f . In
the BME method, two main knowledge bases are considered:
the general or core knowledge base (G-KB), and the site-specific
knowledge base (S-KB). The G-KB includes theoretical models
of the space-time HFRS mean and covariance (correlation),
whereas the S-KB consists of hard (exact) and soft (uncertain)
HFRS data [38]. The BME method uses the general knowledge
available to generate the G–based (prior) probability density
function, fG, of HFRS incidence distribution. Subsequently, the
S-KB is incorporated to generate the combined G- and S-based
probability density function [19]

fK(xk) = A−1

∫
dS(xs) fG(x), (1)

where K = G+S denotes the total KB (core G and site-
specific S), x = (xh, xs, xk) are HFRS realizations at the hard
data points (ph), the soft data points (ps), and the unsampled
(prediction) points (pk), and A is a normalization constant.
After the probability density function fK has been derived at all
prediction points pk, various HFRS incidence, X(p), estimates at
these points are readily available, like the mean, the mode and the
median X(p) values at each pk.

It is widely-recognized that the joint spatial-temporal
covariance of a disease attribute is rather difficult to calculate
experimentally (primarily due to the limited number of sample
points) and to fit to a theoretical covariance model [39, 40].

FIGURE 1 | Study area and delimiter of counties and districts.
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Hence, it would be very useful to develop an improved method
of space-time covariance fitting. Responding to this need,
Christakos et al. [41] presented a BME variant, the projected
BME (P-BME) method, which projects the disease incidence
distribution (HFRS incidence in our case) from the original
space-time disease domain R2 × T onto a lower dimensionality
traveling space domain R2 bymeans of the simple set of equations

X(p) = X̂(s− υt, 0) = X̂(ŝ), (2a)

cX(h, τ ) = cX̂(h− υτ , 0) = cX̂(ĥ), (2b)

where ŝ = s − υt denotes the spatial coordinates of HFRS

incidence values, ĥ = h− υτ denotes the spatial lags (separation
distances) between HFRS incidence values, and υ = (υ1, υ2) is
the HFRS traveling vector. Then, p = (s1, s2, t) ∈ R2 × T are
the space-time coordinates in the original R2 × T domain, which
are matched one-to-one with the coordinates ŝ = (ŝ1, ŝ2) in the
traveling R2 domain according to the P-BME method, i.e., the
following transformation of HFRS incidence domains is used,

(s1, s2, t) ∈ R2 × T 7→ (ŝ1, ŝ2) ∈ R2. (2c)

Accordingly, cX(h, τ ) and cX̂(ĥ) are the HFRS incidence
covariances in the space-time R2 × T and the traveling (spatial)
R2 domains, respectively. The fact that these covariance functions
are related by Equation (2b) provides a practical way to calculate
υ in-situ. Significant advantages of the P-BME method is that,

after projection, the covariance cX̂(ĥ) is located in the spatial
(R2) domain, where (a) it is easier to fit a theoretical HFRS
covariance model to the data, (b) more choices of theoretical
HRFS covariance models are allowed, and (c) HSRF incidence
mapping is more accurate and computationally efficient than in
the space-time (R2 × T) domain.

By way of a summary, the P-BME method combines the BME
Equation (1) with the traveling Equations (2a–c) to derive HFRS
incidence predictions across space-time. The mean absolute
HFRS incidence prediction error can be used to evaluate the
accuracy of model cross-validation prediction. For comparison
purposes, the 10-fold cross-validation method will be used below
to test the performance of the direct BMEmethod and the P-BME
method in the R2 × T and the R2 domains, respectively. More
theoretical and technical details regarding BME and P-BME can
be found in the cited literature.

Hilbert–Huang Transformation
The HHT can help discover certain characteristics of the
cumulative HFRS incidence in the entire Heilongjiang province,
together with the MEIs and the underlying rules of their
variation. Basically, HHT consists of two steps: empirical mode
decomposition (EMD), and Hilbert transformation (HT).

