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Autologistic regression is an important probability model for dichotomous random

variables observed along with covariate information. It has been used in various fields for

analyzing binary data possessing spatial or network structure. The model can be viewed

as an extension of the autologistic model (also known as the Ising model, quadratic

exponential binary distribution, or Boltzmann machine) to include covariates. It can

also be viewed as an extension of logistic regression to handle responses that are not

independent. Not all authors use exactly the same form of the autologistic regression

model. Variations of the model differ in two respects. First, the variable coding—the

two numbers used to represent the two possible states of the variables—might differ.

Common coding choices are (zero, one) and (minus one, plus one). Second, the model

might appear in either of two algebraic forms: a standard form, or a recently proposed

centered form. Little attention has been paid to the effect of these differences, and

the literature shows ambiguity about their importance. It is shown here that changes

to either coding or centering in fact produce distinct, non-nested probability models.

Theoretical results, numerical studies, and analysis of an ecological data set all show that

the differences among the models can be large and practically significant. Understanding

the nature of the differences and making appropriate modeling choices can lead to

significantly improved autologistic regression analyses. The results strongly suggest that

the standard model with plus/minus coding, which we call the symmetric autologistic

model, is the most natural choice among the autologistic variants.

Keywords: probabilistic graphical models, Markov random fields, logistic regression, correlated binary random

variables, spatial statistics

1. INTRODUCTION

The autologistic (AL) model is a probabilistic graphical model for multivariate binary data. It was
introduced to the statistical literature by Besag [1, 2] and has also been developed by Kaiser and
Cressie [3]. The same model appeared much earlier in statistical physics, where it is known as the
Ising model (see e.g., [4, 5]). It has been used extensively in image processing (e.g., [6–8]), and is
also the model underlying the Boltzmann machine [9]. The same model has also been called the
quadratic exponential binary distribution [10, 11], and, under that name, it has been described as
the binary-variable analog of the multivariate normal distribution ([12]; see also [13]). As such,
one may anticipate that the autologistic model will become increasingly useful as the number of
complex, graph-structured data sets continues to grow.

When binary responses are observed along with covariate information, the autologistic model
may be extended to become the autologistic regression (ALR) model. This model can be viewed
as a natural extension of ordinary logistic regression to handle cases where responses are not
independent. Under the ALR model, the responses follow an autologistic distribution, and the
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distribution’s parameters are written in terms of a linear predictor
involving the covariates. The ALR model has been used in a
variety of fields, including ecology [14, 15], dentistry [16, 17],
anthropology [18], materials science [19] and computer vision
[20, 21].

As an example, consider the Hydrocotyle vulgaris data shown
in Figure 1. These data were derived from the work of Carl and
Kühn [22] and re-analyzed by Bardos et al. [23]. The responses
are presence or absence of plant species H. vulgaris in a regular
grid of 2,995 cells covering Germany. The covariate is altitude
(in hundreds of meters), recorded as a number from 0 to 18.23.
From the figure it is clear that altitude is inversely related
to species presence, and also that the observed responses are
spatially correlated. Simple logistic regression provides estimated
probabilities that appear realistic, but samples drawn from
the fitted logistic model have more noise than the observed
response. Explicitly modeling spatial association through an ALR
model can potentially improve goodness-of-fit and give a better
evaluation of the true effect of altitude.

If an analyst wishes to perform autologistic regression on data
such as these, they are faced with two choices about the structure
of the model: coding and centering.

Coding refers to the pair of numbers used to represent the two
possible states or levels of a binary variable. Here the two levels
will be referred to as “low” and “high.” Since binary outcomes are
usually categorical, not numeric, the analyst may freely choose
two values, ℓ and h, to represent the two states. Standard choices
are the zero/one coding, {0, 1}, used almost universally in the
statistics literature, and the plus/minus coding, {−1, 1}, used
customarily in physics and also common in image processing.

Centering refers to the presence or absence of a particular term
in the model formulae. Caragea and Kaiser [24] observed that
the original ALR model provides regression coefficient estimates
that are not easy to interpret. They proposed the centered model
to correct this problem, and recommended that it become the
default for future use. This viewpoint was furthered by Hughes et
al. [25], who expanded on inferential and computational aspects
of ALR, using the centered model exclusively.

Onemay, then, refer to two types of AL/ALRmodel: those with
the centering adjustment (centeredmodels), and those without it
(standardmodels). Additionally, each type may be used with any

FIGURE 1 | The H. vulgaris data. (A) Observed presence/absence data (white indicates presence, which is taken to be the “high” level). (B) Value of the covariate,

altitude. (C) Predicted probabilities from logistic regression. In (B,C), lighter shades of gray indicate larger values.

chosen coding, leading to an infinite number of model variants
(a term that will be used for a particular combination of type and
coding).

The present work provides a detailed study of the different AL
and ALR variants. It is confirmed that all variants are equivalent
in the AL case, although the way they depend on their parameters
varies widely. More interestingly, equivalence does not hold
in the ALR case. The centered and standard ALR models are
distinct, non-nested families of probability distributions. Even
within ALR models of the same type, changing the coding
will generally change its probabilistic structure. The differences
among models can be large both qualitatively and quantitatively,
certainly large enough to be of practical consequence.

The extant literature on autologistic regression does not
contain a similar investigation of the impact of coding and
centering. Indeed, it appears to demonstrate ambiguity about the
importance of these two choices. Consider the following:

1. Some research communities use {0, 1} coding, and others use
{−1, 1}. At the same time, the author is not aware of a single
article in which a justification was given for choosing one
coding over the other in an ALR model.

2. In the literature, ALR models with different codings take the
same algebraic form; a coding change is effected by simply
plugging different numbers into the same formulae. This is
done despite the well-known fact (repeated in Appendix A)
that this operation is not, in general, equivalent to properly
transforming the random variables.

3. The key references for the centered model [24, 25] both
refer to it as an autologistic model with a “centered
parameterization,” and cite improved parameter
interpretation as its main advantage.

4. The centering adjustment was motivated by analogy with
Gaussianmodels, where both centered and uncenteredmodels
are part of the same distribution family.

Points 1 and 2 suggest that many researchers view the choice
of coding in an ALR model as trivial or inconsequential. This
misconception might arise because the coding change is a
seemingly innocuous linear transformation of the responses, one
which is trivial in the ALmodel. Points 3 and 4 show how a reader
might come to assume that centered and standard ALR models
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are equivalent to one another, differing only by a parameter
transformation.

The current work resolves the above misconceptions, and
should help analysts develop better autologistic regression
models by understanding the consequences of their modeling
choices.

Throughout this research, one group of equivalent variants
was repeatedly found to have unique and attractive properties.
It is the set of standard models with coding that sums to zero,
like {−h, h}. This model will be referred to as the symmetric
autologistic model. It resolves the problems with the standard
zero/one-coded model in a manner that is simpler and more
natural than the centered model, and it is conceptually more
appealing as a generative model for binary data.

The results are developed as follows. Section 2 provides more
detail on the AL and ALR models, in both standard and centered
forms. It also gives a general form of the model that includes
both model types under arbitrary coding. The general form is
used in section 3 to establish several theoretical results, including
results about model equivalence and behavior in the limit as the
inter-variable association increases. Section 4 provides numerical
examples that demonstrate the differences among the model
variants, while also illustrating and corroborating the theory. The
H. vulgaris data is also analyzed at the end of section 4. Section 5
summarizes the results and provides further discussion about the
symmetric model.

2. AUTOLOGISTIC MODELS

This section lays out details of the AL and ALR models under
different coding and centering choices. Because the notation and
terminology used to describe these models varies considerably
across disciplines, it is not assumed that every reader is familiar
with the way the models are developed here. A somewhat
expository tone is taken in this section.

2.1. Markov Random Fields
The AL model is best understood as a Markov random field
(MRF) of binary random variables. MRFs provide a general
framework for modeling collections of random variables, where
the dependence among the variables is encoded by an undirected
graph. We are interested in the binary case.

Let Z = [Z1,Z2, . . . ,Zn]
T be a vector of n dichotomous

random variables (with coding as yet unspecified). Associated
with Z is a graph G = (V , E) having vertices V = {1, 2, . . . , n}
(also called nodes; one for each variable) and edges E =
{(i, j) : i < j, i ∼ j}, where i, j ∈ {1, 2, . . . , n}, and i ∼ j means
variables i and j share an edge. Variables that are joined by an
edge are called neighbors of one another.

The role of the graph is to define conditional independence
statements. Specifically, let Z−i represent all of the variables
except for the ith, and let Zj∼i represent all of the
neighbors of Zi in the graph. In an MRF, each variable is
conditionally independent of the others, given its neighbors:
Pr(Zi = zi|Z−i) = Pr(Zi = zi|Zj∼i).

The joint distribution of an MRF can be expressed as a
Boltzmann (or Gibbs) distribution:

f (z) = 1

c
eQ(z), (1)

where Q(z) is called the negpotential function and the
normalizing constant c is known as the partition function. It is
also common for Q(z) to be referred to as an energy function,
in which case it is usually preceded by a negative sign, and
sometimes divided by a temperature parameter.

