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Let H be a separable Hilbert space, let G ⊂ H, and let A be an operator on H. Under

appropriate conditions on A andG, it is known that the set of iterations FG(A) = {Ajg | g ∈
G, 0 ≤ j ≤ L(g)} is a frame for H. We call FG(A) a dynamical frame for H, and explore

further its properties; in particular, we show that the canonical dual frame of FG(A) also

has an iterative set structure. We explore the relations between the operator A, the set

G and the number of iterations L which ensure that the system FG(A) is a scalable frame.

We give a general statement on frame scalability, and study in detail the case when A is a

normal operator, utilizing the unitary diagonalization. In addition, we answer the question

of when FG(A) is a scalable frame in several special cases involving block-diagonal and

companion operators.

Keywords: dynamical sampling, frames, scalable frames, iterative actions of operators

1. INTRODUCTION

The problem of generating frames by iterative actions of operators [1–3] has emerged within the
research related to the dynamical sampling problem [1, 3–6]. The conditions under which a frame
generated by iterative actions of operators exists for a finite-dimensional or a separable Hilbert
space have been stated in Aldroubi et al. [1, 3]. If we have a frame, then a linear combination of
a dual frame with the dynamically sampled coefficients reproduce the original signal. The natural
follow-up questions to ask in this setup are: whether we can obtain a scalable [7–13] frame under
iterative actions, and if not, whether we can find a dual frame which preserves the dynamical
structure.

Let A be an operator on a separable Hilbert space H. We consider a countable set of vectors G in
H, and a function L :G → N0, where N0 = N ∪ { 0 }. Related to the iterated system of vectors

FLA(G) : = {Ajg | g ∈ G, 0 ≤ j ≤ L(g)}, (1)

we answer the following two questions:

(Q1) For which matrices A, which sets G, and which limits of iterations L is system (Equation 1) a
scalable frame for H?

(Q2) Assuming that system (Equation 1) is a frame for H, can we obtain a dual frame for Equation
(1), perhaps by iterative actions of some operator?

The motivation for studying systems of type (Equation 1) comes from the dynamical sampling
problem (DSP): Let the initial state of a dynamical system be represented by an unknown element
f ∈ H. Say the initial state f is evolving under the action of an operator A∗ to the states fj = A∗fj−1,

where f0 = f and j ∈ N
+
0 . Given a set of vectors G ⊂ H, one can find conditions on A, G and
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L = L(g) which allow the recovery of the initial state f from the

set of samples {〈A∗jf, g〉 | g ∈ G}L(g)j=0 . In short, the problem of

signal recovery via dynamical sampling is solvable if the set of
vectors (Equation 1) is a frame for H, [1, 3]. In frame theory it is
known that every frame has at least one dual frame; if FLA(G) is a
frame for H, and its dual frame elements are hg,j, then all f ∈ H

are reconstructed as

f =
∑

g∈G

L(g)
∑

j=0

〈f,Ajg〉hg,j. (2)

2. PRELIMINARIES

Throughout this paper H denotes a separable Hilbert space.
Given an index set I, a sequence F = {fi}i∈I of nonzero elements
of H is a frame for H, if there exist 0 < A ≤ B < ∞ such that

A‖f‖2 ≤
∑

i∈I
|〈f, fi〉|2 ≤ B‖f‖2 for all f ∈ H. (3)

In finite dimensions, we find it useful to express frames as
matrices, so we abuse the notation of F as follows: when dimH =
n, a frame F = {fi}i∈I for H is often represented by a n× kmatrix
F, whose column vectors are fi, 1 ≤ i ≤ k (k ≥ n). The frame
operator S = FF∗ is then positive, self-adjoint and invertible.

For each frame F there exists at least one dual frame G =
{gi}i∈I , satisfying

f =
∑

i∈I
〈f, fi〉gi =

∑

i∈I
〈f, gi〉fi for all f ∈ H. (4)

The matrix equation FG∗ = GF∗ = I is an equivalent expression
to the frame representation (Equation 4). The set {gi = S−1fi}i∈I
is called the canonical dual frame.

