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Volatility is a widely recognized measure of market risk. As volatility is not observed it has

to be estimated from market prices, i.e., as the implied volatility from option prices. The

volatility index VIX making volatility a tradeable asset in its own right is computed from

near- and next-term put and call options on the S&P 500 with more than 23 days and

less than 37 days to expiration and non-vanishing bid. In the present paper we quantify

the information content of the constituents of the VIX about the volatility of the S&P 500 in

terms of the Fisher informationmatrix. Assuming that observed option prices are centered

on the theoretical price provided by Heston’s model perturbed by additive Gaussian

noise we relate their Fisher information matrix to the Greeks in the Heston model. We

find that the prices of options contained in the VIX basket allow for reliable estimates

of the volatility of the S&P 500 with negligible uncertainty as long as volatility is large

enough. Interestingly, if volatility drops below a critical value of roughly 3%, inferences

from option prices become imprecise because Vega, the derivative of a European option

w.r.t. volatility, and thereby the Fisher information nearly vanishes.

Keywords: Fisher information, stochastic volatility, Heston model, Greeks, option pricing, fractional Fourier

transform

1. INTRODUCTION

Volatility of stock prices is a highly volatile time-process itself. This insight led to the introduction
of volatility indices like the VIX (1993) and its off-springs, based on the work [1, 2], which make
volatility a trademark in its own right subject to similar stochastic movements as stock prices.
According to this view volatility seems to be responsible for several statistical properties of observed
stock price processes. In particular, volatility clustering, i.e., large fluctuations are commonly
followed by other large fluctuations and similarly for small changes [3]. Another feature is that, in
clear contrast with price changes which show negligible autocorrelations, volatility autocorrelation
is still significant for time lags longer than 1 year [3–8]. Additionally, there exists the so-called
leverage effect, i.e., much shorter (few weeks) negative cross-correlation between current price
change and future volatility [3, 9–11].

In stochastic volatility models, volatility is considered as a hidden process which can only be
observed indirectly via its effect on stock price dynamics. Thus, in practice it has to be inferred from
market data. In a previous paper [12], we have shown that daily stock returns in general provide
only very limited information about volatility. Thus, there are intrinsic limits on how precisely
volatility can be recovered frommarket data. Here, we consider a related question when recovering
volatility from option price data. Instead of the fairly general treatment in Pfante and Bertschinger
[12] we address in the present paper the question how much information the VIX, as very popular
measure for implied volatility of the S&P 500, actually provide about volatility. More precisely, how
much information about volatility is contained the constituents of the VIX, i.e., near- and next-term
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put and call options on the S&P 500 with more than 23 days
and less than 37 days to expiration and non-vanishing bid.
We tackle this question in terms of Fisher information. To
this end, we choose Heston’s stochastic volatility model [13]
because the pricing formulae of the European Call and Put
Options are analytically tractable in terms of Fourier transforms.
Then, assuming that observed option prices are centered on
the theoretical price provided by Heston’s model perturbed by
additive Gaussian noise we investigate the precision of volatility
estimates. Since the VIX basket consist of a vast number of Call
and Put options on the S&P 500 results from asymptotic statistics
[14] apply: the maximum likelihood estimator is consistent,
asymptotically efficient, and normally distributed and the
variance is the inverse of the Fisher information. Hence, Fisher
information quantifies the uncertainty of maximum likelihood
volatility estimates—at least asymptotically—and relates them to
the partial derivatives, i.e., the Greeks, of the Heston model.
While the Fisher information is commonly used to access the
precision of parameter estimates, to our knowledge, it has not
been applied in the context of implied volatility estimation
previously.

Overall, we find that in contrast to stock returns alone [12],
that the options in the basket of the VIX provide substantial
information about volatility making inferred volatility a precise
estimator as long as volatilities are sufficiently high. The picture
changes dramatically for very small volatilities because Vega,
the derivative of the option price w.r.t. volatility and thereby
the Fisher information, almost vanishes below a critical value
of about 3%. This in turn leads to huge relative errors in small
inferred volatilities. The VIX, being a variance swap on the
average volatility over 30 days, is muchmore stable with a relative
uncertainty never exceeding a few percent over the considered
data set.

The paper is structured as follows: section 2 introduces
Heston’s model and associated pricing formulae. Further, we
explain how the fractional fast Fourier transform allows an
efficient computation of the Heston Greeks. In section 2.4 we
state the formal definition and important properties of Fisher
information. Section 3.1 illustrates how the Fisher information
varies w.r.t. strike and maturity in the Heston model. Further, we
discuss the role of Vega on the reliability of volatility estimation.
Finally, in section 3.2 we compute the Fisher information for the
volatility of the S&P 500 index as well as the VIX index.

2. MATERIALS AND METHODS

2.1. Heston’s Stochastic Volatility Model
Introducing Heston’s model for pricing options we follow Rouah
[15]. The Heston model assumes that the underlying stock price,
St , follows a Black-Scholes-type stochastic process, but with a
stochastic variance vt that follows a Cox, Ingersoll, and Ross
process. Hence, the Heston model is represented by the bivariate
system of stochastic differential equations (SDEs)

dSt = µStdt +
√
vtStdW1,t

dvt = κ(θ − vt)dt + σ
√
vtdW2,t (2.1)

with the instantaneous correlation dW1,tdW2,t = ρdt of the two
Brownian motions. The parameters of the model are

drift of the stock µ

relaxation parameter κ > 0
long-term mean of the variance θ > 0
leverage-effect parameter ρ ∈ [0, 1]
volatility of the variance σ > 0 .