More specifically, EMD is used to extract the intrinsic mode
functions (IMFs), each of which is independent of the others,
from the raw series

Y(t) =
∑n

m=1
cm + rn, (3)

where cm represents the IMF component, and rn denotes
residuals representing the raw series trend. We start by fitting

the local minima and maxima values of the raw time series, Y(t),
using cubic splines, and the mean time series, m1(t), is defined
(i.e., the splinemean).We also define the standard deviation (SD)

SD =
∑T

t=0

|h1(k−1)(t) − h1k(t)|2
h2
1(k− 1)

(t)
, (4)

where k = 1, 2, .... denotes the number of times the process is
repeated (by convention, h10(t) = Y(t)). The first difference
h11(t) = Y(t) − m1(t) is considered as the first IMF if it
satisfies the criterion that the SD is between 0.2 and 0.3 [28],
otherwise, the process is repeated using h11(t) as a raw series
until the criterion are met. After the first IMF is extracted, the
difference between the first IMF and raw series is used to identify
subsequent IMFs. Then, a monotonic series is defined as the
residual of the raw series trend mentioned earlier.

The HT can be applied for each IMF above to obtain the
analytical function and its polar form

zi(t) = ci(t)+ jH[ci(t)],

zi(t) = ai(t) exp[jθi(t)], (5)

respectively, where H denotes the Hilbert transform, and ai(t)
and θi(t) are the IMF amplitude and phase, respectively. Each
IMF is the real part of its corresponding analytical function zi(t).
In view of the IMF summation, see Equation (3), the raw series
can be calculated by

Y(t) = Re{
∑n

i=1
ai(t)e

j
∫
ωi(t)dt}, (6)

where ωi(t) is the IMF instantaneous frequency. The Hilbert
spectrum, H(ω, t), is subsequently defined as a frequency-time
distribution with the amplitude of the raw series of Equation (6).
And the marginal spectrum can be calculated by

h(ω) =
∫ T

0
dtH(ω, t). (7)

Considering that EMD may cause mode mixing [42], in this
work it was replaced by ensemble EMD (also denoted as EEMD).
The process is as follows: add a white noise series into the
raw series; use EMD to decompose the series with white noise
into IMFs; repeat the two steps above (say, m times in total)
with various white noise series; calculate the mean values of
the corresponding m IMFs, which will be the final IMFs. The
HHT can provide an amplified way of gaining insight into raw
time series in the time-frequency domain, whereas the marginal
spectrum offers an easy way to identify the cumulative amplitude
distribution across different frequencies in a probabilistic sense
[43]. In this work, the entire standardized HFRS incidences in
Heilongjiang province and the MEI, 108 months in total, were
analyzed by HHT for comparison. The software code used for
this purpose can be downloaded from http://rcada.ncu.edu.tw/
research1_clip_program.htm.
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Wavelet Analysis
The coherency between standardized HFRS incidence and MEI
expresses the association between these two variables, in which
case the coherent time-frequency areas can be easily discovered
in terms of wavelet analysis [31, 44].

Specifically, coherency can measure the covariation intensity
between two series. For this purpose, the time series, say Y1 and
Y2, are transformed by the continuous wavelet equation

W(τ ,α) = 1√
a

∫ +∞

−∞
Y(t) ψ∗( t−τa )dt, (8)

where ψ(t) is the mother wavelet, and ∗ denotes the complex
conjugate. Subsequently, the two transformed series are cross-
wavelet transformed by

WY1Y2 = WY1W
∗
Y2
. (9)

Finally, the wavelet transform coherency across time-frequency
space can be calculated by

R2(τ ,α) = |α−1WY1Y2 (τ ,α)|2
S[α−1|WY1 (τ ,α)|2]S[α−1|WY2 (τ ,α)|2]

, (10)

where α and τ are the scale factor and time shift, respectively,
and S is a smoothing operator. As in the case of the BME
method, more theoretical and technical details regarding HHT
and wavelet analysis can be found in the cited scientific literature.

RESULTS

Spatiotemporal Analysis
A total of 14,040 space-time records were included in the
spatiotemporal analysis of this work. In the R2 × T domain,
the HFRS incidence variability in Heilongjiang province was
measured by means of the isotropic covariance plotted in
Figure 2A. This space-time HFRS covariance combined two
theoretical models, an exponential and a Gaussian (squared
exponential) model, i.e.,

cX(h, τ ) = e
− h
72×103

−(
τ
2.6 )

2

, (11)

where 72 × 103 (m) and 2.6 (months) are, respectively, the
spatial and temporal correlation ranges of the HFRS incidence
distribution. The interpretation of the spatiotemporal covariance
plots of Figure 2A implies that the distribution of HFRS cases
during the period Jan 2005–Dec 2013 were controlled by spatial
and temporal dependences. In quantitative terms, the covariance

value [around 0.3 (cases/105)
2
] at the time lag τ = 4 (months)

indicates a rather strong temporal dependence among the HFRS
incidence values. On the other hand, the spatial neighborhood
effect is about 200 (km), which also indicates a significant spatial
dependence among incidence values.