The negpotential function for any MRF can be expressed as a
sum of functions of cliques of variables (that is, groups of fully
connected vertices in the graph). Letting M represent the set of
cliques, we have

Q(z) =
∑

m∈M
ψm(zm). (2)

The sum consists of one function per clique, with the mth
function depending only on the variables that are part of themth
clique. This fundamental result is known as the Hammersley-
Clifford theorem; see Besag [2, 26] and Kaiser and Cressie [3]
for more details and technical conditions on this MRF-Gibbs
equivalence.

The high degree of generality of Equations (1) and (2) makes
MRFs attractive for modeling complex associations. The graph
structure determines which variables appear together in the ψm

functions, and the the functions themselves can be specified to
control which arrangements of variables get greater probability
mass. The price paid for this flexibility is computational: for most
practical problems the partition function can not be computed in
reasonable time.

We will subsequently focus on the particular form of the
negpotential function used in the autologistic model. Our
development of the AL model is consistent with that given in
Hughes et al. [25], which also gives an excellent review of the
computational aspects of inference with the AL model. For more
on MRFs and graphical models in general, see e.g., [27–30].

2.2. Standard and Centered Models with
Zero/One Coding
Both the standard and centered models have been developed
under the assumption of {0, 1} coding. This section describes
these models under the same assumption.

The autologistic model is a member of the class of so-called
pairwise MRFs, where only cliques of size one or two have
nonzero contribution to the negpotential function. The standard
model has negpotential function

Qstd(z) =
∑

i∈V
αizi +

∑

(i,j)∈E
λijzizj. (3)

The right hand side of Equation (3) contains two sums. The first
is over all vertices in the graph, and includes each individual
variable’s contributions to the probability mass function (PMF).
The second is over all edges in the graph, and includes the
contribution of each pair of neighbor variables. Values {αi} and
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{λij} are called the unary and pairwise parameters, respectively.
Note that if λij = 0,∀i, j, the PMF factorizes and Z1, . . . ,Zn are
mutually independent.

The MRF-Gibbs equivalence makes it possible to specify the
AL model through its conditional distributions. The conditional
distributions are also used to write the conditional logit form of
the model. Let π∗

i = Pr(Zi = 1|Z−i). Then it can be shown that
the standard model has conditional log odds

logit(π∗
i ) = log

(

π
∗
i

1− π
∗
i

)

= αi +
∑

j∼i

λijzj, (4)

where
∑

j∼i denotes the sum over all j that are neighbors of

i. The log odds depends on the ith variable’s unary parameter
plus a weighted sum of its neighbors’ values. Increasing αi or
having more neighbors that take value 1 will increase the odds
of observing a 1 in location i.

Inspection of Equation (4) hints at the parameter
interpretation problem noted in Caragea and Kaiser [24].
The influence of the neighbor states on the conditional logit is
asymmetric. Any neighbors taking value 0 contribute nothing to
the conditional log odds, while neighbors with value 1 increase
the log odds. No configuration of neighbors can cause logit(π∗

i )
to decrease below the value of αi. This effectively couples the
unary and pairwise parameters’ effects.

The centered autologistic model was proposed as a modified
form to ameliorate this problem. The centered model has
conditional logit form

logit(π∗
i ) = αi +

∑

j∼i

λij(zj − µ∗
j ), (5)

where the centering adjustment, µ∗
j , is the expectation of the jth

variable under the assumption of independence:

µ∗
j = E[Zj|λij = 0,∀i, j] = eαj

1+ eαj
. (6)

2.3. A General Form
We now drop the requirement of {0, 1} coding, and express
the autologistic model in a way that uses arbitrary coding and
includes both centered and standard types as special cases.
This may be done by defining the conditional distributions in
a coding-agnostic manner, and then deriving the joint mass
function using the MRF formalism. If the derivation is done for
the centered case, any desired autologistic variant can be obtained
afterwards by fixing the coding and either retaining the centering
adjustment or setting it to zero. Details of the derivation are given
in Appendix B, with only the results shown here.

Let the low and high values of the coding be ℓ and h,
respectively (with ℓ < h). First consider the centering adjustment
for the jth variable, which is denoted by µj in this general setting.
For standard models, µj = 0. For centered models, µj is the

mean of Zj under the assumption of independence:

µj = E[Zj|λij = 0,∀i, j]
= ℓPr(Zj = ℓ|∀λij = 0)+ hPr(Zj = h|∀λij = 0)

= ℓeℓαj + hehαj

eℓαj + ehαj
. (7)

The conditional forms of the model involve a term that is a
sum of neighbor contributions. To simplify notation, define this
neighbor sum for the ith variable to be

si =
∑

j∼i

λij(zj − µj). (8)

Then the conditional PMF of Zi, given all other Z values, is

Pr(Zi = zi|Z−i) = exp(zi(αi + si))

exp(ℓ(αi + si))+ exp(h(αi + si))
(9)

and, letting πi = Pr(Zi = h|Z−i), the log odds form of the
model is

logit(πi) = (h− ℓ) (αi + si) . (10)

Note that Equations (5) and (6) are special cases of Equations (10)
and (7), with ℓ = 0 and h = 1.

Finally, the joint PMF can be derived from the conditional
form. To minimize ambiguity, it is included as a definition.

DEFINITION 1 (autologistic model). Let Z be a vector of n
dichotomous random variables with low and high values coded ℓ
and h, respectively. Under the autologistic model, Z has PMF

fZ(z;α,3) ∝ exp(zTα − zT3µα + 1

2
zT3z), (11)

where 3 is an n × n symmetric matrix with (i, j)th and (j, i)th
elements equal to λij if i ∼ j, and equal to zero otherwise; and

µα =







0 for a standard model
[

µα1 · · ·µαn
]T

with µαj = ℓeℓαj + hehαj

eℓαj + ehαj
for a centered model

.

(12)
Call coefficient α = [α1, . . . ,αn]

T the unary parameter, and
call 3 the association matrix. As a compact notation, refer to
the standard model as Sℓ,h(α,3) and to the centered model as
Cℓ,h(α,3).

This definition gives the negpotential function in matrix-vector
form. The association matrix 3 has the same pattern of nonzero
elements as the adjacency matrix, A, of the graph. It is common
in applications to assume that the association parameter takes a
constant value λ throughout the graph, in which case 3 = λA.
This will be called the simple smoothing assumption.

Equation (11) looks the same as the (zero/one coded,
centered) PMF in Hughes et al. [25], but note that in the present
case the centering term is a function of not only the unary
parameter, but of ℓ and h as well. The vector of centering
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adjustments, µα , has been written with a subscript as a reminder
of its dependence on α.

Equations (9), (10), and (11) express the model in different
ways. To reiterate, the standard model is obtained by setting
µ = 0, and any desired coding can be obtained by setting {ℓ, h}
accordingly.

2.4. Autologistic Regression
The AL model just presented does not include covariate effects.
The usual way to introduce covariates is to replace the unary
parameters by linear predictors. This is formalized in a definition.

DEFINITION 2 (autologistic regression model). Let Z and fZ be
the same as in Definition 1. Let X be an n × p matrix of covariate
information (including intercept if desired), with p < n. Define
xTi to be the ith row of X, and let β be a p-vector of coefficients.
Then the autologistic regression model for Z is fZ(z;Xβ ,3). In
other words, it is model (11) with αi ≡ xTi β.

The ALR model replaces the n unary parameters {αi} by the p
regression coefficients β . The covariates appear only in the unary
parameter, as part of the linear relationship α = Xβ . Once the
linear predictor values are fixed, the ALR model becomes an AL
model. Because of this, the qualitative behavior of an ALR model
is the same as that of an AL model, and if we understand how
to interpret α, the interpretation of β will be the same. For this
reason the results and analyses of sections 3 and 4 are based
primarily on the AL model, unless they specifically relate to the
regression parameters.

2.5. About the Parameters
Regardless of centering or coding choice, the graphical nature
of the AL/ALR model and its mathematical form both strongly
suggest a certain parameter interpretation. The unary parameters
control each variable’s inherent tendency to take one value or the
other. All else being equal, large positive values of αi (or x

T
i β)

should indicate a high chance to observe the h state at location i,
and large negative values should indicate a high chance of ℓ. The
pairwise parameters control the amount of influence neighbor
variables have on each other, and therefore control the association
structure. Following Towner et al. [18], call an edge concordant if
the two vertices it joins both take the same state, and discordant
if they differ. Large positive λij values should increase the chance
that the edge joining Zi and Zj is concordant. Negative λij values
promote discordant edges. It is assumed throughout this work
that all λij ≥ 0, since positive association is of greater practical
interest.

All variants of the model share the property that λij =
0,∀i, j corresponds to statistical independence. The model’s
behavior under independence will be called its endogenous
structure, and the probability that variable i takes its high value,
under independence, will be called its endogenous probability,
pi. Other authors [24, 25], in the context of spatial data with
smoothly-varying covariates, have used the term “large scale”
structure to refer to the model’s predictions under independence.
“Endogenous” has been preferred here because the graph need
not be spatially referenced, nor do the unary parameter values
need to be locally smooth.

The explicit goal of the centered ALRmodel [24, p. 286] was to
make the marginal probabilities remain close to the endogenous
probabilities even when λ is nonzero, so that the regression
coefficients can be said to control the marginal probabilities
regardless of association level. Marginal structure is only part of
the story, however: the model describes a distribution over the 2n

possible outcomes in its sample space. Each outcome corresponds
to a configuration, which is the arrangement of high and low
states, irrespective of their numerical coding.