Furthermore, the price at time t of a zero-coupon bond paying 1$
at maturity t + τ is

P(t, t + τ ) = e−τ r

with constant interest rate r. Neglecting volatility risk premium,
change of measure yields the log-price xt = log St and variance vt

dxt =
(

r − 1

2
vt

)

dt +√
vtdW̃1,t

dvt = κ(θ − vt)dt + σ
√
vtdW̃2,t

w.r.t. to the risk neutral measure Q, see Rouah [15] or Heston’s
original work [13] for a detailed derivation. If we include a
continuous dividend yield q, the time drift of the log-price
becomes r − q− 1/2vt .

2.2. European Options
We present the price for a European call and put option in
Heston’s model in the formulation of Carr and Madan [16].
Henceforth, we abbreviate the log-price xt = log St at time t
simply by x and similarly the variance vt at time t by v. We
only consider the characteristic function f of the cumulative
distribution PQ(xt+τ > logK) w.r.t. the risk-neutral probability,
that is,

PQ(xt+τ > k) = 1

2
+ 1

π

∫ ∞

0
Re

[

e−iφkf (φ, x, v, τ )

iφ

]

dφ .

with

f (φ, x, v, τ ) = e(C(φ,τ )+D(φ,τ )v+iφx)

and the logarithmic strike k = logK. The little Heston Trap
formulation [17] yields

C(φ, τ ) = i(r − q)φτ + κθ

σ 2

[

(Q− d)τ − 2 log

(

1− ce−dτ

1− c

)]

D(φ, τ ) = Q− d

σ 2

(

1− e−dτ

1− ce−dτ

)

with

c = Q− d

Q+ d

d =
√

Q2 + σ 2(iφ + φ2)

Q = κ − iρσφ .
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We introduce

E(ǫ, x, v, r, κ , θ , ρ, σ , k, τ )

= e−ǫαk

π

∫ ∞

0
Re

[

e−ikφ ê(ǫ,φ, x, v, τ )
]

dφ (2.2)

with

ê(ǫ,φ, x, v, τ ) = e−rτ f (φ − i(ǫα + 1), x, v)

(ǫα)2 + ǫα − φ2 + iφ(2ǫα + 1)
.

where ǫ ∈ {1,−1} and α > 0 is a positive damping factor
controlling the numerical stability of the integration. α can
either be fixed or chosen according to an optimization scheme
outlined in Carr and Madan [16]. We obtain the European
call C(x, v, r, κ , θ , ρ, σ , k, τ ) and put P(x, v, r, κ , θ , ρ, σ , k, τ ) price,
respectively, via

C(x, v, r, κ , θ , ρ, σ , k, τ ) = E(1, x, v, r, κ , θ , ρ, σ , k, τ )

P(x, v, r, κ , θ , ρ, σ , k, τ ) = E(−1, x, v, r, κ , θ , ρ, σ , k, τ ) . (2.3)

We refer to Carr and Madan [16] or the third chapter in
Rouah’s book [15] for a derivation of the formulae Equation (2.3).
Furthermore, we have put-call parity, see Rouah [15],

P(x, v, r, κ , θ , ρ, σ , k, τ ) = C(x, v, r, κ , θ , ρ, σ , k, τ )

+eke−rτ − exe−qτ . (2.4)

The Heston Greeks in terms of the Carr-Madan formulation read

∂

∂γ
E(ǫ, x,v, r, κ , θ , ρ, σ , k, τ )

= e−ǫαk

π

∫ ∞

0
Re

[

e−ikφfγ (φ − i(ǫα + 1), x, v, τ )ê(ǫ,φ, x, v, τ )
]

dφ

(2.5)

where fγ are different functions for γ ∈ {σ0, κ ,
√

θ , ρ, σ } and
σ0 =

√
v denotes the volatility.

2.3. Fractional Fourier Transform
Since the call and put price in Equation (2.3) is expressed via
a single Fourier integral we can apply a Fractional Fast Fourier
Transform to achieve a simultaneous computation of the call
and put prices Equation (2.3) for various strikes. We follow the
outline in Rouah [15]. We approximate the Fourier integral in
Equation (2.2) by Simpson’s integration scheme over a truncated
integration domain for φ, using N equidistant points

φj = jη for j = 0, . . . ,N − 1

where η is the increment. Simpson’s rule approximates the
integral Equation (2.5) as

∂

∂γ
E(ǫ, x, v, r, κ , θ , ρ, σ , k, τ )

≈ e−ǫαkη

π

N−1
∑

j=0

Re
[

eiφjkfγ (φj − i(ǫα + 1), x, v, τ )ê(ǫ,φj, x, v, τ )
]

wj

(2.6)

with the weight w0 = wN−1 = 1/3, wj = 4/3 iff j is odd
and wj = 2/3 otherwise. Since we are interested in strikes near
the money the range for the log-strikes k needs to be centered
on the log-price x. The strike range is, thus, discretized using N
equidistant points

ku = −b+ uλ + x for u = 0, . . . ,N − 1

where λ is the increment and b = Nλ/2. This produces log-
strikes over the range [log S − b, log S + b − λ]. For a log-strike
on the grid ku we can write the sum Equation (2.6) as

∂

∂γ
E(ku)