By inserting Equation (11) into Equation (2b), the traveling
coefficient was calculated to be υ = |υ| = −10650.89τ . Then,
the HFRS incidence data points were projected from the R2 × T
domain onto the reduced dimensionality R2 domain (Figure S1).

Following the projection process, the empirical HFRS covariance
and the fitted covariance model in the R2 domain are plotted
in Figure 2B, where the HFRS covariance model is analytically
given by

cX̂ (̂h) = 0.75(1− 1.5̂h

104
+ 0.5̂h3

1012
)+ 0.25e

− ĥ
3.5×105 . (12)

This covariance is also of reduced dimensionality compared
to that of Equation (11). In addition, the theoretical
covariance model of Equation (12) provided a better fit to the
corresponding empirical covariance than the covariancemodel of
Equation (11).

HFRS Incidence Mapping
The HFRS incidence maps were firstly generated using the P-
BME technique. For illustration, the monthly HFRS incidence
maps for the year 2006 (January–December) are shown in
Figure 3. Additional HFRS incidence maps for all the years
considered can be found in the section of “Supporting
Information.”

As regards spatial variation, three areas with considerable
HFRS incidence are identified in the maps of Figure 3,
particularly, in the eastern, the western and the southern parts
of the Heilongjiang province. Among them, the eastern part
shows high HFRS incidence values over a larger area than in
the other two parts. As is noted in the section of Discussion,
this happens because there exists a corresponding large area
of croplands and rivers in the eastern part that are linked
to increasing HFRS incidence. As regards the temporal HFRS
variation in Heilongjiang province, the HFRS incidence variation
exhibited two outbreaks within a year’s time. Specifically, as is
shown in Figure 3 and Figure S12 (Supporting Information),
the HFRS incidence begins to increase in April of 2006, then
a peak is reached in June of 2006, and the HFRS incidence
reduces significantly in September of 2006. The next outbreak
is observed during September 2006 to February 2007 with the
peak occurring in November of 2006. Interestingly, the number
of HFRS cases during the autumn-winter period is much larger
than those during the spring-summer period. As noted in the
section of Discussion, the interpretation of this phenomenon is
that it is probably due to the fact that the autumn-winter period
coincides with the rice harvest season, i.e., after harvest the soil
condition switches from a flood state to a dry state, which leads
to the rodents dispersal or migration causing a higher number of
infected cases).

In the western part of the Heilongjiang province, low HFRS
incidence values were observed during the months February–
September of the period 2006–2013 (but not for the year 2005).
The HFRS incidence at the southern part of the Heilongjiang
province remained high during the months of June, October,
November, and December of each year considered. Apparently,
HFRS is transmitted to the southern part of the province
from its eastern part. Overall, a declining trend of HFRS
incidence is observed in the maps of Figures S3–S11 (Supporting
Information) for the period 2005–2013, which may be due, at
least in part to the development of medical condition and disease
prevention.
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FIGURE 2 | Plots of the spatiotemporal empirical covariances and the fitted theoretical models in (A) the R2 × T domain, and (B) the R2 domain.

A cross-validation analysis of P-BME mapping technique vs.
direct BME mapping is plotted in Figure S2 during the years
2005–2013: specifically, the P-BME mapping was more accurate
in predicting HFRS at low incidence points, whereas the direct
BME mapping was more accurate in predicting HFRS incidence
at high incidence points during 2005 and 2007 (see, also, the
months 1–36 of the time series of HFRS incidence in Figure 4A).
Overall, the P-BME was on average a better predictor of the
space-time HFRS incidence distribution in the Heilongjiang
province than the direct BME: the mean absolute prediction
error for BME over the entire domain was 0.524 cases/100,000
individuals, whereas that of P-BME was 0.459 cases/100,000
individuals. An explanation for the above results is given in the
section of Discussion below.