DEFINITION 3 (configuration). The term configuration may be
used to refer to either a) any particular outcome in the sample
space of a dichotomous random vector, or b) the locations of an
outcome’s high- and low-valued elements. Two binary vectors with
different coding represent the same configuration if the locations of
their high- and low-valued elements coincide.

If we repeatedly sample from an AL model with a nonzero
association matrix, the configurations that we observe will be
the result of a trade-off between the endogenous part of the
model (which depends on α alone) and the association effects
(depending on 3) propagating through the graph. It is crucial,
then, to understand how the distribution of configurations
changes to reflect this trade-off as the association is increased
from zero. This understanding is necessary for proper parameter
interpretation, and also for assessing the model as a reasonable
data-generating process to approximate real-world phenomena.

3. THEORETICAL RESULTS

This section provides theorems that help to discern the
differences among the AL/ALR model variants. The first results
consider whether or not different variants are equivalent to each
other. Subsequent theorems address the behavior of the different
variants in the limit as the association parameter grows large. The
section closes with a result on convexity of the pseudolikelihood
function.

3.1. Equivalence of AL models
There is potential for confusion when comparing two models
that may differ in both their variable coding and their
parametrization. To minimize this, model equivalence is first
defined in a coding-independent way.

DEFINITION 4 (equivalent models). Let f1(z; θ1) and f2(y; θ2)
be two joint PMFs for n binary outcomes, where z and y need not
have the same coding. Model f1 is equivalent to model f2 if, for any
θ2, there exists a θ∗1 such that f1(z; θ∗1) = f2(y; θ2) whenever z
and y represent the same configuration.

Equivalence means that given f2 with fixed θ2, there is always a
parameter setting of f1 that makes the twomodels assign the same
probability distribution over the 2n configurations. The following
theorem shows that all variants of the autologistic model are
equivalent to the standard model. It only applies to AL models,
not to ALR models.

THEOREM 1 (equivalence of AL models). Let f (·;φ,�) be an
autologistic model (either centered or standard), with variable
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coding {L,H}. Then f is equivalent to Sℓ,h(α,3), a standard model
with coding {ℓ, h}. Furthermore, the parameter transformation
that makes it equivalent is

α = a
(

φ − �µφ + b�1
)

(13)

3 = a2�, (14)

where a = H−L
h−ℓ , b = L− aℓ, and 1 is a vector of ones.

PROOF: Let Y be a vector of binary random variables coded
{L,H}, and let fY(y;φ,�) be an autologistic model of either
type. Let Z be a vector of binary random variables of the same
dimension as Y, coded {ℓ, h} and having standard autologistic
PMF fZ = Sℓ,h(α,3). Equivalence requires that fY(y) = fZ(z)
whenever y and z represent the same configuration. But in that
case, there is a one-to-one transformation linking the two vectors:
y = az+b1, with a and b as in the theorem.We have equivalence,
then, if we can choose α and 3 such that fZ(z;α,3) = fY(az +
b1;φ,�) for all z.

From Equation (11), the negpotential function for the
standard model fZ(z) is

QZ(z;α,3) = zTα + 1

2
zT3z. (15)

For fY(az + b1), which could be of either centered or standard
type, the negpotential function is

QY(az+ b1;φ,�) = (az+ b1)T(φ − �µφ)

+ 1

2
(az+ b1)T�(az+ b1)

= azT(φ − �µφ + b�1)

+ 1

2
a2zT�z+ w, (16)

where the last line was obtained by multiplying out the products
and moving terms free of z into the constant w.

The two PMFs are specified only up to a proportionality
constant, so equivalence of the PMFs holds if and only if
exp(QZ(z;α,3)) and exp(QY(az + b1;φ,�) can be made
proportional to each other—or alternatively, if the two
negpotential functions can be made to differ by at most a z-free
additive constant. For the difference of the right-hand sides of
Equations (15) and (16) to be z-free, we must have

zT
[

α − a(φ − �µφ + b�1)
]

+ 1

2
zT
(

3 − a2�
)

z = 0.

Since this must hold for all z, the coefficients of both the
linear and quadratic terms must be zero, which leads us to
the transformation given in the theorem. The existence of
the transformation proves that the models are equivalent, and
because the result does not depend on the particular form of
µφ , it holds regardless of whether fY is a centered or standard
model.

If f in Theorem 1 is a standard autologistic model, µφ = 0
and Equation (13) may be solved explicitly for either α or φ.

This shows that there is a one-to-one correspondence between
standard models with different codings. When f is a centered
model, however, Equation (13) is a system of nonlinear equations
in φ, and since the inverse transformation can not be analytically
determined, it remains unclear if the mapping between α and φ

is one-to-one. The implicit function theorem of vector calculus
[31, section 12.8] could be used to show that the inverse
exists for all α, but it is not straightforward to show that the
Jacobian determinant of transformation (13) is always nonzero.
Consequently, Theorem 1 only shows that every autologistic
model is equivalent to any chosen model of standard type; it falls
short of claiming full one-to-one correspondence between all AL
model variants. Nevertheless, it may be conjectured that such a
correspondence does exist, and system (13) has been successfully
solved for φ numerically, using a fixed-point iteration scheme.

3.2. Non-equivalence of ALR Models
The next theorem implies that the equivalence observed among
the autologistic models does not, in general, carry over to
autologistic regression models.

THEOREM 2 (condition for equivalence of ALR models). Let X
be an n×pmatrix with n > p, and let f1(·;Xγ ,�) and f2(·;Xβ ,3)
be two autologistic regression models, using coding {L,H} and
{ℓ, h}, respectively. Then model f2 is equivalent to f1 if and only
if β satisfies

Xβ − a2�µXβ = aXγ + a�(b1− µXγ ), (17)

where a and b are as defined in Theorem 1. This is an
overdetermined system of equations in β (linear equations if f2 is a
standard model, and nonlinear if it is centered).

PROOF: The proof of Theorem 1 considered the equivalence of
fY, a centered AL model, and fZ, a standard AL model. Following
exactly the same reasoning as that proof, but allowing fZ to
be a centered model, we find the transformation that makes fZ
equivalent to fY is

α − a2�µα = a
(

φ − �µφ + b�1
)

(18)

3 = a2�, (19)

where a and b are as defined in Theorem 1 and µα , µφ are as
defined in Equation (12) (note that µα uses {ℓ, h} coding, while
µφ uses {L,H}). The association matrices are straightforwardly
transformed via Equation (19), but equivalence also requires that
system (18) is consistent.

The ALR case discussed in the theorem is exactly the same,
but with φ ≡ Xγ and α ≡ Xβ . Writing Equation (18) in
terms of these regression parameters gives system (17). Model
equivalence is the same as consistency of that system. As before,
these results to not depend on the form of µα or µφ , so
they hold irrespective of whether either model is centered or
standard.

The covariate matrix X in the theorem is assumed full rank,
but is otherwise arbitrary. With no special structure forX, system
(17) will generally be inconsistent, meaning that model f2 cannot
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be made equivalent to f1. We have not proven that the system
can never have a solution. Nonetheless, any practical concept
of model equivalence should have equivalence hold regardless
of the particular covariates observed, so in the following we
declare that two models are not equivalent unless we can
explicitly prove that the system (17) has a solution in β for
arbitrary X.

Inspection of the system does reveal two situations where
enough terms become zero to permit a solution for β . The first
is when the variables are independent, so that � is a zero matrix
and we fall back to ordinary logistic regression. In the notation
of the theorem, the parameter transformation is β = aγ in
this case. Independence is a trivial case and henceforth it is
assumed that � is not zero. The second case is summarized as a
corollary.

COROLLARY 2.1. If f1 and f2 in Theorem 2 are both standard
models and their codings satisfy Hℓ = Lh, then the models are
equivalent and the parameter transformation

β = aγ , 3 = a2�

makes f2 equivalent to f1.

PROOF: Since both models are of standard type, µXβ =
µXγ = 0. The restriction Hℓ = Lh ensures that b = 0. Then
the system (17) has solution β = aγ , and the pairwise parameter
transformation is 3 = a2�, as in Equation (19).

Corollary 2.1 refers to the case where two standard ALR
models have codings that differ only by a positive scaling factor.
In this case themodels are equivalent. For example, standardALR
models with coding {0, 1} and {0, 2} are equivalent, as are models
with coding {−2, 4} and {−4, 8}. The {0, 1} and {−1, 1} codings,
which are of most interest, do not satisfy this requirement.
Thus ALR models with zero/one and plus/minus codings are
not, in general, equivalent, even if both models are of standard
type.

3.3. Behavior with Strong Association
Here we consider the behavior of the autologistic PMF under the
simple smoothing assumption when λ → ∞. As mentioned in
section 2.5, understanding the effect of increasing λ is particularly
helpful for understanding the model and its parameters. The
question is first considered for a simple two-variable case, and
then for the general case.

3.3.1. The Two-Variable Case
The n = 2 case has the simplest nontrivial graph and is useful
to study the limiting behavior in a simple situation. Figure 2
shows the graph. The variables are Z1 and Z2, with corresponding
unary parameters α1, α2 and pairwise parameter λ. The coding is
{ℓ, h}. The figure also shows the joint PMF of the two variables as
four probabilities in a 2 × 2 table. The following theorem gives
the values of the probabilities in the limit of large association
parameter, for all variants of the AL model.

