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Many contemporary statistical learning methods assume a Euclidean feature space. This

paper presents a method for defining similarity based on hyperspherical geometry and

shows that it often improves the performance of support vector machine compared

to other competing similarity measures. Specifically, the idea of using heat diffusion

on a hypersphere to measure similarity has been previously proposed and tested by

Lafferty and Lebanon [1], demonstrating promising results based on a heuristic heat

kernel obtained from the zeroth order parametrix expansion; however, how well this

heuristic kernel agrees with the exact hyperspherical heat kernel remains unknown.

This paper presents a higher order parametrix expansion of the heat kernel on a unit

hypersphere and discusses several problems associated with this expansion method.

We then compare the heuristic kernel with an exact form of the heat kernel expressed

in terms of a uniformly and absolutely convergent series in high-dimensional angular

momentum eigenmodes. Being a natural measure of similarity between sample points

dwelling on a hypersphere, the exact kernel often shows superior performance in kernel

SVM classifications applied to text mining, tumor somatic mutation imputation, and stock

market analysis.

Keywords: heat kernel, support vector machine (SVM), hyperspherical geometry, document classification,

genomics, time series

1. INTRODUCTION

As the techniques for analyzing large data sets continue to grow, diverse quantitative sciences—
including computational biology, observation astronomy, and high energy physics—are becoming
increasingly data driven. Moreover, modern business decision making critically depends
on quantitative analyses such as community detection and consumer behavior prediction.
Consequently, statistical learning has become an indispensable tool for modern data analysis.
Data acquired from various experiments are usually organized into an n × m matrix, where the
number n of features typically far exceeds the number m of samples. In this view, the m samples,
corresponding to the columns of the data matrix, are naturally interpreted as points in a high-
dimensional feature space Rn. Traditional statistical modeling approaches often lose their power
when the feature dimension is high. To ameliorate this problem, Lafferty and Lebanon proposed a
multinomial interpretation of non-negative feature vectors and an accompanying transformation
of the multinomial simplex to a hypersphere, demonstrating that using the heat kernel on this
hypersphere may improve the performance of kernel support vector machine (SVM) [2–8]. Despite
the interest that this idea has attracted, only approximate heat kernel is known to date. We here
present an exact form of the heat kernel on a hypersphere of arbitrary dimension and study its
performance in kernel SVM classifications of text mining, genomic, and stock price data sets.
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To date, sparse data clouds have been extensively analyzed
in the flat Euclidean space endowed with the L2-norm using
traditional statistical learning algorithms, including KMeans,
hierarchical clustering, SVM, and neural network [2–8]; however,
the flat geometry of the Euclidean space often poses severe
challenges in clustering and classification problems when the
data clouds take non-trivial geometric shapes or class labels are
spatially mixed. Manifold learning and kernel-based embedding
methods attempt to address these challenges by estimating the
intrinsic geometry of a putative submanifold from which the data
points were sampled and by embedding the data into an abstract
Hilbert space using a nonlinear map implicitly induced by the
chosen kernel, respectively [9–11]. The geometry of these curved
spaces may then provide novel information about the structure
and organization of original data points.

Heat equation on the data submanifold or transformed
feature space offers an especially attractive idea of measuring
similarity between data points by using the physical model
of diffusion of relatedness (“heat”) on curved space, where
the diffusion process is driven by the intrinsic geometry of
the underlying space. Even though such diffusion process has
been successfully approximated as a discrete-time, discrete-space
random walk on complex networks, its continuous formulation
is rarely analytically solvable and usually requires complicated
asymptotic expansion techniques from differential geometry
[12]. An analytic solution, if available, would thus provide
a valuable opportunity for comparing its performance with
approximate asymptotic solutions and rigorously testing the
power of heat diffusion for geometric data analysis.