≈ e−ǫαkuη

π

N−1
∑

j=0

Re
[

eiφjku fγ (φj − i(ǫα + 1), x, v, τ )ê(ǫ,φj, x, v, τ )
]

wj

= e−ǫαkuη

π

N−1
∑

j=0

Re
[

eijη(−b+uλ+x)fγ (φj − i(ǫα + 1), x, v, τ )

ê(ǫ,φj, x, v, τ )
]

wj

= e−ǫαkuη

π

N−1
∑

j=0

Re
[

eiηλujei(b−x)φj fγ (φj − i(ǫα + 1), x, v, τ )

ê(ǫ,φj, x, v, τ )
]

wj (2.7)

for u = 1, . . . ,N− 1. Applying a discrete Fast Fourier Transform
(FFT) on Equation (2.7) imposes the restriction

λη = 2π

N
(2.8)

on the choice of the increments λ and η which entails a trade off
between the grid sizes. Hence, Chourdakis [18] introduced the
Fractional Fast Fourier Transform (FRFT) to relax this important
limitation of the discrete FFT. The term 2π/N in Equation (2.8)
is replaced by a general term β and Equation (2.7) becomes

x̂u = E(ku) ≈
e−ǫαkuη

π

N−1
∑

j=0

Re
[

eiβujxj
]

(2.9)

with

xj = ei(b−x)φj fγ (φj − i(ǫα + 1), x, v, τ )ê(ǫ,φj, x, v, τ )wj

j = 1, . . . ,N − 1.

The relationship between the grid sizes λ and η becomes λη = β .
Thus, we can choose the grid size parameters η and λ freely. To
implement the FRFT on the vector x = (x0, . . . , xN−1) we first
define vectors

y =
(

{

e−iπ j2βxj

}N−1

j=0
, {0}N−1

j=0

)

z =
(

{

eiπ j
2β
}N−1

j=0
,
{

eiπ(N−j)2β
}N−1

j=0

)

.
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Next, a discrete FFT of the vectors y and z yields ŷ = D(y) and
ẑ = D(z) and we define the 2N dimensional vector

ĥ = ŷ⊙ ẑ = (yjzj)
2N−1
j=0 .

where⊙ denotes pointwise multiplication.
Now, we apply the inverse FFT on ĥ and take the pointwise

product of the result with the vector

e =
(

{

e−iπ j2β
}N−1

j=0
, {0}N−1

j=0

)

to obtain

x̂ = e⊙ D−1(ĥ) = e⊙ D−1(ŷ⊙ ẑ) = e⊙ D−1
(

D(y)⊙ D(z)
)

.

If we truncate the last N elements we obtain the desired vector x
of Equation (2.9) with length N. Hence, the FRFT maps a vector
of length N onto another vector of length N, even though it uses
intermediate vectors of length 2N.

2.4. Fisher Information in Pricing Options
The outline on the Fisher information follows Cover and Thomas
[19] and Ibragimov and Has’minskii [14]. We begin with a few
definitions. Let {f (x;2)}, 2 = (θ1, . . . , θm) ∈ P ⊂ Rm, denote
an indexed family of densities f :X → R≥0,

∫

f (x; θ)dx = 1 for
all 2 ∈ P . Here P is called the parameter set. The ij-th entry of
the Fisher information matrix J(2) is defined by

J(2)ij =
∫

∂

∂θi
log f (x;2)

∂

∂θj
log f (x;2) f (x;2) dx

= E

[

∂

∂θi
log f (x;2)

∂

∂θj
log f (x;2)

]

Fisher information has the following properties. First, as
covariancematrix, the Fisher informationmatrix is positive semi-
definite. Second, information is additive: the information yielded
by two independent experiments is the sum of the information
from each experiment separately:

JX,Y (2) = JX(2)+ JY (2)

Third, the Fisher information depends of the parametrization of
the problem: suppose 2 and 3 arem-vectors which parametrize
the estimation problem, and suppose 2 is a continuously
differentiable function of 3, then

J(3) = DTJ(2(3))D (2.10)

where the ij-th entry of the m × m Jacobian D is defined by
Dij = ∂θ i/∂λj and DT denotes the transpose of D.

The Fisher information matrix of a single option with
price e is a way of measuring the amount of information
that the observable option price e carries about the unknown
parameters σ0, κ ,

√
θ , ρ, σ . Recall, σ0 is the volatility, κ the

relaxation parameter of the CIR process Equation (2.1),

θ the long-term mean of the variance, σ the volatility of
the diffusion process Equation (2.1), and ρ the leverage
parameter, i.e., the instantaneous correlation between the two
Brownianmotions in Equation (2.1).While Heston’s option price
E(ǫ, x, v, r, κ , θ , ρ, σ , k, τ ) is a function of the stated parameters,
the observed price e might deviate from its theoretical value.
Following standard practice in fitting the volatility smile, we
consider the mean squared loss between the actually observed
option price e and its theoretical value. In statistical terms, this
corresponds to a noisemodel where the option price e is normally
distributed around its theoretical mean value with variance v̂. The
probability function for e, which is also the likelihood function
for the parameter vector 2 = (σ0, κ ,

√
θ , ρ, σ ), is a function

f (e;2); it is the probability mass (or probability density) of the
random option price e conditional on the value of 2. For a
certain actual stock price S, strike K, and maturity τ we assume

f (e|2) = 1√
2π v̂

exp

(

− (e− E(ǫ, x, v, r, κ , θ , ρ, σ , k, τ ))2

2v̂

)

where x = log S, k = logK, and v = σ 2
0 . We obtain the ij-th entry

of the Fisher information matrix

J(2)ij =
1

v̂
∇2E (∇2E)T (2.11)

where

∇2E =
(

∂

∂θi
E(ǫ, x, v, r, κ , θ , ρ, σ , k, τ )

)

i=1,...,5

is the gradient of the option price w.r.t. the parameters
(θ1, . . . , θ5) = (σ0, κ ,

√
θ , ρ, σ ).