THEOREM 3 (limiting probabilities, two-variable case). Let Z1
and Z2 be jointly distributed according to autologistic model fZ,

FIGURE 2 | The n = 2 case with variables Z1 and Z2. (Left) The graph,

showing the model parameters. (Right) The joint PMF.

with graph and probability table as shown in Figure 2. Let p∗ℓℓ, p
∗
ℓh
,

p∗
hℓ
, and p∗

hh
be the limiting probabilities in the table as λ→ ∞.

a) If fZ is a standard model and α1, α2 take any fixed values, then:
if ℓ+ h > 0 , p∗

hh
= 1

if ℓ+ h < 0 , p∗ℓℓ = 1

if ℓ+ h = 0, p∗
hh

= eh(α1+α2)

eℓ(α1+α2)+eh(α1+α2)
and p∗ℓℓ = 1− p∗

hh

b) If fZ is a centered model and ℓ, h take any fixed values, then:
if α1 + α2 > 0 , p∗ℓℓ = 1
if α1 + α2 < 0 , p∗

hh
= 1

if α1 + α2 = 0, p∗
hh

= p∗ℓℓ = 1
2

PROOF: Considering Equation (11) with n = 2, we can define
the un-normalized PMF as

g(z1, z2) = eα1z1eα2z2e(z1z2−µ2z1−µ1z2)λ,

where µ1 and µ2 are the centering adjustments of Z1 and Z2
according to Equation (12). Then the probability of a particular
configuration (z1,z2) is

Pr(Z1 = z1,Z2 = z2)

= g(z1, z2)

g(ℓ, ℓ)+ g(ℓ, h)+ g(h, ℓ)+ g(h, h)

= eα1z1eα2z2
[

g(ℓ, ℓ)+ g(ℓ, h)+ g(h, ℓ)+ g(h, h)

e(z1z2−µ2z1−µ1z2)λ

]−1

.

We are interested in the limiting value of this probability in eight
cases: four configurations of (z1,z2), for each of the two model
types. Clearly, any of these probabilities will be nonzero only if
the ratio in the square brackets above (call it R) remains finite
as λ → ∞. All of the results of the theorem are found by
considering how this ratio behaves (as a function of α1, α2, ℓ, and
h) over the eight cases.

Consider for example the case of the (h,h) configuration
under the centered model. For this case, after some algebraic
manipulations, we have

R = eℓ(α1+α2)e(ℓ−h)(h+ℓ−µ1−µ2)λ

+e(ℓα1+hα2)e(ℓ−h)(h−µ2)λ

+e(hα1+ℓα2)e(ℓ−h)(h−µ1)λ + eh(α1+α2).

The right hand side is a sum of four terms. The last term is finite
and not a function of λ. The second and third terms approach
zero as λ → ∞, since ℓ < h and h is greater than both µ1 and
µ2. So the value of p∗

hh
depends on the sign of h + ℓ − µ1 − µ2.
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Using Equation (12) to write µ1, µ2 in terms of h, ℓ, α1, and α2,
it can be shown that

sgn
(

h+ ℓ− µ1 − µ2

)

= sgn
(

eℓ(α1+α2) − eh(α1+α2)
)

,

which equals (1,−1,0) when α1 + α2 is (less than, greater than,
equal to) zero. From this we conclude the results about p∗

hh
in part

b) of the theorem. The remaining results are obtained similarly
by working out R for the other cases and considering its limiting
behavior.

The theorem shows that for the standard model, the limiting
probabilities are only reasonable when the coding is symmetric
around zero. If the sum of the coding values is nonzero, either p∗ℓℓ
or p∗

hh
gets all of the probability mass, and which configuration

gets the mass depends only on the coding, not on the unary
parameters. When ℓ + h = 0, the limiting probabilities make
sense: either configuration can occur, with weight that depends
on α1 + α2.

For the centered model, the limiting behavior does depend on
α1 + α2, but it does so in a counterintuitive way. For α1 + α2 6=
0, the configuration that is opposite of the unary parameters’
endogenous tendency receives all of the probability mass. Large
positive values of the unary parameters (which should promote
the occurrence of h states) lead to p∗ℓℓ = 1 in the limit. Large
negative values lead to p∗

hh
= 1. Only at the midpoint between

these scenarios, α1 + α2 = 0, does the limiting PMF take a
reasonable form.

3.3.2. The General Case
In the general-n case it relatively straightforward to determine the
limiting probabilities for the symmetric model. Combined with
the n = 2 results it is possible to make the following statement.

THEOREM 4 (limiting probabilities, general case). Let n-vector
Z be distributed according to standard autologistic model
Sℓ,h(α, λA) with ℓ + h = 0 and with a connected graph. Define
ℓ = ℓ1 and h = h1. Then the two configurations z = ℓ and
z = h are the only ones with nonzero probability as λ→ ∞, and
this holds regardless of the parameter values or the particulars of
the graph. The limiting probabilities are

p∗h =
exp

(

h

n
∑

i = 1

αi

)

exp

(

h

n
∑

i = 1

αi

)

+ exp

(

ℓ

n
∑

i = 1

αi

) and p∗ℓ = 1− p∗h.

(20)
Furthermore, the standard model with ℓ + h = 0 is the only
autologistic model variant for which more than one configuration
has positive limiting probability regardless of n, the graph structure,
or the parameter values.

PROOF: The standard model has PMF

f (z) =
exp

(

zTα + λ
2 z

TAz
)

∑

x∈C exp
(

xTα + λ
2 x

TAx
)

= exp(zTα)
∑

x∈C exp
(

xTα
)

exp
(

λ
2 x

TAx
)

exp
(

− λ
2 z

TAz
)

= exp(zTα)
∑

x∈C exp
(

xTα
)

exp
(

λ
∑

E

(

xixj − zizj
)) ,

where C is the set of 2n possible configurations. Letting dij =
xixj − zizj, it is clear from the last line that for any chosen z,
limλ→∞ f (z) depends on the values of

Lx ≡ lim
λ→∞

exp

(

λ
∑

E

dij

)

for all configurations x ∈ C. Considering all possible
arrangements of (xi,xj) and (zi,zj) and remembering that we have
set ℓ = −h, we find that

dij =







0 if (xi, xj) = (zi, zj) or (xi, xj) = −(zi, zj)
2h2 if xi = xj but zi 6= zj
−2h2 if xi 6= xj but zi = zj.

Now choose z = ℓ or z = h. These are the only two choices
for which zi = zj for all edges (because the graph is connected).
Then

∑

E dij ≤ 0 for every x, with equality only when x = ±z.
Consequently Lx = 1 for x = ±z and Lx = 0 for all other x.
From this we conclude that p∗h and p

∗
ℓ are as given in the theorem,

and therefore all other limiting probabilities must be zero.
The conclusion that the S−h,h(α,3) model is the only variant

with more than one positive limiting probability in general may
be justified by counterexample. The n = 2 case (Theorem
3) provides counterexamples for all of the other AL model
variants.

Theorem 4 shows that the symmetric models, S−h,h, are the
only AL/ALR variants that always have reasonable and intuitive
large-λ behavior.

3.4. Pseudolikelihood
Let z1, . . . , zm be a random sample drawn from an autologistic
model with n vertices. The pseudolikelihood function is the
product of the conditional probabilities,

PL(θ) =
m
∏

j = 1

n
∏

i = 1

Pr(Zji = zji|zj−i), (21)

where θ = (α, λ) is the parameter vector and zji is the value
of the ith variable in the jth observation. Equation (9) is used to
compute the conditional probabilities.

Pseudolikelihood is an approximation to the true likelihood
[32], and maximum pseudolikelihood (MPL) is widely used as
a practical estimation method given the intractability of the
partition function for large n.

Detailed consideration of the optimization of Equation (21)
for all AL and ALR variants is beyond the scope of the present
work, but the theorem below and the comments that follow are
relevant to comparison of the centered and standard model
types.
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THEOREM 5 (pseudolikelihood for standard models). For the
standard AL or ALR model with any coding and the simple
smoothing assumption, the negative log pseudolikelihood is a
convex function of its parameters.

PROOF: The proof is straightforward so most of the details
are omitted. Consider the AL model. Note from Equations
(8) and (9) that conditional probability for variable i is a
function only of parameters αi and λ. Therefore we can define

qji(αi, λ) ≡ − log(Pr(Zji = zji|Zj
−i)) and write the negative log

pseudolikelihood function as

− log PL(θ) =
m
∑

j = 1

n
∑

i = 1

qji(αi, λ).

The function is convex if every qji(·) is a convex function of its
parameters. A function of r parameters is convex if it is convex
along every line in the parameter space [33], so define uji(t) =
qji(αi1 + tαi2, λ1 + tλ2). Convexity is proven by finding the
second derivative of uji(t) with respect to t and observing that it is
positive for any choice of αi1, αi2, λ1, λ2, for any coding and for all
i, j. Convexity for the ALR case follows because the composition
of a convex function with a linear one (here, αi = xTi β) is
convex.