Ensemble Empirical Mode Decomposition
Using the ensemble EMD method, five IMFs and one residual
component were technically extracted from the HFRS and MEI
series. The results are shown in Figure 4. In the first 40 months,
the HFRS incidence series experienced much higher peaks than
during the remaining months (Figure 4A), which is consistent
with the findings of Figures S3–S11 (Supporting Information)
above. The IMF frequency decreases from IMF1 to IMF5,
whereas the corresponding IMF period increases. As it can be also
seen, the long trends (residual component) of HFRS andMEI are
decreasing.

Each IMF expresses a different fluctuation period (Table 1).
For HFRS, the IMF1 to IMF5 represent incidence periods lasting
5.959, 8.936, 18.024, 39.002, and 64.004months, respectively. The
mainHFRS inherent periods are 5.959, 8.936, and 18.024months,
according to the contribution percentage of IMF’s variance. The
corresponding MEI periods are 5.138, 17.662, 34.629, 50.129,
and 108.466 months, respectively, whereas the main periods are
17.662, 34.629, and 50.129 months. By comparing the periods of
each IMF, it was found that the IMF1 of HFRS has the same (6
months) period as the IMF1 of MEI. Similarly, the IMF3 of HFRS
has the same (18 months) period with the IMF2 of MEI.

Hilbert–Huang and Marginal HFRS
Incidence Spectra
The reason why the time-frequency technique (i.e., Hilbert–
Huang transformation) is used at this study stage is that we
seek to detect the similarities of the two series, in which case
it can be concluded that the two series are inter-related. The
Hilbert-Huang spectra of the HFRS and MEI series displayed in
Figures 5A,B represent the time-frequency-energy distributions
of the original series. As can be seen in Figures 5A,B, continuous
instantaneous frequencies are detected in the low frequency
region of the spectra (<0.15 cycle/month). The energy is also
high in the low frequency region, especially for MEI, although
some amounts of energy are detected in the middle and high
frequency region of the spectra (>0.15 cycle/month).

Moreover, the energy associated with HFRS incidence is more
discretely distributed than that associated with MEI. As is shown
in Figure 6, the marginal spectra of HFRS andMEI have a similar
peak occurring at ∼0.015–0.025 cycle/month. Also, we notice
the peaks at 0.0694 and 0.0787 cycle/month. From 0 to 0.15
cycle/month, both spectra exhibit a decreasing trend. However,
the MEI spectrum decreases rapidly to a small level and the
energy is concentrated in this frequency range. Compared to the
marginal MEI spectrum, the marginal HFRS spectrum presents
a more complex fluctuation pattern across the entire frequency
domain, and the amplitude (or energy) remains above the 0.15
cycle/month threshold.

Wavelet Coherency Analysis
As a result of the wavelet coherency analysis we obtained the
coherency wavelet spectrum between the HFRS and MEI series
shown in Figure 7A. This figure indicates that there exists a
strong coherency between the two series with a periodicity of
6-months band, particularly, during the sampled months 22–31,
41–52, 75–80, and 85–94. A weaker coherency was also detected
around the 12-month band during the sampled months 18∼28,
42∼52, and 61∼83.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 August 2017 | Volume 3 | Article 16

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


He et al. A Space-Time Study of HFRS

FIGURE 3 | HFRS incidence maps during the period Jan–Dec 2006.

The HFRS and MEI series reconstructed by means of the
wavelet transformation are plotted in Figures 7B,C. These plots
may be interpreted as providing an interesting demonstration
of the HFRS and MEI series oscillations, which is useful for
comparison purposes. A strong coherency is easily detected with
2 periodmonth bands (i.e., 5–7 and 8–16month band) during the
sampled months mentioned above. This explains why the same
oscillation pattern is found in Figures 7B,C.

DISCUSSION

Public health scientists and epidemiologists are increasingly in
need of gaining insight about the space-time HFRS incidence
variation, and about how climate change affects HFRS incidence
dynamics. This is particularly true in Heilongjiang province,
which is one of the most HFRS affected areas in China.
To the best of our knowledge, very few studies have used
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FIGURE 4 | Ensemble EMD of (A) HFRS series and (B) MEI series. S is the original series and res. denotes the residual series.

TABLE 1 | Statistics of ensemble EMD results.