Furthermore, we consider deviations of observed prices of
options with different strikes and maturities from their
respective theoretical prices as independent. Additivity of Fisher
information yields

J(2) = 1

v̂

∑

τ∈T ,k∈K
Jτ ,k(2)

for simultaneously observed prices
{E(ǫ, x, v, r, κ , θ , ρ, σ , k, τ ) : τ ∈ T , k ∈ K} of options with
different maturities τ and log-strikes k.

Under weak regularity conditions, the maximum likelihood
estimator is consistent, asymptotically efficient, and normally
distributed and the variance is the inverse of the Fisher
information [14]. Hence, we interpret the inverse of the Fisher
information matrix J(2)−1 in Equation (2.11) as the variance
matrix of the maximum likelihood estimator T(E) of the
parameters 2 = (θ1, . . . , θ5) = (σ0, κ ,

√
θ , σ , ρ) from a single

option price E. Note that this interpretation is strictly valid
only asymptotically, i.e., when estimating from many option
prices together. Indeed, we consider this scenario in section 3.2
where we compute the Fisher information based on all options
underlying the VIX. The small observed estimation variances
strongly suggest that our estimates are well within the asymptotic
regime in this case.
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Here, despite not being in the asymptotic regime, we also

investigate the Fisher information when estimating from a single
option price, as it first gives important insights on how the

information behaves with respect to different parameters and
second, by the additivity of Fisher information, carries over to
estimates from many option prices. Accordingly, the diagonal
elements [J(2)−1]ii, with i = 1, 2, . . . , 5, of the inverse J(2)−1

correspond to the variances of the estimates T(E)i of the
parameters θi from a single observed option price E. The diagonal
entries [J(2)−1]ii can be lower bounded by the respective Fisher
information J(θi)

−1. Note that J(θi) is the information obtained
when estimating the parameter θi alone, i.e., considering all the
other parameters as fixed. With this interpretation in mind the
lemma below states that the variance of a joint estimator for
all parameters 2 simultaneously is larger than estimating each
parameter θi alone.

Lemma 2.1. We have

[

J(2)−1
]

ii
≥ J(θi)

−1

for i = 1, . . . , 5.

Proof: Let A be an invertible n× nmatrix and let denote Aij the
ij-th block A for i, j ∈ {1, 2}, i.e.,

A =
[

A11 A12

A21 A22

]

.

Then, the inverse of A can be expressed as, by the use of

C1 = A11 − A12A
−1
22 A21

C2 = A22 − A21A
−1
11 A12 ,

as

A−1 =
[

A11 A12

A21 A22

]−1

=
[

C−1
1 −A−1

11 A12C
−1
2

−C−1
2 A21A

−1
11 C−1

2

]

,

see equation 399 in Petersen and Pedersen [20]. Assume A =
J(2) and

A11 = J(2)11 =
1

v̂

(

∂

∂θ1
E(x, k,2, τ )

)2

.

Then

[

J(2)−1
]

11
=
(

J(2)11 − A12A22A21

)−1

J(2) is positive semi-definite. This implies AT
12 = A21, A22 is

positive semi-definite as well and therefore A12A22A21 ≥ 0. This
yields the inequality for i = 1. Relabeling of the parameters yields
the inequalities for the cases i = 2, 3, 4, 5 as well.

3. RESULTS

3.1. Inferring Hidden Parameters from a
Single European Option
According to Equation (2.11), Fisher information matrix of a
European option with Gaussian Noise centered on the theoretical
price Equation (2.2) provided by Heston’s model is entirely
determined by the first-order derivative of the option Price w.r.t.
to the volatility σ0, and the parameters κ , θ , σ , and ρ, respectively.
We study these derivatives: first, their dependency of strikes
and maturities; second, we have a closer look on Vega, i.e., the
derivative of the option price w.r.t. volatility σ0, observing a drop
of its value for small volatilities.

3.1.1. Greek-Surfaces
According to Equation (2.11) we have

[

J(2)−1
]

ii
≥ v̂

(

∂

∂θi
E

)−2

for i = 1, . . . , 5 .

Hence, the gradient ∇2E of an option price Equation (2.2) does
not only entirely determine J(2) but its components also provide
first estimates on the uncertainty left about the parameters θi
from an estimate T(E) derived from a single observation.