This convexity result indicates that obtaining parameter
estimates by MPL should be straightforward for any standard
variant (including both the traditional zero/one model and the
symmetric model). Unfortunately the same can not be said for
centered models. The centering termµj is a non-convex function
of αj. Additionally, in the centered model the ith conditional
probability is a function of not only αi and λ, but also of
parameters αj, j ∼ i. Thus we expect more complications with
obtaining good parameter estimates even using the simple MPL
framework. Indeed, multiple local optima have been observed
in the MPL function even for n = 2 examples, and for
larger problems, numerical optimizers may return different MPL
parameter estimates depending on the starting point of the
search.

4. NUMERICAL RESULTS

This section provides numerical examples to complement the
theoretical results and shed more light on the differences among
the autologistic variants. The first example focuses on better
understanding of parameter interpretation in AL models for the
n = 2 case. The second explores the qualitative differences
among the variants in a spatial-data regression setting at larger
scale (n = 900). The third quantifies the distance between the
most important ALR variants in a network-structured regression
scenario with n = 16. After these constructed examples, an
analysis of the H. vulgaris data set is presented.

4.1. Parameter Interpretation in the
Two-Variable Case
In section 2.5 it was argued that the autologistic model invites
a natural interpretation of its parameters as defining a balance

between the unary or endogenous part, and the neighborhood
effects. To examine whether this interpretation holds for different
AL variants, we first restrict our attention to the effects that two
variables have on each other.

4.1.1. Expected Neighbor Effect
Consider two variables Zi and Zj that may be part of a larger
graph. The log odds expression (10) for Zi, conditional on its
neighbors, involves the neighbor sum si. The contribution of Zj
to this sum is Si = λij(Zj − µj). Its expectation is

E[Si] =







λijMj for the S0,1 model
λij
(

Mj − µj

)

for the C0,1 model

λij
(

2Mj − 1
)

for the S−1,1 model
, (22)

where Mj is the marginal probability Pr(Zj = h). It depends on
unary parameter αj as well as on Zj’s neighbors and the strength
of their association with Zj.

The relationships in Equation (22) are shown graphically
in Figure 3. For the S0,1 model, the expected neighbor effect
is always positive—increasing the log odds that Zi takes the
high level—regardless of Mj. This is another way of expressing
the asymmetry inherent in the standard zero/one model. The
centered model corrects this problem, in that E[Si] can take
negative values, but the range of possible neighbor effects is
now coupled to αj, through µj. This introduces a type of
antisymmetry, where larger µj values shift the range of possible
neighbor effects downward and smaller µj values shift it upward.
This antisymmetry is the source of the counterintuitive large-λ
behavior described in Theorem 3.

The symmetric S−1,1 model, by contrast, resolves the
asymmetry problem of the zero/one model without introducing
extra complexities. The expected neighbor effect varies linearly
from −λij to λij, crossing through zero when Mj = 0.5. This is

FIGURE 3 | Expected value of the neighbor effect of variable j on variable i, as

a function of Mj , the marginal probability that Zj takes the high level. The solid

line is for the symmetric model, and dashed lines are for the centered model

with different µj values. The line for the standard zero/one model coincides

with the uppermost dashed line.
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a natural crossing point: when Zj is equally likely to take either
state, its average effect on Zi is zero. The centered model only
exhibits similar behavior when µj = 0.5.

4.1.2. Marginal Probability
Next, consider the n = 2 case previously encountered in
Figure 2. There are two random variables Z1 and Z2, and three
parameters α1, α2, and λ. One way to better understand the
parameters’ roles is to study how they influence the probability
of the event {Z1 = h}.

It is helpful to consider the effects of the unary parameters not
through α1 and α2 directly, but rather through the endogenous
probabilities p1 and p2, which are monotone functions of them:

pi = ehαi

eℓαi + ehαi
, i = 1, 2.

This eliminates a scaling difference that would otherwise confuse
the comparison of models with different coding. Note that pi =
0.5 corresponds to αi = 0.

Figure 4 shows contour plots of Pr(Z1 = h) as a function
of p1 and p2, for the S0,1, C0,1, and S−1,1 models. Each row of
contour plots in the figure is for a single model variant. The λ
values for each variant are evenly spaced between 0 and some
maximum value. The maximum values were chosen such that
|Pr(Z1 = h) − 0.5| = 0.4 when p1 = 0.5 and p2 = 0.95
(this is a point at which the neighbor effect of Z2 on Z1 is large).
The C−1,1 model was also plotted but is not shown. Although its
maximum λ value is different, its contours are identical to those
of the C0,1 model.

At λ = 0, the variables are independent and all three
variants exhibit the same behavior: Pr(Z1 = h) increases
monotonically with p1, unaffected by p2. As λ increases, wemight

FIGURE 4 | Contour plots of Pr(Z1 = h) vs. p1 and p2 for different λ values, for (A) the S0,1 model, (B) the C0,1 model, and (C) the S−1,1 model. Contour lines are

drawn at probabilities 0.05, 0.1, 0.2, . . . , 0.9, 0.95, with lighter shades of gray representing higher probabilities. The probability 0.5 contour is thicker than the rest.

Dashed lines are drawn horizontally and vertically through the point (0.5, 0.5), which corresponds to α1 = α2 = 0.
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expect (under the natural interpretation) that this probability
should remain an increasing function of p1, but also become
an increasing function of p2 as well, due to the neighbor effect.
The figure shows that both of the standard models do in fact
demonstrate this expected behavior. The S0,1 model does so
while exhibiting its asymmetry: as λ increases, the marginal
probability increases throughout the plane, even in areas where
both p1 and p2 are less than one half. The S−1,1 model, on
the other hand, gives the expected behavior while maintaining
a marginal probability of 0.5 at p1 = p2 = 0.5 at every choice
of λ.

Turning to the centered model (row B in the figure),
it is clear that this model does not show the expected
behavior. In this model, increasing p2 may either increase
or decrease the marginal probability, depending on where
one is in the (p1, p2) plane. While the centered model does
maintain Pr(Z1 = h) = 0.5 for all λ when p1 = p2 = 0.5,
we again see counterintuitive behavior when λ becomes
large. The marginal probability that Z1 = h is nearly zero
in the first quadrant, precisely where both endogenous
probabilities are large. Also note that a much larger λ value
is required to get a strong neighbor effect. This is a direct
consequence of the centering adjustment, which subtracts the
independence expectation from each Zj in the neighborhood
sum.

4.1.3. Concordance Probability
Continuing with the same example, we can also consider the
probability that Z1 and Z2 are concordant, that is, Pr(Z1 =
Z2). The log odds of this probability are given in Figure 5, as
a function of λ, for the same three variants at different (p1, p2)
combinations. The log odds has been chosen to highlight an
interesting difference between the symmetric model and the
other variants. For a symmetric model, the odds of event {Z1 =
Z2} are

Pr(Z1 = Z2)

Pr(Z1 6= Z2)
= e2λh

2 e2h(α1+α2) + 1

e2hα1 + e2hα2
,

which factorizes into a part depending on λ alone and another
depending on α alone. As a result the log odds of the event, for
any fixed (p1, p2), is a linear function of λ with slope 2h2. This
invites a simple interpretation of λ as an association parameter:
a unit change of λ will increase the log odds of the two variables
taking the same state by 2h2, regardless of the values of the unary
parameters. This is visible in row (C) of the figure.

The S0,1 model and the centered variants (rows A and B)
do not admit such an interpretation. For these two models the
log odds curves show nonlinearities that change depending on
the values of p1 and p2. In both cases the curves are difficult
to explain intuitively. In row (A), we see that the curves for

FIGURE 5 | Log odds of event {Z1 = Z2} when n = 2, as a function of λ at different (p1,p2) combinations for (A) the S0,1 model, (B) the C0,1 model, and (C) the

S−1,1 model. Each subplot uses a fixed value of p1 as shown. Line thickness corresponds to the value of p2: from thinnest to thickest,

p2 = 0.05, 0.25, 0.5, 0.75, 0.95. The horizontal plot range was chosen so that the log odds at p1 = p2 = 0.5 varied from 0 to 8 for each model.
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(p1 = 0.05, p2 = 0.05) are not the same as the curves for
(p1 = 0.95, p2 = 0.95). This is hard to justify given that the
two cases differ only by the labeling of the high and low states. In
row (B) we see that the shapes of the curves depend in a complex
way on p1 and p2. For example, the initial slope of the curve is
greatest at (p1 = 0.5, p2 = 0.5), and much smaller when
(p1 = 0.95, p2 = 0.95). This implies that increasing λ from zero
will more strongly influence variables that are both indifferent
about their state than it will variables that are both strongly biased
to the same state.

4.2. A Spatial Regression Example
Now consider a larger example with a regression component. Let
Z be a vector of n = 900 binary variables, jointly distributed
according to an ALR model. The graph structure for the model is
a regular 30× 30 lattice; each interior node has four neighbors.

The graph is positioned in space such that it covers the unit
square, with the lower left vertex at (0, 0) and the upper right one
at (1, 1). Let the spatial coordinates of variable i be (xi1, xi2). For
simplicity, let these spatial coordinates (plus an intercept term) be
the predictor variables for regression. Defining X to be a 900× 3
matrix of covariates, with ith row xTi = (1, xi1, xi2), the ith
variable’s unary term becomes

αi ≡ xTi β = β0 + β1xi1 + β2xi2.