Finding a dual frame can be computationally challenging; thus
it is of interest to work with tight or scalable frames. We say that
a frame is A-tight if A = B in Equation (3). When A = 1, we
call F a Parseval frame. If a frame F = {fi}i∈I is not tight, but we
can find scaling coefficients wi ≥ 0, i ∈ I, such that the scaled
frame Fw = {wifi}i∈I is tight, then we call the original frame F a
scalable frame. We note that the notion of scalability of a frame
is defined for a unit-norm frame in [10], but in this manuscript
we do not require a scalable frame to be unit-norm. If the scaling
coefficients wi are positive for all i ∈ I, then we call the original
frame F a strictly scalable frame.

Let I denote a finite or countable index set, letG = {fs}s∈I ⊂ H

and let A : H → H be a bounded operator. We call the collection

FLG(A) = ∪s∈I{Ajfs : j = 0, 1, . . . , Ls} (5)

a dynamical system, where Ls ≥ 0 (Ls may go to ∞) and L =
(Ls)s∈I is a sequence of iterations related to the setG. The operator
A, involved in generating the set Equation (5), is referred to as a
dynamical operator. IfA is fixed, then we use the notation FLG, and
if G = {f} and L = {L}, then we label (Equation 5) by FLf .

Note that in Aldroubi et al. [1], fs are chosen to be the standard
basis vectors, while in this manuscript, we allow the use of any

nonzero vector fs ∈ H. If Equation (5) is a frame for H, then we
call FLG(A) a dynamical frame, generated by a dynamical operator
A, set G and sequence of iterations L.

3. NEW RESULTS ON DYNAMICAL

FRAMES

Theorem 1. Let G = {fs}s∈I ⊂ H, where I is a countable index
set, and assume that FLG(A) is a frame for H, with frame operator S.
The canonical dual frame of FLG(A) is the dynamical frame FLG′ (B),

generated by operator B = S−1AS, G′ = {gs = S−1fs}s∈I , and
sequence of iterations L.

In addition, every f ∈ H can be reconstructed from the
dynamical samples {〈A∗jf, fs〉|0 ≤ j ≤ Ls}s∈I via the frame
reconstruction formula

f =
∑

s∈I

Ls
∑

j=0

〈A∗jf, fs〉Bjgs. (6)

Proof: Let FLG(A) be a frame for H, where G = {fs}s∈I ⊂ H and
I is countable, and assume that S is the frame operator for FLG(A).
Then S is an invertible operator, and for anyAjfs ∈ FLG(A) we have
that S−1

(

Ajfs
)

is a canonical dual frame element, where s ∈ I,
0 ≤ j ≤ Ls. If we choose

gs : = S−1fs, s ∈ I and B : = S−1AS, (7)

then for all j ≥ 0 we have

Bjgs = (S−1AS) . . . (S−1AS)gs = S−1Aj
(

Sgs
)

= S−1
(

Ajfs
)

. (8)

Theorem 2. Let H1 and H2 be two separable Hilbert spaces. Let A
be a bounded operator on H1 and let B : H1 → H2 be an invertible
operator. Let I be a countable index set, and fix G = {fs}s∈I ⊂ H1.
Set gs = Bfs ∈ H2, s ∈ I, and C : = BAB−1. For any set of
iterations L = (Ls)s∈I , Ls ≥ 0, TFAE:

(i) The set F = ∪s∈I{Ajfs}Lsj=0 is a frame for H1,

(ii) The set BF = ∪s∈I{Cjgs}Lsj=0 is a frame for H2.

Proof: Let gs = Bfs ∈ H2, s ∈ I, and set C = BAB−1. Note that
Cj = BAjB−1, due to B−1B = I. For any Ajfs ∈ F ⊂ H1, we have

BAjfs = BAjB−1Bfs = BAjB−1gs = Cjgs ∈ BF ⊂ H2. (9)

The operator B is invertible, thus BF is a frame if and only if F is
a frame, so (i) and (ii) are equivalent.

If the operator B occurring in Theorem 2 is unitary andH1 = H2,
then the property of scalability is preserved. We have:

Corollary 1. Let fs ∈ H, and set vs = U∗fs for all s ∈ I,
where I is a countable index set. Let A,R be two operators on a
separable Hilbert space H, and let U be a unitary operator on H. If
A = URU∗, then TFAE:
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(i) ∪s∈I{Ajfs}Lsj=0 is a scalable frame for H,

(ii) ∪s∈I{Rjvs}Lsj=0 is a scalable frame for H.