We computed the gradient for European call options for
various strikes and maturities via the FRFT described in the
previous section. We implemented the FRFT in HASKELL for all
our simulations. The choice of parameter values is consistent with
the S&P 500 whose parameter set was estimated in Aït-Sahalia
and Kimmel [21] with κ = 5.07, θ = 0.0457, ρ = −0.767,
σ = 0.48, even though our study, according to its qualitative
character, holds true for any reasonable choice of parameters.
Furthermore, the values of the time dependent parameters r, q, v
and x are in accordance with the data for the S&P 500 onMarch 3,
2014. The continuously-compounded zero-coupon interest rate
is r = 0.167% with dividend yield q = 1.894%. We assumed the
S&P 500 is quoted with 1,845.73 and a volatility

√
v = 10.4%

which was fitted on call prices. All data is obtained from the
OPTION METRICS database. Furthermore, the parameters of the
FRFT were fixed asN = 211, η = 0.4, and λ = 3.6549e−4 which
yields strike increments of approximately 0.68 within in a range
of 1,269.5 till 2,683.5. The damping factor is α = 1.5 throughout
the paper.

Throughout this section, we do not consider the variance v̂
of the Gaussian Noise. Nevertheless, comparing the scales in
Figures 1–5 allows to assess the relative uncertainty of parameter
estimates as v̂ just corresponds to a global scaling of the
Fisher information. Comparably little information is gained from
observing a single call price about the relaxation parameter κ ,
the leverage parameter ρ, and the variance of the variance σ .
The estimates of the volatility σ0 and the long-term mean

√
θ of

the volatility are about 100 times more precise, i.e., the standard
deviation is about 10 times smaller. Interestingly, estimates of σ0
from call data have an optimal time scale: Vega, the derivative of
the call price w.r.t. the volatility attains a global maximum for at
the money call options with approximately 1 month maturity. In
general estimates for all parameters are best for at the money call
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FIGURE 1 | The derivative of Heston’s call price w.r.t. the volatility σ0.

FIGURE 2 | The derivative of Heston’s call price w.r.t. the relaxation

parameter κ.

options and uncertainty increases with the distance of the strike
from the quoted price of the underlying asset. Due to put-call
Parity all these results hold true for put options as well. Hence,
in the interest of space their detailed exposure is skipped.

3.1.2. Vega-Drop
In general parameters are not estimated from a single option
price but for various options over an entire time-period. An
estimate over a time-period T changes the picture in a twofold
way. First, not only maturity and strikes vary but also volatility σt
and the price of the underlying asset St . Second, since volatility σt
needs to be estimated for every day t ∈ T the parameter vector

FIGURE 3 | The derivative of Heston’s call price w.r.t. the leverage

parameter ρ.

FIGURE 4 | The derivative of Heston’s call price w.r.t. the volatility of the

variance process σ .

2 is no longer (σ0, κ ,
√

θ , σ , ρ) but

(σt)t∈T ⊕ (κ ,
√

θ , σ , ρ) (3.1)

where ⊕ denotes concatenation. Consequently, the Fisher
information matrix J(2) is an (m + 4) × (m + 4) matrix where
m = |T | is the number of days we consider. The firstm diagonal
elements of J(2)−1 provide error variances on the estimates
of volatilities (σt)T . According to lemma 2.1 these diagonal
elements are lower bounded by

v̂

(

∂

∂σt
Et

)−2

for t ∈ T (3.2)
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FIGURE 5 | The derivative of Heston’s call price w.r.t. the long-term mean of

the volatility
√

θ .

FIGURE 6 | Vega for a European option priced by Heston’s model over

various strikes. It is strictly positive and has a global maximum near the spot

price of the underlying asset (indicated by the red dashed line).

where Et is an observed option price at time t. Hence, Vega,
i.e., the first-order derivative of the option price w.r.t. volatility,
plays a crucial role for error estimates for the majority of the
parameters in Equation (3.1).

To investigate Vega in more detail, Figure 6 plots Vega of a
European option traded on the S&P 500 over the same parameter
set we have already applied for the explicit computation of
the Greek-surfaces of the previous subsection: spot price S =
1,845.73, r = 0.167%, q = 1.894%, κ = 5.07, θ = 0.0457,
σ = 0.48, ρ = −0.767, variance v = 0.0108, and maturity
τ = 30 days, i.e., corresponding to a slice of the surface shown
in Figure 1 at τ = 30

252 ≈ 0.12. As in the case of the classical
Black Scholes Model, Vega is always positive, i.e., the value of

FIGURE 7 | Vega for a European option price by Heston’s model over various

variances for a fixed strike K = 1,845.73 at the spot price of the underlying.

Vega drops for small variances. The dashed line corresponds to
√
v = 3%.

an option increases with volatility, and Vega attains a maximum
near the spot price of the underlying. Of greater importance is the
dependency of Vega on the variance v if the strike is fixed.

Figure 7 plots Vega in Heston’s model for an at-the-money
option over various variances for three different maturities: 23,
30, and 37 days; the range of maturities of the components of
the VIX which is studied in the subsequent section. The curves
for different maturities τ ∈ [23, 37] are located in the shaded
region. One observes a fast drop of Vega for small variances v
which is indicated by the dashed line corresponding to

√
v = 3%

corresponding to According to Equation (3.2) this fact sheds light
on variance, and volatility estimates, respectively, from European
options: if Vega decreases dramatically the error in estimating the
volatility from options becomes large. In the subsequent section
we show that this observed Vega-Drop is not only of theoretical
but also practical interest if we investigate the quality of the VIX
as a volatility proxy.