For this example, we fix β = (−2, 2, 2)T throughout and explore
the effect of λ on three variants: S0,1(Xβ , λA), C0,1(Xβ , λA), and
S−1/2,1/2(Xβ , λA). The symmetric model uses {−1/2, 1/2} coding to
ensure that when λ = 0, it is equivalent to variants coded {0, 1}.

The present example is very similar to the simulation setting
used by both Caragea and Kaiser [24] and Hughes et al. [25].
When λ = 0, every variant gives the same logistic regression
model with endogenous probabilities varying smoothly over the
unit square, from approximately 0.12 in the lower left corner
to about 0.88 in the upper right. The diagonal separating these
two corners has endogenous probability 0.5. Figure 6 shows these
probabilities as a grayscale image. Such displays are referred to as
marginal probability maps; by convention they will plot Pr(Zi =
h) and use lighter shades of gray to represent higher probability.
The graph corresponding to Z is also shown on the figure.

For each model, 500 random samples were drawn at each
of ten λ values equally spaced from 0 to 2.5. Estimates of
the marginal probabilities were obtained from the samples by
counting the proportion of draws for which each variable took
its high level. Random draws were obtained by perfect sampling,
which is relatively straightforward to implement for AL/ALR
models (see [25], and references therein; also [34]).

Figure 7 shows the configurations of two random samples,
as well as the estimated marginal probability maps, for each
model at each λ. The differences among the models are clear, and
agree with the observations in the n = 2 case. In the standard
{0, 1} model, increasing λ increases the chance of observing the
high state, at every vertex, regardless of covariate values. In the
centered model, smaller λ values (up to about 0.75) have only
a minor effect on the probability map. At larger λ values more
clustering of the high and low states is visible, but the low states

FIGURE 6 | The graph for the ALR example, with Pr(Zi = h|λ = 0)

displayed as an image beneath the vertices.

occur at vertices where the endogenous probability is high (and
vice versa). For the symmetric model, increasing λ causes the
probability map to gradually separate around the diagonal, with
(low, high) states occurring where the endogenous probability is
(low, high).

To more directly assess the effect of λ on neighbor
interactions, we can consider not just the vertices of the graph
but the edges. For any group of edges, the probability of edge
concordance can be estimated by the proportion of times those
edges were concordant over the 500 random samples. To see
how the endogenous probabilities modulate the effect of λ on
concordance, partition the graph into two subgraphs: G1 =
{Zi : pi ≤ 1

3 or pi ≥
2
3 } and G2 = {Zi : 1

3 < pi <
2
3 }. Subgraph

G1 includes edges in the lower left and upper right of the unit
square, where both endogenous probabilities are strongly biased
toward one state or the other. Subgraph G2 includes edges near
the diagonal, where the average endogenous probability of the
edge is not far from one half.

Figure 8 shows the estimated concordance probability of
edges in G1 and G2, for the C0,1 and S−1/2,1/2 models. In the
symmetric model, the effect of λ is roughly the same for edges in
either group. For the centered model, increasing the association
parameter has a fairly strong effect on G2 but a very small effect
on G1. This effect can also be observed by careful inspection of
Figure 7 for λ ≤ 1. For the centered model, the smoothing
effect of λ is focused on the parts of the graph where pi + pj is
close to one. This is consistent with the results previously seen in
Figure 5.

4.3. A Network Regression Example
The preceding two examples have focused on parameter
interpretation, but it is not always essential to have a readily
interpretable model. In statistical learning applications, for
example, out-of-sample predictive accuracymay be the dominant
objective. In such a case, there is little reason to be concerned
about which variant is used, as long each variant’s parameters can
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FIGURE 7 | Effect of λ on three model variants when β = (−2, 2, 2)T . Two randomly-drawn configurations are shown for each model at each λ value, along with the

estimated marginal probability map. The realizations are displayed as images with black and white pixels representing the low and high states, respectively.

be changed to produce nearly equivalent predictive models. To
see whether any concern is justified, wemust address the question
of how far apart two distribution families defined by ALRmodels
can be.

The approach taken here is to let the symmetric model be
the reference distribution family. Instances of this model were
generated with random graphs, random covariates, and fixed
parameters. Each such instance formed the baseline or target
model for a single experimental run. Numerical optimization
was then used to find the parameter settings of the S0,1 and C0,1

models that minimize a measure of statistical distance between
them and the target model.

Take the Hellinger distance as our distance measure. IfM1 and
M2 are two ALRmodels with n vertices, which respectively assign
probabilities w = (w1,w2, . . .w2n )

T and v = (v1, v2, . . . v2n )
T

to the 2n possible configurations, the Hellinger distance between
the models is 1√

2

∥

∥

√
w−√

v
∥

∥

2
, where the square roots inside the

norm are taken componentwise. It varies between zero (when the
models are equivalent) and one (when the sets of configurations
given positive probability by themodels are disjoint). Models that
have Hellinger distance not close to zero can not be considered
reasonable approximations of one another as predictive models.

For this example we consider graphs and covariates that
have a network structure, rather than a spatially-referenced one.
Graphs were generated according to a preferential attachment
scheme [35, 36]. For each graph, an initial set of m0 fully
connected vertices is first created, and additional vertices are
added sequentially until there are n nodes in total. Each new node
is connected by edges tom existing nodes, selected randomly with
weights that are proportional to their degree. In this experiment
we consider two cases. Case 1 has m0 = 4 and m = 1. In
this case the graph is structured as tree branches connected to the
initial fully-connected four nodes. Case 2 has m0 = m = 2.
This case has more connectivity throughout the graph.

The baseline models were generated as follows. Fix n =
16, which is sufficiently small to allow direct calculation of the
Hellinger distance. Set λ = 0.25, and generate 200 graphs for
each of Case 1 and Case 2. For each graph, assign to each vertex
a linear predictor αi = β0 + β1xi, where xi, i = 1 . . . 16 are
drawn independently from a standard normal distribution. Each
graph then has its own adjacency matrix A and covariate matrix
X; take the S−1,1(Xβ , λA) model with β0 = 0 and β1 = 1 as the
target model corresponding to that graph. Repeat this process for
λ = 0.5, 0.75, 1.0, 1.25, and 1.5.
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FIGURE 8 | Estimated concordance probability of edges in subgraphs G1 and

G2, vs. λ. C1 and C2 are the results for subgraphs 1 and 2, respectively, using

the centered zero/one model. Sy1 and Sy2 are the corresponding curves for

the symmetric model.

Figure 9 gives examples of graphs generated from the two
cases. The baseline models correspond to a situation where
the endogenous probabilities of neighbor variables are noisy
and uncorrelated. Models with larger λ values will put higher
probability on configurations that have clusters of high or
low values, with cluster size and location modulated by the
endogenous probabilities. In the limit as λ → ∞, the two
saturated states Z = −1 and Z = 1will get all of the probability
mass, according to Equation (20).

Numerical optimization was performed to find models

S0,1(Xβ̂ , λ̂A) and C0,1(Xβ̃ , λ̃A) that minimize the Hellinger
distance to each target. Figure 10A gives violin plots [37] of the
distances. Each “violin” in the plot is based on an unequally-
spaced histogram with bin edges at the sample quintiles. The
median value is indicated by a dot.

The figure reveals striking differences between the nearest
models. All but three of the experimental settings produce
median distances greater than 0.2, and many are greater than
0.4. This means that the S0,1 and C0,1 models cannot apportion
probability mass to configurations in a manner very similar to the
symmetric model. The distances also have high variability. This
indicates that the ability of the standard and centered variants to
approximate the symmetric model is strongly influenced by the
random aspects of the target model: the graph structure and the
covariate values.

The distribution of distances for the standard zero/one model
becomes bimodal as λ gets large. Inspection of the data showed
a strong relationship between the sum of the covariates and the
Hellinger distance. Larger negative values of

∑

xi corresponded
to larger distances. In this situation, the target model puts more
weight on configurations withmany low states, but the S0,1 model
can not easily do the same, because increasing λ always promotes
the high state.

The distributions of the centered models’ distances are not
bimodal, but they also exhibit considerable variation. For Case 2
target models, the median Hellinger distance of the C0,1 model
begins to decrease sharply when the target model’s association
parameter is greater than one half. One reason for this is that the
probability mass of the target distribution begins to concentrate
around a small number of configurations near the saturated ℓ

and h states, essentially making it easier to approximate the
distribution. This effect is stronger in Case 2 than in Case
1, because the higher connectivity of the graph in Case 2
strengthens the neighborhood effect at a given λ level.

This example demonstrates that we can not treat the different
ALR variants as interchangeable, even approximately, and even
if we are only concerned with predictive modeling. If we are
also interested in parameter interpretation, then the regression
parameter estimates are of particular interest, since they always
define the endogenous probabilities. To compare the linear
predictors of the models, we can calculate the average absolute
difference of the 16 endogenous probabilities, relative to the
target model. Figure 10B shows the distribution of these averages
for the experimental runs. For the centered model, we see
that when the Hellinger distances are small, the endogenous
differences are large. This shows that when λ > 0, we can not find
a situation where the centered and symmetric models provide
similar probability distributions and similar interpretations at the
same time.