In the next section, we exploit the simplicity of the unitary
diagonalization of normal operators to give more explicit
conditions on the normal operatorA in order to ensure scalability
of a frame of type FLG(A).

3.1. Normal Operators
Let A be a bounded operator on a separable Hilbert space H, and
assume there exists a unitary operatorU, and a diagonal operator
D such that A = UDU∗. Let G = {fs}s∈I and set vs = U∗fs, s ∈ I,
where I is countable. Since Aj = UDjU∗, it follows that for each
j ∈ N0 we have

Ajfs = UDjU∗fs = UDjvs = U(Djvs) for all fs ∈ G. (10)

By Corollary 1, ∪s∈I{Ajfs}Lsj=0 is a scalable frame for H if and only

if ∪s∈I{Djvs}Lsj=0 is a scalable frame for H.

By the spectral theorem, a compact self-adjoint operator on a
Hilbert space can be unitarily diagonalized. Thus, we can deliver
a more precise statement on dynamical frames scalability when a
normal operator is involved; we note that the following result in
the finite dimensional case can be generalized when working in a
separable Hilbert space with a countable orthonormal basis:

Theorem 3. Let A = UDU∗ be a normal n × n matrix, where U
is unitary, and D is diagonal, with diagonal entries a1, . . . , an ∈ C.
Let fs ∈ H, and set vs = U∗fs = (xs(1), . . . , xs(n))

T , 1 ≤ s ≤ p.
The set ∪p

s=1{Ajfs | 0 ≤ j ≤ Ls} is a scalable frame of H if and
only if there exists a positive solution ws,0,ws,1, . . . ,ws,Ls , 1 ≤ s ≤ p
to the system of equations







∑p
s=1 |xs(i)|2

[

w2
s,0 + w2

s,1|ai|2 + . . . + w2
s,Ls

|ai|2Ls
]

= 1,
∑p

s=1 xs(i)x̄s(j)
[

w2
s,0 + w2

s,1aiāj + . . . + w2
s,Ls

(aiāj)
Lk
]

= 0,

(11)
for all i, j = 1, . . . , n, i 6= j.

Proof: Let D be the unitary diagonalization of A, with diagonal
entries a1, . . . , an ∈ C, and let vs = (xs(1), . . . , xs(n))

T ∈ C
n,

s ∈ {1, · · · , p}, p ≥ 1.
The set ∪p

s=1{Djvs | 0 ≤ j ≤ Ls} is a scalable frame for H

if and only if there exist scaling coefficients ws,0,ws,1, . . . ,ws,Ls ,
1 ≤ s ≤ p, which satisfy f =

∑

s,j〈f,ws,jD
jvs〉ws,jD

jvs for

all f ∈ H. Restating the last equality in matrix product form
illuminates the fact that w2

s,j need to be the positive solutions to

the weighted system of Equation (11).
By Corollary 1 the conclusion of the theorem holds true for a

finite dimensional Hilbert space H.

Theorem 4. If n ≥ 3, then a normal operator on R
n can not

generate a strictly scalable dynamical frame from a single vector
in R

n.

Proof: The Equation (11) implies that for the first three a′is, we
always have the relation a1a2, a1a3, and a2a3 are all negative

numbers assumingwi 6= 0, i = 1, 2, 3, which is not possible. Thus
any diagonal operator for R

n can not generate a strictly scalable
frame from a single vector in R

n.

Although a normal operator on R
n can not generate a strictly

scalable dynamical frame from a single vector, there do exist
normal operators on C

n which generate scalable dynamical
frames, for example harmonic tight frames.

The problem of finding specific conditions under which the set
in item (ii) in Corollary 1 is a scalable frame for H is still open for
operators which do not possess a unitary diagonalization. For this
reason, we further study several operators with special structures,
such as block-diagonal operators (section 4) and companion
operators (section 5).

4. BLOCK-DIAGONAL OPERATORS

In this section, we explore the case when the operator A is of
block-diagonal form. Block-diagonal operators give us a chance
to offer a partial answer to (Q1) in the case when we don’t have a
unitary diagonalization.

Let As : Hs → Hs be an operator on Hs, with dimHs = ns,
1 ≤ s ≤ p. Let A : H → H be a block-diagonal operator on
H = ⊕p

s=1Hs, constructed as follows:

A =







A1 . . . 0
...