3.2. Fisher Information and the VIX
The S&P 500 is a major stock index which is calculated using
the prices of approximately 500 component stocks of the biggest
companies in the US. The S&P 500, like other indices, employs
rules that govern the selection of the component securities and
a formula to calculate index values. The VIX index measures 30-
day expected volatility of the S&P 500 index and is comprised
by options rather than stocks, with the price of each option
reflecting the market’s expectation of future volatility. Like
conventional indices, the VIX calculation employs rules for
selecting component options and a formula to calculate index
values. Roughly, the selection filters near- and next-term put
and call options with more than 23 days and less than 37
days to expiration and non-vanishing bid—see Chicago Board
Options Exchange [22] for further details. With the aid of the
OPTION METRICS database we are able to replicate the part of
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the portfolio1 of options entering the calculation of the VIX from
October 16th 2003 until August 31th 2015. Assuming that all
prices of the VIX components are centered on the theoretical
price Equation (2.3) in Heston’s model disturbed by additive
Gaussian Noise we address two questions to the data: first, how
reliably can volatility be inferred from the VIX components;
second, does the VIX really measure 30-day expected volatility
if one considers the VIX index as a 30-day variance swap traded
on the S&P 500? We tackle both questions in terms of Fisher
information.

3.2.1. Inferring Volatility
We denote with Et = Ct ∪ Pt the set of all components of
the VIX at day t where Ct denotes the set of call options and
Pt the set of put options, respectively. We introduce the set
T = {16/10/2003, 17/10/2003, . . . , 31/08/2015} of all trading
days fromOctober 16th 2003 until August 31th 2015. We assume
that the price et of an option e in the set Et is normally distributed

p(et|ǫ, xt ,vt , rt , κ , θ , ρ, σ , ke, τ )

= 1√
2π v̂

exp

(

(et − E(ǫ, xt , vt , rt , κ , θ , ρ, σ , ke, τ ))

2v̂

)

with a fixed variance v̂ and mean E(ǫ, xt , vt , rt , κe, θ , ρ, σ , k, τ )
provided by Equation (2.2) where xt is the log-closing-price of
the S&P 500 at day t, rt the zero Coupon Bond yield at day t with
maturity τ , and ke the log-strike of the option. Beside the option
prices, also the daily zero Coupon Bond yield r and the closing
prices of the S&P 500 are provided by the OPTION METRICS

database. Furthermore we adopt the estimate in Aït-Sahalia and
Kimmel [21] for the parameters of the stochastic volatility process
Equation (2.1).

κ = 5.07, θ = 0.0457, σ = 0.48, ρ = −0.767 (3.3)

We fit the volatility with daily time-resolution on option data via
a maximum likelihood estimate on the call option prices. That
is, for every day t ∈ T , the variance vt , and therefore volatility
σt =

√
vt , is determined as the maximum of the joint, negative

log-likelihood function

−
∑

e∈Et
log

(

p(et|ǫ, xt , vt , rt , κ , θ , ρ, σ , kc, τ )
)

which is equivalent to minimize the square-error

∑

e∈Et
||et − E(ǫ, xt , vt , rt , κ , θ , ρ, σ , kc, τ )||2 .

This procedure yields a time series (vt)t∈T for the variance.
Besides, the variance v̂ is obtained frommaximizing the negative,
joint log-likelihood function

∑

t∈T

∑

e∈Et
log

(

p(et|ǫ, xt , vt , rt , κ , θ , ρ, σ , ke, τ )
)

1The new VIX is computed based on S&P 500 options which strike dates are

renewed inmonthly intervals. In addition, weekly options, traded under a different

ticker, are used to cover the remaining weeks. These later options are not available

in our data base.

which yields the expression

v̂ = 1

N

∑

t∈T

∑

e∈Et
||et − E(ǫ, x, vt , r, κ , θ , ρ, σ , ke, τ )||2

where N is the cardinality of the union
⋃

t∈T Et . For our data
set of options from October 16th 2003 until August 31st 2015 we
obtain the value

v̂ = 0.2952 .

corresponding to a standard deviation of about half a dollar.
We have assembled all necessary ingredients to tackle the

following thought problem: how precisely can the volatlity
(σt)t∈T , with σt = √

vt , and the parameters κ ,
√

θ , σ , and ρ

be estimated from the components of the VIX? Since we are
dealing with a lot of data, roughly several hundred option prices
every day for estimating the daily volatility σt , and about three
hundred thousand option prices are available for an estimation
of the parameters κ ,

√
θ , σ and ρ, we apply insights from

asymptotic statistics [14] to quantifity the uncertainty left about
the parameters

2 = (σt)t∈T ⊕ (κ ,
√

θ , σ , ρ) (3.4)

supposed they are fitted via a maximum likelihood estimate from
the log-likelihood function

∑

t∈T

∑

e∈Et
log

(

p(et|ǫ, xt , vt , rt , κ , θ , ρ, σ , ke, τ )
)

.

Then, under fairly mild conditions, the maximum likelihood
estimator is asymptotically normally distributed with mean 2

and covariance matrix J(2)−1 where J(2) denotes the Fisher
information matrix which adopts in the present context the block
structure

J(2) = 1

v̂

(

A11 A12

A21 A22

)

. (3.5)

A11 = (aij) is an m × m diagonal matrix, where m is the
cardinality of T s.t.

aii =
(

∂σti
Ei

)2
= 4vti

(

∂vtiEi

)2

where we write

Ei =
∑

e∈Eti

E(ǫ, xti , vti , rti , κ , θ , ρ, σ , ke, τ ) . (3.6)

A12 is anm× 4 matrix,

A12 =







∂σt0
E0∂κE0 ∂σt0

E0∂√θE0 ∂σt0
E0∂σE0 ∂σt0

E0∂ρE0
...