4.4. Analysis of the Hydrocotyle Vulgaris

Data
We now return to the H. vulgaris data to see how the differences
among the ALR variants can manifest themselves in a real
application. The S0,1, C0,1, and S−1/2,1/2 models were all fit to
the data using a four-nearest-neighbor graph and the MPL
method. Optimization of the pseudolikelihood was attempted
from multiple random starting points. For the two standard
models, the same solution was found each time (unsurprisingly,
given Theorem 5). For the centered variant, three locally-optimal
solutions were found; the one with greatest log pseudolikelihood
was assumed to be the global optimum. Let β0, β1, and λ be
the intercept, the coefficient of altitude, and the association
parameter, respectively.

Results of the analysis are shown in Figure 11, which
shows the estimated marginal probability maps, and Table 1,
which gives the coefficient estimates. The table includes
standard errors obtained by the parallel parametric bootstrap
as in Hughes et al. [25]. A column labeled “impact” is
also given for each parameter. This column holds the
covariate impact, as defined in Bardos et al. [23]. In that
work, the authors observed a covariate amplification/parameter
attenuation effect in auto-models, where (relative to logistic
regression) smaller coefficient magnitudes were required to
obtain similar observed effects on the fitted values. The
impact is an alternative measure of a covariate’s influence on
the response, intended to be informative despite structural
differences across models. The impact is obtained by setting the
coefficient in question to zero and re-evaluating the marginal
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FIGURE 9 | Examples of symmetric ALR models obtained by randomly generating a graph and covariates according to (A) Case 1 and (B) Case 2 as described in the

text. Each model is shown for three λ values, to illustrate the neighborhood effect. Nodes are shaded to indicate their marginal probability of taking the high level

(lighter shades indicate higher probability).

FIGURE 10 | The distribution of (A) Hellinger distance to the baseline model and (B) average absolute difference in endogenous probability vs. the baseline model, for

the minimum-distance models in the network example.

probabilities of the model. The average (across vertices in the
graph) of the absolute change in marginal probability is the
impact.

If we look only at the magnitudes of λ̂ and β̂1, the three
ALR models appear quite similar. All have λ̂ ≈ 1.5, indicating
strong spatial association. All have β̂1 ≈ −0.15, which is much
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FIGURE 11 | Results of ALR analysis of the H. vulgaris data. The top row shows marginal probability maps for (A) the traditional S0,1 model, (B) the centered model,

and (C) the symmetric model. Plot (D) gives the receiver operating characteristic curves for the three models as well as ordinary logistic regression.

TABLE 1 | Parameter estimation results for the H. vulgaris data.

β0 (intercept) β1 (altitude) λ (association)

Model β̂0 (SE) impact β̂1 (SE) impact λ̂ (SE) impact

Logistic 2.78 (0.10) 0.37 −0.79 (0.028) 0.48 – –

Traditional −2.12 (0.22) 0.44 −0.16 (0.026) 0.39 1.43 (0.066) 0.48

Centered −1.74 (0.31) 0.34 −0.17 (0.040) 0.34 1.51 (0.050) 0.47

Symmetric 0.50 (0.11) 0.40 −0.13 (0.029) 0.44 1.43 (0.071) 0.27

smaller than the logistic regression value of −0.79 (evidence of
the parameter attenuation phenomenon).

Interpretation difficulties begin to arise for the S0,1 and C0,1

models, however, when we consider β̂0. Both models assign large
negative values to the intercept, suggesting that when the altitude
is zero everywhere, the species should be largely absent. This
is contrary to the observed facts, where species presence has a
clear association with low elevation. The coefficient of altitude
(a positive quantity) is also negative in both models, leaving
no obvious way for species presence to take a high probability.
Indeed, the maximum endogenous probability over the entire
map for eithermodel is less than 0.2. How is it, then, that the fitted
models assign high probability in the northern part of the map?

It is only because λ is large enough to distort the meaning of the
regression part of the model. This is reflected in the large value of
impact for λ in these two models. Adding the neighbor effect to
either model has a drastic effect on the fitted values everywhere
in the map.

Contrast this with the interpretation of the symmetric model.
Its coefficients have the same signs as, and magnitudes roughly
proportional to, the logistic regression model. The median
endogenous probability across the map is 0.49 for logistic
regression and 0.51 for the symmetric model. The neighbor effect
promotes the marginal probabilities to intensify (toward either
zero or one) if local regions’ endogenous tendencies agree. As
a result the impact of λ is much lower than it is for the other
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ALR variants. Compared to the centered model, the regression
parameters have much higher impact values and much more
precise estimates.

The probability maps support the notion that the symmetric
model is more appropriate for these data. Its marginal
probabilities more closely match the altitude map and the
obeserved pattern of species presence seen in Figure 1. There
also appears to be an edge effect in the northern half of map for
the traditional and centered models, which is not present in the
symmetric case.

A more structured method of comparing goodness-of-fit and
potential predictive power is to produce a receiver operating
characteristic curve for each model. This was done for the same
data by Bardos et al. [23], but only for logistic regression and the
traditional S0,1 model. In Figure 11D a similar plot is shown with
the centered and symmetric models included. The symmetric
model dominates the other three models.

5. DISCUSSION

The preceding sections provided results about model equivalence
and parameter interpretation for autologistic models. They have
important implications for analysts considering using these
models.

The main results about equivalence apply for models with
nonzero association matrices and arbitrary full-rank covariate
matrices. They are:

• Every AL model (centered or standard, any coding) is
equivalent to any chosen standard AL model.

• Two standard ALRmodels are equivalent if their codings differ
by a positive scaling factor (otherwise they are not).

• Any two centered ALR models with different codings are not
equivalent.

• Any given standard ALR model is not equivalent to any
given centered ALR model, even if their coding is the
same.

It was shown by example that the statistical distance between
non-equivalent models can be large, making model choice a
matter of practical consequence. Given the known limitations of
the S0,1 model, the choice is mainly between the centered {0, 1}
and symmetric {−h, h} variants.

5.1. A Case for the Symmetric Model
The centered and symmetric models can be thought of as
competing alternatives, each aiming to remedy the parameter
interpretation problem of the traditional S0,1 model.

The centered model modifies the algebraic form of the
traditional model. It does so in a manner analogous to Gaussian
models, with the goal of making the regression parameters
directly control the marginal probabilities. This goal is not
achievable for dichotomous variables, however, because the
covariance of any two such variables is functionally related to
their marginal probabilities. As a result, centering achieves its
goal only approximately, and only over a restricted region of the
parameter space.

In exchange for this modest benefit, the centered model
introduces extra analytical and computational difficulties. One
such difficulty is non-convexity of the pseudolikelihood. Another,
more critical, one is the counterintuitive behavior of the model
when association is strong. This undesirable side effect was not
noted in the initial articles about the centered model—perhaps
because only λ values in the range [0, 1] were considered—but
it has been subsequently documented [38]. It is not easy to say
in advance when it will become problematic for a specific data
set and graph structure, but when it does, any interpretation
benefit will surely be lost. Users of the centered model must
be prepared to check carefully for the problem after parameter
estimation.

The preceding sections have demonstrated that the problems
with the traditional model are not due to its algebraic form
or its lack of centering, but simply due to the asymmetry
of the {0, 1} coding. The symmetric model only changes the
coding, but this change is sufficient to allow a very natural
interpretation of the parameters. The regression parameters
determine the endogenous structure, and λ provides a balance
between the endogenous structure and the neighbor effect.
This favorable interpretation remains the same regardless
of the strength of association (and, by Theorem 4, the
symmetric variants are unique in this regard). The symmetric
model resolves the problems with the traditional model in a
simple way, without introducing extra difficulties. Indeed, one
could argue that if the symmetric model had been proposed
first, there would be little reason to consider the centered
model.

The H. vulgaris example demonstrated both the deficiencies
of the centered model and the advantages of the symmetric
one. Using the centered model, the regression parameters lacked
a reasonable interpretation, and this happened without other
obvious signs of problems with the model (the estimate of λ
was not unreasonably large, and there was not dramatic lack
of fit). The symmetric model, on the other hand, provided a
more natural parameter interpretation with a closer connection
to logistic regression. At the same time it had better fit,
larger covariate impact, and more precise regression parameter
estimates.

The ultimate arbiters of model quality in practice are
goodness-of-fit and suitability for modeling objectives. It is not
possible to declare in advance that a single variant is preferable
in all circumstances. Nevertheless, all of the results of the
present work point to the symmetric model as the autologistic
variant with the most desirable properties. Future researchers
are strongly recommended to consider the symmetric model
as the starting point for their AL/ALR analyses, unless the
physical data-generating process has clear links to an alternative
model.

5.2. The Symmetric Model with Bernoulli
Responses
The symmetric S−h,h model could be criticized for two minor
drawbacks. First, the value of h is not specified. Second, since the
coding is not {0, 1}, we can not say that E[Zi] = Pr(Zi = 1).
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TABLE 2 | Model formulae for the symmetric ALR model, in two forms.

Distribution of Z ∼ S−h,h(Xβ,3) (support is {−h,h}n) Distribution of Y = 1
2h

Z + 1
2
1 (support is {0, 1}n)

Negpotential function
Q(z) = zTXβ + 1

2 z
T3z

=
∑

V

zix
T
i β +

∑

E

λijzizj

Q(y) = yT (Xγ − 1
2�1)+ 1

2 y
T�y

=
∑

V

yi (x
T
i γ − 1

2

∑

j∼i
ωij )+

∑

E

ωijyiyj

Conditional probability
Pr(Zi = zi |Z−i ) = ezivi

e−hvi + ehvi

where vi = xT
i
β +∑

j∼i
λijzj

Pr(Yi = yi |Y−i ) = eyivi

1+ evi

where vi = xT
i
γ +∑

j∼i
ωij

(

yj − 1
2

)

Conditional logit logit(πi ) = 2hvi logit(πi ) = vi

Parameters satisfy � = 4h23 and γ = 2hβ.