...
...

0 . . . Ap






. (12)

Let v ∈ Hs for some 1 ≤ s ≤ p. If H is the direct sum of a family
(Hs)s of Hilbert space, for each index s there exists a canonical
inclusion is of Hs into H. We say that v is well-embeded in f ∈ H

with respect to operator (Equation 12) if f = is(v).

Theorem 5. Let As : Hs → Hs be an operator on Hs, with
dimHs = ns, 1 ≤ s ≤ p. Let A : H → H be a block-diagonal
operator on H = ⊕p

s=1Hs, constructed as in Equation (12). Let
vs,1 . . . , vs,ms ∈ Hs, 1 ≤ s ≤ p be well-embedded in fs,1, . . . , fs,ms ∈
H, 1 ≤ s ≤ p.

The set

p
⋃

s=1

{Ajfs,k | 1 ≤ k ≤ ms}
Ls,k
j=0 (13)

is a (scalable) frame of H if and only if {Aj
svs,k | 1 ≤ k ≤ ms}

Ls,k
j=0

are (scalable) frames of Hs for all 1 ≤ s ≤ p.

Proof: We assume that all ms = 1, i.e., fs,k = fs, vs,k = vs,
and Ls,k = Ls, 1 ≤ s ≤ p, to simplify the presentation of the

proof. The matrix representation of ∪p
s=1{Ajfs}Lsj=0 with scaling

coefficients ws,j, 0 ≤ j ≤ Ls for each s = 1, . . . , p is of
block-diagonal form:

F =









w1,0v1 . . . w1,L1A
L1
1 v1

. . .

wp,0vp . . . wp,LpA
Lp
p vp









.
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If F is a tight frame, then row vectors of F are orthogonal and

have the same norm and so does (ws,0vs . . .ws,LsA
Ls
s vs) for each

s = 1, . . . , p. This implies that the system {Aj
svs}

Lk
j=0 is a scalable

frame for Hs for all 1 ≤ s ≤ p.

Now, suppose that for each 1 ≤ s ≤ p, the system {Ajvs}Lsj=0 is

a scalable frame forHs. Then, there exist some scaling coefficients

ws,j, 1 ≤ s ≤ p, 0 ≤ j ≤ Ls, such that {ws,jA
j
svs|0 ≤ j ≤ Ls} is a

Parseval frame for each s = 1, . . . p.

Block operators we can employ in Theorem 5 include:

Example 1. Let a, b, c, d be real numbers.

(a) The operator A =
(

a c
b d

)

in R
2 generates a tight frame

F2e1 if a 6= −d, b = ±1
a+d

√

a2(a+d)2+(a+d)2+a2

1+(a+d)2
, and c =

∓a(ad + a2 + 1)
√

1+(a+d)2

(a+d)2+a2(a+d)2+a2
.

(b) The operator A =
(

a c
b d

)

in R
2 generates a tight frame F2e1 if

a > 0 and 0 < − a(a2+bc)
b2(a+d)

< 1.

(c) The operator A =
(

0 a
1 b

)

generates a strictly scalable frame

F3e1 if a+ b2 < 0.

(d) The operator A =





0 0 0
1 a c
0 b d



 generates a strictly scalable

frame F3e1 if a > 0 and 0 < − a(a2+bc)
b2(a+d)

< 1.

The conditions for Example 1(b) are obtained from the following
proposition:

Proposition 1. Let a, b, c, d be real numbers such that a > 0 and
abcd 6= 0. Then the following two statements are equivalent:

(1) 0 < − ac
bd

< 1.
(2) The system

F =
(

1 a c
0 b d

)

is a strictly scalable frame for R
2.

Proof: We first note that the condition 0 < − ac
bd

< 1 is

equivalent to (a > 0, − b
c > a

d
> 0) or (a > 0, − d

a > c
b

> 0).

(1) ⇒ (2): The conditions a > 0, − b
c > a

d
> 0 imply that

d > 0, ad − bc > 0,
ac

bd
> −1

and the conditions a > 0, − d
a > c

b
> 0 imply that

d < 0, ad − bc < 0,
ac

bd
> −1.