...
...

...

∂σtm
Em∂κEm ∂σtm

Em∂√θEm ∂σtm
Em∂σEm ∂σtm

Em∂ρEm






,

and A21 = AT
12. Finally, A22 is the 4× 4 matrix

A22 =
m
∑

i=1

∇Ei∇ETi
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FIGURE 8 | Volatility of the S&P 500. The close-up presents the volatility

estimate along with its double standard deviation obtained from Fisher

information matrix Equation (3.5).

where ∇Ei = (∂κEi, ∂θEi, ∂σEi, ∂ρEi)
T denotes the column

gradient vector of Ei w.r.t. the parameters of the stochastic
process Equation (2.1). If we assume that the previously fitted
variance time-series (vt)t∈T and the parameter set Equation (3.3)
provide an estimator of 2 which is, like the maximum likelihood
estimator, asymptotically normal with mean 2 and covariance
matrix J(2)−1, we can quantify the uncertainty left in our
estimation in terms of the entries of the Fisher information
matrix. Figure 8 presents the volatility time-series (σt)t∈T
obtained from the previously described fit on components
entering the calculation of the VIX along with the uncertainty
left.

Since the uncertainty left is negligible the shaded tube ([σt −
βt , σt + βt])t∈T (≈ 95% confidence interval) mantling the plot
of the volatility time-series (σt)t∈T is only visible in a close-up
presented in Figure 8 as well. The close-up shows volatility from
February 23rd 2010 until March 11th 2010 within a range from
13.5 till 18%. The boundaries (βt)t∈T of the confidence interval
are obtained from the firstm entries of the diagonal of the inverse
J(2)−1 = ([J(2)−1]ij) of the Fisher information matrix (Recall,
m is the number of trading days we consider, i.e., the cardinality
of the set T ):

βti = 2
√

[

J(2)−1
]

ii
for all i = 1, . . . ,m .

That is, in terms of asymptotic statistics, βt is the double standard
deviation of the asymptotically normal volatility estimate σt . On
average the double standard deviation is

β̄ = 1

m

m
∑

i=0

βti = 0.0014 .

The last four entries of the diagonal of J(2)−1 = ([J(2)−1]ij)

yield the variance of the estimates of the parameters κ ,
√

θ , σ and
ρ, respectively. Along with the parameter estimates of Aït-Sahalia

TABLE 1 | The parameters of Heston’s model along with their standard errors

obtained from the Fisher information matrix if we assume they were estimated from

the components of the VIX between October 16th 2003 until August 31st 2015.

Estimate Standard error

κ 5.07 4.0e− 2
√

θ 0.214 6.5e− 4

σ 0.48 9.4e− 4

ρ −0.767 7.5e− 4

FIGURE 9 | The relative error of the volatility estimate (blue line) and volatility

itself (transparent black line). If volatility drops below 3% (dashed, transparent

red line), option data yield little information about volatility.

and Kimmel [21] we obtain Table 1. Fitting the parameters
κ ,
√

θ , σ , and ρ on options over a sufficiently long time-window
yields fairly accurate estimates of them as well.

Overall, estimates of hidden volatility and the parameters
determining the stochastic process Equation (2.1) from option
data appear reliable. Doubts are shed on these results if relative
errors are considered instead of absolute ones. Figure 9 presents
the relative uncertainty left, that is, the time-series (βt/σt)t∈T .
Apparently, the uncertainty becomes overwhelming, if the
volatility drops. This is in accordance with the discussion in
the previous section where we observed that Vega drops if
volatility falls below a critical value. From the block structure
Equation (3.5) of the Fisher information matrix and the proof of
lemma 2.1 follows

[

J(2)−1
]

ii
≥ v̂

(∂σti
Ei)2

with Ei provided by Equation (3.6), and therefore

βti ≥
2
√
v̂

∂σti
Ei

for all i = 1, . . . ,m. Hence, there is a lower bound of the error of
the volatility σt proportional to the inverse of a sum of Vegas. If
this sum shrinks the error becomes large.
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FIGURE 10 | The time series (Kvar,t )t∈T . The close-up shows the graph along

with its 95% confidence region. The gray transparent line shows the historical

VIX.

FIGURE 11 | The time series (βt/Kvar,t )t∈T , i.e., the relative error of the VIX

estimate Kvar,t.

3.2.2. The VIX as Variance Swap
The VIX is quoted in percentage points and translates, roughly,
to the expected movement (with the assumption of a 68%
likelihood, i.e., one standard deviation) in the S&P 500 index
over the next 30-day period, which is then annualized. According
to Carr and Wu [23] the VIX can also be considered as 30 day
variance swap on the S&P 500. Recall Equation (2.1) that the
variance of the Heston model is driven by the CIR process

dvt = κ(θ − vt)dt + σ
√
vtdWt

and consequently, that the expected value of vt conditional on vs
(s < t) is

E[vt|vs] = vse
−κ(t−s) + θ

(

1− e−κ(t−s)
)

= (vs − θ)e−κ(t−s) + θ .

In the sequel, we make use of E[vt|vs] but with s = 0. It is useful
to denote this quantity as v̂t

v̂t = E[vt|v0] = (v0 − θ)e−κt + θ .

It is also useful to define the total (integrated) variance ŵt as

ŵt =
∫ t

0
vs ds = (v0 − θ)

1− e−κt

κ
+ θ t.