The latter drawback denies us the convenience of directly using
sample averages to approximate probabilities, as we can do with
Bernoulli-distributed random variables.

Both of the drawbacks can be eliminated by performing a
transformation to make the symmetric model use the more
familiar zero/one binary variables. If random variables Z are
distributed according to the recommended S−h,h(Xβ ,3) model,
with h unspecified, transforming Z into Y according to

Y = 1

2h
Z+ 1

2
1

will leave fY equivalent to fZ, but with support {0, 1}n instead of
{−h, h}n. Note that this is a proper transformation of variables,
not a just a change of coding (see Appendix A). The model has
not been fundamentally altered.

Table 2 shows the model formulae for Z and Y as just
described. It may be taken as a summary of the recommended
model, in two equivalent forms. The parameters in fY have
been written as γ = 2hβ and � = 4h23 to suppress the
dependence on h, but parameter interpretation is not affected.
The fZ form makes the roles of the parameters most clear, while
the fY form does not depend on h and shows the model as a
natural extension of logistic regression. Since the use of themodel
as a spatial extension of logistic regression is very common, we
may anticipate that fY, with conditional logit

logit(πi) = xTi γ +
∑

j∼i

ωij

(

yj − 1
2

)

and Yi ∈ {0, 1}, will be the most user-friendly form. It is
interesting (but perhaps not surprising, in light of Figure 3) to
note that fY looks the same as the centered ALR model, but with
the centering adjustment equal to 1

21 instead of µγ .

5.3. Final Remarks
Having now chosen the symmetric model as a preferred variant,
and realized that the ALR variants are not equivalent, it is
suitable to begin considering questions of parameter estimation
and model performance for the symmetric model, along the lines
of Dormann [39] (which used the standard zero/one model) and
Hughes et al. [25] (which used the centered zero/one model).
Measures of goodness-of-fit should be a significant part of any

such studies. Further investigation along this line is planned for
the future.

While it is true that different ALR variants are non-nested
models, the general form of section 2.3 does link the variants
as part of a larger family. This suggests the idea of estimating
the coding along with the other parameters. One could, for
example, consider only the standard variants, let ℓ = −1 (for
identifiability) and then estimate h from the data. This is
somewhat of a technical curiosity, since it is hard to imagine what
meaning one would assign to h; but it would make the model
more flexible.

It would be of considerable practical interest to extend
the ALR model beyond the simple smoothing assumption to
an adaptive smoothing model, where the pairwise parameter
is a function of the neighbor variables’ states (and possibly
covariates). This is also known as a metric MRF approach
[30]. The standard model with plus/minus coding should again
be best suited to this extension, which would greatly increase
model flexibility. Initial exploration of this approach has shown
promise.

The autologistic model is a pairwise MRF model; it is possible
to construct MRFs for binary responses where cliques of more
than two variables contribute to the negpotential function. In this
more general case, the crucial aspect of model construction is to
design the clique potential functions (ψm in Equation 2) in a way
that reflects the model’s intended purpose. Being aware of the
potential impact of coding changes, it would be wise to construct
the clique potentials in a way that is invariant to the coding. If this
is not possible, the role of coding should be considered carefully
to determine the best choice.

Another extension of the AL/ALR models is to the case of
categorical responses with more than two levels. Again, the
crucial task is the appropriate design of the clique potentials.
When there are three or more levels, dependence on the coding
is likely to increase in complexity. The multilevel logistic model
[7, 21] is one extension of the AL model to handle more
than two levels. It overcomes the coding problem by simply
checking whether every variable in a clique takes the same
value. If all of the values are equal, the clique potential is
+1; otherwise, it is −1. The result is a negpotential function
very similar to that of the symmetric AL model. Further
development of models of this type, including a regression
component and a clear connection to standard multinomial
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logistic (softmax) regression, is a potentially fruitful avenue for
future work.

Finally, it is possible that the simple observation behind this
work—that even a linear transformation of response coding may
be a non-trivial operation—could have implications in other use
cases as well. Probabilistic graphical models find application in
a variety of pattern recognition and deep learning architectures,
which are continually being extended in various directions. It is
advisable to pay attention to variable coding, to determine if it
can change the nature of the model, or be exploited to improve
performance.
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APPENDIX

A. WHAT IT MEANS TO CHANGE THE
CODING OF A MODEL

The distinction between transforming a random variable to a new
coding and changing the coding of a model will now be clarified.
Suppose that Z is a binary variable with any coding, having PMF
with parameter vector θ :

fZ(z) = Pr(Z = z) ∝ g(z; θ).

Transformation of variables can be viewed as the correct way to
alter amodel to handle a different coding. A random variable with
any desired coding, having distribution equivalent to fZ, can be
obtained by the one-to-one transformation

Y = aZ+ b1 ⇐⇒ Z = 1

a
Y− b

a
1

with appropriate choices of a and b. The PMF of Y is

fY(y) = Pr(Y = y) = Pr(aZ+ b1 = y) = fZ(
1

a
y− b

a
1)

∝ g(
1

a
y− b

a
1; θ) = g(z; θ).

In this sense we can always transform a given model to use
variables with a different coding; but as a function of y it may
look different than the original model in z.

If, conversely, we just plug y into the original model (possibly
with a different parameter value), we get an alternative PMF
for Y:

f ′Y ∝ g(y; θ ′) = g(az+ b1; θ ′).

In order to achieve fY = f ′Y, we must have g(z; θ) ∝ g(az +
b1; θ ′). There is no guarantee that θ ′ can be chosen to make them
proportional; it depends on the algebraic form of g. This is exactly
the rationale followed in the proofs of Theorems 1 and 2.

B. THE AUTOLOGISTIC MODEL WITH
ARBITRARY CODING

The goal is to derive expressions for the joint PMF, the
conditional PMFs, and the conditional log odds of variables Z,
in the situation where the coding is {ℓ, h}. Caiser and Cressie [3]
andHughes et al. [25] provide formulae for constructing the joint
PMF (up to a normalizing constant) given the conditionals:

fZ(z) ∝ eQ(z) (A1)

Q(z) =
n
∑

i = 1

Gi(zi)+
∑

(i,j)∈E
Gij(zi, zj) (A2)

Gi(zi) = log

(

fi(zi|z∗−i)

fi(z
∗
i |z∗−i)

)

(A3)

Gij(zi, zj) = log

(

fi(zi|zj, z∗−ij)

fi(z
∗
i |zj, z∗−ij)

fi(z
∗
i |z∗−i)

fi(zi|z∗−i)

)

, (A4)

where fZ is the joint PMF and fi is the conditional PMF of variable
i given the values of all other variables. In keeping with the MRF
dependence structure, fi will be a function of only variable i’s
neighbors: f (zi|z−i) = f (zi|zj∼i).

In these expressions,Q(z) is the negpotential function; z−i and
z−ij are vectors of all the variables excluding variables i and i, j
respectively; and z∗ is a chosen value of z in the support of fZ(z).
A necessary and sufficient condition on the support sets of the
random variables, which ensures that the above-defined fZ(z) is
a valid PMF, is given in Kaiser and Cressie [3]. The condition is
satisfied in our case.

Framework (A1–A4) allows the joint PMF to be built up
from a specification of the conditionals. Let πi = fi(h|z−i) =
Pr(Zi = h|z−i). Since we are not using the traditional {0, 1}
support for zi, we cannot write the conditional PMF as
fi(z|z−i) = π z

i (1− πi)1−z . Instead, write

fi(z|z−i) = er(z)

er(h) + er(ℓ)
,

with r(z) to be specified. In this way fi(ℓ|z−i) = 1− fi(h|z−i) as
it should, and the conditional log odds expression is

logit(πi) = log
fi(h|z−i)

fi(ℓ|z−i)
= r(h)− r(ℓ).

Now define r(zi) to be

r(zi) = zi



αi +
∑

j∼i

λij(zj − µj)



 ,

where µj is either the independence expectation of zj in the
centered case, or zero in the standard case. From this we arrive
at the centering adjustment (7), the conditional PMF (9), and the
conditional log odds (10).

To work out the joint PMF of Z, use the fi functions just
defined in formulas (A3) and (A4). It is easiest to work with the
joint PMF in matrix/vector form, so let 3, α, and µ be as defined
in section 2.3, and define 3i to be the ith column of 3. Also
choose z∗ = ℓ, a vector with all its elements equal to ℓ. We
find that

Gi(zi) = αi(zi − ℓ)+ (zi − ℓ)3T
i (ℓ − µ),

and

Gij(zi, zj) = (zi − ℓ)λij(zj − ℓ).

Combining these G functions as in Equation (A2), we obtain

Q(z) = (z−ℓ)Tα+(z−ℓ)T3(ℓ−µ)+ 1

2
(z−ℓ)T3(z−ℓ). (A5)

After expanding the right hand side, some terms cancel and
others are free of z and thus can be moved into the normalizing
constant. Doing this yields the negpotential function used in
PMF (11).
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