Then

x =
√

ac

bd
+ 1, y =

√

c

−b(ad − bc)
, z =

√

a

d(ad − bc)

are positive numbers and

F =
(

x ya zc
0 yb zd

)

is a Parseval frame for R
2.

(1) ⇐ (2): If the system F is strictly scalable, then the
normalized system

F′ =

(

1 a√
a2+b2

c√
c2+d2

0 b√
a2+b2

d√
c2+d2

)

is a unit-norm scalable frame. The Gramian matrix of diagram
vectors of F′ has positive scalings in its null space:

a2cd − abc2 + abd2 − b2cd

ab(c2 + d2)
> 0, (14)

−cd(a2 + b2)

ab(c2 + d2)
> 0. (15)

Inequality (Equation 15) implies that − ac
bd

> 0. Next we show
that− ac

bd
< 1.

In case b > 0, inequality (Equation 14) implies that

a2cd + abd2 > bc(ac+ bd).

If (c > 0 and ac + bd ≥ 0) or (c < 0 and ac + bd ≤ 0),
then a2cd + abd2 > 0, which implies − ac

bd
< 1. If c > 0 and

ac + bd < 0, then ac < −bd, which implies 1 < − bd
ac since

ac > 0. Similarly, if c < 0 and ac+bd > 0, then ac > −bd, which

implies 1 < − bd
ac since ac < 0. This is equivalent to− ac

bd
< 1.

In case b < 0, suppose that − ac
bd

≥ 1. Multiply both sides

by the positive number −abd2. On one hand we have a2cd ≥
−abd2 and on the other hand, from inequality (14), we have
a2cd − abc2 < −abd2 + b2cd. Since a2cd ≥ −abd2, we have
−abd2 − abc2 < −abd2 + b2cd, which implies − ac

bd
< 1. This

contradicts our assumption.

Proposition 2. Let i, j, k, l ∈ N be such that p < k ≤ n, q <

l ≤ n, and let N ∈ N. For each m = 1, . . . ,N, we define
A
pq

kl
(m) = [aij(m)]ni,j=1 as

apq(m) = am, apl(m) = bm, akq(m) = cm, akl(m) = dm.

If for each m = 1, . . . ,N, am, bm, cm and dm satisfy the conditions
of Proposition 1, and the system

{e1} ∪ ∪N
m=1{A

pq

kl
(m)e1, (A

pq

kl
(m))2e1} (16)

spans R
n, then Equation (16) is a strictly scalable frame for R

n.
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4.1. Generalization
The problem of generating a frame by iterative actions of a block-
diagonal operator (Equation 12) is equivalent to the problem
of generating a frame by iterative actions of multiple operators.
So, we pose the question: Given operators As, s ∈ N, on
a separable Hilbert space H, and fixed vectors v ∈ G ⊂
H, when is the collection {Asv|s ∈ N, v ∈ G} a (scalable) frame
for H?

Such frames would naturally arise in applications; for instance,
let f ∈ H be the initial state of a physical system that evolves
through time, and let the sequence of bounded operators {A∗

s |s ∈
N} describe the evolution of that physical system i.e., fs = A∗

s f is
the sth state of the system at time ts. Assume there are several
fixed sampling locations v ∈ G ⊆ H, where samples of the
evolved state are taken:

〈A∗
s f, v〉 = 〈f,Asv〉.

Clearly, f can be recovered from the set of samples {〈A∗
s f, v〉|v ∈

G} if and only if {Asv|v ∈ G, s ∈ N} is a frame for H.
Note that this type of a frame is a generalization of frames of
iterative actions of operators, when one or more operators are
involved.

For a frame generated by actions of a sequence of
operators, we find that its canonical dual frame has similar
structure:

Theorem 6. Let As, s ∈ I be a sequence of operators on a separable
Hilbert space H, and let G ⊂ H. Suppose F(As, I) : = {Asv|s ∈
I, v ∈ G} is a frame forH, with frame operator S. Then its canonical
dual frame is

{ Bsf | s ∈ I, f ∈ S−1(G)}, where Bs = S−1AsS, s ∈ I. (17)

Proof: If S denotes the frame operator of the frame F(As, I)
for H, then its canonical dual frame elements are S−1Asv,
v ∈ G.