Modes IMF1 IMF2 IMF3 IMF4 IMF5 Res

HRFS

Period (month) 5.959 8.936 18.024 39.002 64.004 –

Variance (%) 56.612 18.194 20.051 0.913 4.231 –

Correlation coefficient 0.607** 0.390** 0.271** 0.029 0.232* 0.381**

MEI

Period (month) 5.138 17.662 34.629 50.129 108.466 –

Variance (%) 2.595 16.286 52.239 28.803 0.078 –

Correlation coefficient 0.172 0.436** 0.384** 0.340** 0.138 0.128

*Correlation is significant at the 0.05 level (2-tailed).

**Correlation is significant at the 0.01 level (2-tailed).

analytical methods to describe the space-time HFRS spread
in Heilongjiang province. On the other hand, the associations
between HFRS incidence and climate factors have been
always assessed in terms of numerical modeling, for example,
autoregressive integrated moving average models (ARIMA),
seasonal ARIMA (SARIMA), ecological niche models (ENM),
Poisson regression models, multiple regression, conditional
logistic regression, and principal components regression (PCR)
models [25, 34, 45–48]. Interestingly, none of these studies
explored the association between HFRS incidence and climatic
factors in the context of their co-variation.

Responding to the above need, the present work is a
collaborative effort between the Zhejiang University (Zhoushan,
China), the Institute of Disease Control and Prevention (Beijing,
China), and the San Diego State University (California, USA).
This collaboration led to the introduction of a combination
of modern space-time modeling and mapping techniques from
BME theory, Hilbert–Huang spectrum analysis and wavelet
analysis in the study of the spatiotemporal HFRS incidence
distribution in Heilongjiang province, and its association with
climate change.

In particular, one of the main elements of this study is
the implementation of the P-BME method [41] to analyze the
space-time HFRS incidence spread in Heilongjiang province.
Monthly HFRS incidence data were analyzed and processed
across the Heilongjiang province during the period 2005–2013.
Monthly HFRS data are used here because they lead to more
accurate predictions than annual data (see below) and, also, they
can serve better our goals to detect the temporal HFRS incidence
pattern (which can be explained in ecological terms) and assess
the association between the HFRS incidence pattern and climate
change (MEI).

A key feature of the P-BME method is that technically it
transfers the study of HFRS incidence spread from the original
3-D (i.e., two space dimensions plus time, R2 × T) domain
onto a reduced dimensionality 2-D (i.e., two space dimensions,
R2) domain. In this way, the difficult to determine space-time
distance (metric) is reduced to a much easier to define spatial
distance, which means that the empirical space-time covariance
of the monthly HFRS incidence distribution is accordingly
transformed into a spatial covariance (see Figure 2). As a result, it
is technically much easier to fit a theoretical model to the spatial
than to the spatiotemporal empirical covariance of monthly
HFRS data.

Next, for comparison purposes, the empirical covariances

and the fitted theoretical models (in the R2 × T and the R2

domains) for the annual HFRS data are shown in Figure S13. This

comparison shows that the temporal dependence of the annual

HFRS data is much stronger than that of the monthly HFRS
data (e.g., by comparing Figure 2 and Figure S13, it is seen that

the annual HFRS covariance value at time lag τ = 4 is about

0.7 (cases/105)
2
compared to 0.3 (cases/105)

2
for the monthly

covariance).
As regards the space-time mapping of HFRS spread in

Heilongjiang province, it was found that the weaker the temporal
dependence of the HFRS empirical covariance is, the better is the
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FIGURE 5 | Hilbert-Huang spectra of (A) the HFRS series and (B) the MEI series. The color bar ranging from dark blue to yellow indicates energy variation from

minimum to maximum.

FIGURE 6 | Marginal spectra of (A) the HFRS series and (B) the MEI series.

P-BME performance compared to that of the direct BMEmethod.
This improved performance of P-BME in this case is explained
by the fact that since the time argument is technically imbedded
within the projected coordinates of the reduced dimensionality
domain, the temporal points with the stronger dependence
(compared to the spatial ones) are not explicitly taken into
account, instead, only traveling spatial points are considered in
HFRS prediction and mapping, and the HFRS prediction error
would be larger in this case. Compared to the original BME
method, the P-BME was found to provide on average more
accurate HFRS incidence predictions in the case of monthly
HFRS incidence data (the mean absolute prediction error for P-
BME is 0.459 cases/100,000 individuals vs. 0.524 cases/100,000

individuals for direct BME), whereas the opposite was the case
for annual HFRS incidence data (the mean absolute prediction
error for direct BME was 3.34 cases/100,000 individuals and for
P-BME it was 4.56 cases/100,000 individuals).