As explained by Gatheral [24], a variance swap requires an
estimate of the future variance over the (0,T) time period. This
can be obtained as the conditional expectation of the integrated
variance. A fair estimate of the total variance is therefore

E

[

∫ T

0
vtdt|v0

]

=
∫ T

0
E[vt|v0] dt

=
∫ T

0
(v0 − θ)e−κt + θ dt

= (v0 − θ)
1− e−κT

κ
+ θT

which is simply ŵT . Since this represents the total variance over
(0,T), it must be scaled by T in order to represent a fair estimate
of annual variance (assuming that T is expressed in years).
Hence, the strike variance K2

var for a variance swap is obtained
by dividing this last expression by T

K2
var = (v0 − θ)

1− e−κT

κT
+ θ .

Returning to Carr’s and Wu’s [23] interpretation of the VIX the
VIX-time series (VIXt)t∈T is the time-series

Kvar,t =

√

(vt − θ)
1− e−κT

κT
+ θ for t ∈ T

where (vt)t∈T denotes the variance of the S&P 500 at day t and
T = 30/365. Thus, Fisher information provides an uncertainty
estimate on the VIX, considered as 30 days variance swap,
estimated from its components, i.e., near- and next-term put and
call options with more than 23 days and less than 37 days to
expiration and non-vanishing bid. We only have to transform
the Fisher information matrix already computed in the previous
subsection according to the rules Equation (2.10). In terms of
Equation (2.10) in section 2.1 we have

3 = (Kvar,t)t∈T ⊕ (κ ,
√

θ , σ , ρ)

2 = (σt)t∈T ⊕ (κ ,
√

θ , σ , ρ)

and

J(3) = DTJ(2)D .

Hence, the transformation matrix D in Equation (2.10) adopts
the block form

D =
(

A11 A12

A21 A22

)

.
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A11 is anm×m diagonal matrix with entries

aii =
∂σti

∂Kvar,ti

= ∂σti

∂vti

∂vti
∂Kvar,ti

= 1

2σti

∂

∂Kvar,ti

(

(K2
var,ti

− θ)κT

1− e−κT
+ θ

)

= 1

σti

Kvar,tiκT

1− e−κT

for i = 1, . . . ,m where m is the number of trading days ti ∈
T from October 16th 2003 until August 31st 2015. A12 is an
m× 4-matrix with entries















∂σt0

∂κ

∂σt0

∂
√

θ
0 0

...
...

...
...

∂σtm

∂κ

∂σtm

∂
√

θ
0 0















where

∂σti

∂κ
= ∂σti

∂vti

∂vti
∂κ

=
(K2

var,ti
− θ)T

2σti

∂

∂κ

(

κ

1− e−κT

)

=
(K2

var,ti
− θ)T

2σti

1− (1+ κT)e−κT

(

1− e−κT
)2

∂σti

∂
√

θ
= ∂σti

∂vti

∂θ

∂
√

θ

∂vti
∂θ

=
√

θ

σti

(

1− κT

1− e−κT

)

.

Finally,A21 = AT
12 andA22 is the 4×4 identity matrix. Similar to

Figure 8 we plot Figure 10 the time-series (Kvar,t)t∈T along with
its 95% confidence region [Kvar,t − βt ,Kvar,t + βt] where

βti = 2
√

[

J(3)−1
]

ii
for i = 1, . . . ,m .

Furthermore, the historical VIX is plotted. The value Kvar,t is
systematically smaller than the realized VIX. This is most likely
due to the fact that the formulae for the realized VIX computes
implied volatilities using the Black-Scholes model whereas our
estimate is derived from the Heston model which can replicate
the volatility smile, i.e., does not systematically overestimate the
volatility of out of the money options.

As for the volatility the error is negligible and on average we
have

β̄ = 1

m

m
∑

i=0

βti = 8.9e− 04.

Compared to the volatility estimates from options there is big
difference if we consider the relative error, that is, the time-
series βt/Kvar,t for t ∈ T in Figure 11. The relative error never
exceeds 3%.

4. DISCUSSION

Here, we have addressed the question of how reliably volatility
can be estimated from option price data. To this end, we
computed the Fisher information matrix of Heston’s stochastic
volatility model. Thanks to the analytic tractability of Heston’s
model, the Fisher information can be expressed in Fourier
integrals giving the Heston Greeks.

Our investigations lead to the following insights: First,
volatility estimation from market data as exemplified on S&P
500 index options is reliable most of the time, with occasional
large relative errors for very low volatilities. Low volatilities are
hard to estimate as Vega almost vanishes in this case, making
it impossible to extract information from option prices. Second,
options at the money are most informative about volatility while
almost no information can be obtained from options that are
far out of the money. We might speculate that this could lead
to overconfident estimates of portfolio risk especially in times
of calm financial markets. Nevertheless, the VIX index itself,
reflecting the average volatility over the next month, proves to
be an accurate accessment of volatility.

Overall, this work complements our previous findings [12]
regarding the low information content of stock returns. There
we computed the mutual information between stock returns and
their hidden volatility for a wide class of stochastic volatility
models including Heston’s. Our results showed that in general
at least secondly quoted return data is necessary to infer
volatility with a precision comparable to the VIX quoted at
0.01%. We speculated that option price data could lead to much
more reliable volatility estimates as confirmed by the analysis
presented here.
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