Since SS−1 is the identity operator, and Bs = S−1AsS, we
obtain that the dual frame elements are

S−1Asv = S−1AsSS
−1v = S−1AsSf = Bsf, where f ∈ S−1(G).

5. COMPANION OPERATORS AND

GENERALIZATIONS

Let a1, . . . , an ∈ R which are not all zeros; then

A =











0 a1
a2

In−1

...
an











(18)

is called a companion operator [14].

Proposition 3. Let the dynamical operator A be a companion
operator (18) in R

n, then we have

(1) Fn−1
e1

= I.

(2) for any orthogonal matrix U, the operator UAU−1 generates
an orthonormal basis U.

It is known that the standard orthonormal basis B can not be
extended to a scalable frame by adding one vector f ∈ H \ B, [8,
11]. Thus, we explore when one can generate a dynamical frame
by adding two vectors. Although a companion operator A does
not generate a scalable frame Fne1 , it can generate a scalable frame

Fn+1
e1

under certain conditions. Using the companion operator A,
we have

Fne1 = (e1 . . . en f), Fn+1
e1

= (e1 . . . en f g), (19)

where

f =



















a1
a2
a3
...

an−1

an



















and g =



















a1an
a1 + a2an
a2 + a3an

...
an−2 + an−1an
an−1 + a2n



















.

Proposition 4. [11] Let {e1, . . . en} be the standard orthonormal
basis in R

n with n ≥ 2. Let f and g be two unit-norm vectors in
R
n.
If either system {e1, . . . en, f, g} or {e1, . . . en−1, f, g} is scalable,

then f and g have only two nonzero elements in the same entries.

We now assume that Fn+1
e1

is scalable. Then by Proposition 4,
am = 0 implies that am−1 = 0 for m ≥ 2. This implies that
a1 = . . . = an−2 = 0. A consequence of this is the following
result.

Proposition 5. Let a and b be real numbers such that a > 0 and

0 < − a2

a+b2
< 1. Then the companion operator A in R

n,

A =













0 0 ... 0 0 0
1 0 ... 0 0 0

. . . .
0 0 ... 1 0 a
0 0 ... 0 1 b













(20)

generates a strictly scalable frame Fn+1
e1

.

Proof: We have

Fn+1
e1

=





In−2

1 0 a ab
0 1 b a+ b2



 , (21)

which is strictly scalable.

We note that the operator A in Equation (20) is not
diagonalizable.
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Example 2. Let a and b be real numbers such that 0 <

− a(a2+bc)
b2(a+d)

< 1 and a > 0. Then the operator

A =



















0 0 0 . . . 0
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
0 . . . 1 a c
0 . . . 0 b d



















(22)

generates a strictly scalable frame Fne1 for R
n.

Proof: We have

Fne1 =





In−2

1 a a2 + bc
0 b ab+ bd



 . (23)

The strict scalability follows by Example 1.

Example 3. Let 2 sin2(φ)− 1 > 0 and let

A =



















±1 0 0 0 . . . 0
0 ±1 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . ±1 0 0
0 0 . . . 0 cosφ − sinφ

0 0 . . . 0 sinφ cosφ



















. (24)

The set

{en−1,Aen−1,A
2en−1} ∪

n−2
⋃

l=1

{el,Ael, . . . ,ALlel} (25)

is a strictly scalable frame of R
n.

6. CONCLUDING REMARKS

Wehave studied the scalability of dynamical frames in a separable
Hilbert space H. Given an operator A on H and a (at most
countable) set G ⊂ H, we have explored the relations between A,
G and the number of iterations thatmake the system (1) a scalable
frame. In section 3.1 we have fully answered question (Q1) in
finite dimensions, when working with a normal operator. We
have also studied operators with specialized structures, such as
block-diagonal operators (section 4), and companion operators
(section 5), which are not necessarily normal; for instance, note
that the block-diagonal matrix A in Theorem 5 cannot be normal
if one of its blocks is not normal.

In adition, we have established the canonical dual frame for
frames of type FG(A); in particular, we showed that the canonical
dual frame has, as anticipated, an iterative set structure; in
section 4.1, we had generalized the notion of dynamical frames
to the notion of frames generated by sequences of operators,
and verified that the canonical dual frame result is generalized as
well (Theorem 6); this type of result holds true in any separable
Hilbert space H.
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