Other findings of this study included the following. Three core
areas were observed in the HFRS incidence distribution maps
we obtained for the period Jan 2005–Dec 2013, particularly, the
eastern, western and southern parts of Heilongjiang province. As
the drainage map of Heilongjiang province shows (Figure S14),
the Wusuli and Songhua rivers, as well as parts of the Heilong
river belong to the eastern part, and the Neng and Mudan
rivers belong to western and southern parts, respectively, of the
Heilongjiang Province. Regarded as major water sources, these
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FIGURE 7 | The HFRS-MEI association. (A) Wavelet coherency between HFRS and MEI series. The colors depict coherency values from black (0) to white (1); black

line represents the cone of influence that delimits the region that is not influenced by edge effects; the dash dot line shows a = 5% significance level computed based

on 500 simple bootstrap. (B) The oscillation series during the period 5–7 months band that was reconstructed from the real part of the wavelet transformed series.

(C) The oscillation series during the period 8–16 months band reconstructed from the real part of the wavelet transformed series. Dash lines represent oscillation of

the HFRS series, while black line represents oscillation of the MEI series.

river basins provide a suitable environment for rodent hosts and
their reproduction. The presence of a river or a pond can be a
risk for human HFRS infection [49]. Bao et al. [50] found that
HFRS incidence had a strong correlation with distance to rivers
(in particular, HFRS incidence had a quadratic relationship with
distance to rivers, and R2 = 0.999, p = 0.000). On the other
hand, severe droughts can significantly decrease HFRS incidence
[2, 51]. As rivers can provide sufficient water for vegetation
irrigation purposes, the croplands are always located near rivers,
and Heilongjiang province is no exception.

In the Heilongjiang province, croplands, mixed forests, and
cropland/natural vegetation mosaic account for 38.98, 26.29, and
16.92% of the territory, respectively (Figure S15). Specifically,
croplands are largely distributed in the eastern and western parts
of Heilongjiang province, and there are also some croplands in
the southern part of Heilongjiang province, which correspond to
the three core HFRS areas mentioned above. It has been found
that crop production is highly correlated with HFRS incidence
with a correlation coefficient r = 0.96 (p = 0.005) due to
the fact that crop can directly or indirectly serve as food for
rodent hosts [45]. Increasing food availability contributes to the
growth of rodent host population. This can raise the infection
probability of humans, especially farmers, who have a higher
likelihood to come in contact with these animals [52, 53]. Farmers
usually don’t have steady jobs other than farming, and they also
have higher mobility compared to other professions. Therefore,
they may carry and spread hantaviruses to wider areas than
the croplands during their traveling after the farming season.

Under these conditions, HFRS may spread rapidly. Being aware
of the above high HFRS spread likelihood, it is necessary to
implement public health interventions in the core areas of the
Heilongjiang province to avoid HFRS outbreaks and spread
(these interventions include, e.g., the extermination of potential
rodent hosts and vaccination).

In addition, June and November HFRS incidence peaks were
found during the years 2005–2013 (Figure S12). Interestingly,
this bimodal temporal pattern was also found in Hubei province
after 1995, as result of the Seoul virus-related HFRS spring
outbreaks and the Hantaan virus-related HFRS winter outbreaks
[54]. Another study found that HFRS associated with wild and
house rodents occur during different seasons [55]. In view of
the fact that land-use can affect virus occurrence in hosts by
influencing movement and contact rate [56, 57], we notice that
Heilongjiang is located in a high latitude area, where paddy
rice only grows once a year (during May and October). At the
beginning of sowing season in May, soils are irrigated to remain
in a flood state for paddy rice growth, and the soil conditions
change from drying to flooding. After harvesting, the soil will
return to drying conditions in October. These switches between
different land environmental conditions may cause a cascade of
factors contributing to infectious disease emergence, especially
invasive alien species due to the fact that they are invaders
over their natural range in the new environment [58–60]. More
specifically, an agricultural ecosystem is particularly vulnerable
to invasive alien species and anthropogenic activities that can
initiate or accelerate the introduction or invasion of alien species
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[58]. Sufficient food availability during June contributes to
rodent reproduction, whereas insufficient food availability or
the dry conditions of November will result in spur sudden
dispersal or migration events, both of which can increase HFRS
infection [61]. Whats more, the edges of paddy fields may involve
ecotones as habitats with infectious disease and animal reservoir
hosts being abundant in wildlife [62]. Following a month-
long period of environmental change, HFRS outbreaks may
occur.

Generally, the study of real world phenomena is highly
complex and interdisciplinary, in particular the study of large
spatial scale climate and disease variation (which can be affected
by biological, social, geographic, economic, medical factors
etc.; [63]). Hence, the observation series may contain a large
amount of direct and indirect information. With such complex
information, it can be really hard for scientists to collect
data from various disciplines and explore the relationship
among them through hypothesis- and equation-driven
methods.

In view of the above considerations, time-frequency analysis
methods, regarded as data-mining tools, constitutes another
major component of the present study. The results can reveal
the intrinsic variation patterns of HFRS incidence and MEI
series, as well as the dynamic characteristics of the HFRS
and MEI cycles in the time-frequency domain. Understanding
the association between HFRS incidence and climate change
(using MEI as a proxy, measuring coupled oceanic-atmospheric
character of ENSO event) provides a potential auxiliary way to
assess the public health effects of global climate change, since
climate variability has important effects on wildlife population
dynamics [64, 65]. The Hilbert-Huang transformation is a
powerful tool for solving mode-mixing problems and can be also
used as a filter for decomposing raw HFRS incidence series into
several independent series with disparate modes, i.e., IMFs [66].
Different component series were obtained that describe various
inherent disease characteristics that cannot be detected in the raw
series. Our results showed that both HFRS and MEI series have
six types of characteristic components. A monotonic declining
trend is shown in Figure 4, and both series are characterized by 6-
and 18-months periods, approximately (Table 1), indicating that
similar patterns are hidden in the variation features of the two
series. For further analysis, the Hilbert–Huang and the marginal
spectra were used to assess the strength of series variation in the
combined time-frequency domain. For both series, stable and
consistent variations were observed at low frequency regions,
although certain discrete fluctuations can be found in the HFRS
spectra that are not observed in theMEI spectra. Such differences
may not be explained by climate change (MEI) but rather in terms
of non-climatic factors, e.g., population immunity, public health
condition, and socio-economic factors [10, 54, 67].

Moreover, wavelet coherency analysis showed that the HFRS
incidence has a strong association with MEI during a 6-month
period (Figure 7). These results suggest that the HFRS incidence
dynamics are interrelated with climate change and the MEI can

serve as a potential predictor of HFRS occurrence. We notice
that similar results have been found for diseases like dengue
fever, dengue hemorrhagic fever, hantavirus cardiopulmonary
syndrome, andmalaria [68–71]. Moreover, regional precipitation
is known to be influenced by ENSO, showing the strongest
interrelation with climate variability around the Globe [72].
Increasing precipitation provides sufficient soil moisture for
improving ecosystem productivity [64]. As a result, the number
of rodents grows rapidly, leading to increasing contact rates
between rodents and between rodents and humans [61]. The
HFRS infection rate increases under the above ecological
changes. A deeper understanding of the association between
climate change and HFRS incidence can provide a potential tool
of early HFRS outbreak warning, especially concerning short-
term effects.

Certain limitations of the present work should be
acknowledged, which are rather typical for this kind of
quantitative studies. The first one is data limitation, i.e., the
HFRS dataset used is an aggregated set that does not distinguish
the infectious HFRS types, e.g., Hantaan virus or Seoul virus,
for which the infectious dynamics may be different. Second,
the impact of climate change on human HFRS incidence can
be twofold: impact from rodents to rodents and infection
from rodents to humans. Therefore, distinct studies of these
two possibilities would offer a better understanding of HFRS
transmission. Third, some other impact factors could also be
included in HFRS pattern analysis, such as population immunity
and socio-economic factors. Future work should focus on a more
detailed analysis of spatiotemporal intensity differences of the
various environmental factors impacting HFRS incidence.

In sum, the present work provides a quantitative study of
the HFRS incidence spread in Heilongjiang province (China).
Three core areas with high HFRS incidences were identified. In
addition, time-frequency analysis provides evidence that HFRS
incidence is closely related to climate change.
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