Given that a Riemannian manifold of dimension d is locally
homeomorphic to R

d, and that the heat kernel is a solution to
the heat equation with a point source initial condition, one may
assume in the short diffusion time limit (t ↓ 0) that most of
the heat is localized within the vicinity of the initial point and
that the heat kernel on a Riemannian manifold locally resembles
the Euclidean heat kernel. This idea forms the motivation behind
the parametrix expansion, where the heat kernel in curved
space is approximated as a product of the Euclidean heat kernel
in normal coordinates and an asymptotic series involving the
diffusion time and normal coordinates. In particular, for a unit
hypersphere, the parametrix expansion in the limit t ↓ 0 involves
a modified Euclidean heat kernel with the Euclidean distance ‖x‖
replaced by the geodesic arc length θ . Computing this parametrix
expansion is, however, technically challenging; even when the
computation is tractable, applying the approximation directly
to high-dimensional clustering and classification problems may
have limitations. For example, in order to be able to group
samples robustly, one needs the diffusion time t to be not too
small; otherwise, the sample relatedness may be highly localized
and decay too fast away from each sample. Moreover, the leading
order term in the asymptotic series is an increasing function
of θ and diverges as θ approaches π , yielding an incorrect
conclusion that two antipodal points are highly similar. For
these reasons, the machine learning community has been using
only the Euclidean diffusion term without the asymptotic series
correction; how this resulting kernel, called the parametrix kernel
[1], compares with the exact heat kernel on a hypersphere

remains an outstanding question, which is addressed in this
paper.

Analytically solving the diffusion equation on a Riemannian
manifold is challenging [12–14]. Unlike the discrete analogs—
such as spectral clustering [15] and diffusion map [16], where
eigenvectors of a finite dimensional matrix can be easily
obtained—the eigenfunctions of the Laplace operator on a
Riemannian manifold are usually intractable. Fortunately, the
high degree of symmetry of a hypersphere allows the explicit
construction of eigenfunctions, called hyperspherical harmonics,
via the projection of homogeneous polynomials [17, 18]. The
exact heat kernel is then obtained as a convergent power series
in these eigenfunctions. In this paper, we compare the analytic
behavior of this exact heat kernel with that of the parametrix
kernel and analyze their performance in classification.

2. RESULTS

The heat kernel is the fundamental solution to the heat equation
(∂t − 1x)u(x, t) = 0 with an initial point source [19], where 1x

is the Laplace operator; the amount of heat emanating from the
source that has diffused to a neighborhood during time t > 0 is
used to measure the similarity between the source and proximal
points. The heat conduction depends on the geometry of feature
space, and themain idea behind the application of hyperspherical
geometry to data analysis relies on the following map from a
non-negative feature space to a unit hypersphere:

Definition 1. A hyperspherical map ϕ :R
n
≥0 \ {0} → Sn−1 maps a

vector x, with xi ≥ 0 and
∑n

i=1 xi > 0, to a unit vector x̂ ∈ Sn−1

where (x̂)i ≡
√

xi/
∑n

j=1 xj.

We will henceforth denote the image of a feature vector x

under the hyperspherical map as x̂. The notion of neighborhood
requires a well-defined measurement of distance on the
hypersphere, which is naturally the great arc length—the geodesic
on a hypersphere. Both parametrix approximation and exact
solution employ the great arc length, which is related to the
following definition of cosine similarity:

Definition 2. The generic cosine similarity between two feature
vectors x, y ∈ R

n \ {0} is

cos θ ≡ x · y
‖x‖

∥

∥y
∥

∥

,

where ‖·‖ is the Euclidean L2-norm, and θ ∈ [0,π] is the great
arc length on Sn−1. For unit vectors x̂ = ϕ(x) and ŷ = ϕ(y)
obtained from non-negative feature vectors x, y ∈ R

n
≥0 \ {0} via

the hyperspherical map, the cosine similarity reduces to the dot
product cos θ = x̂ · ŷ; the non-negativity of x and y guarantees
that θ ∈ [0,π/2] in this case.

2.1. Parametrix Expansion
The parametrix kernel Kprx previously used in the literature is
just a Gaussian RBF function with θ = arccos x̂ · ŷ as the radial
distance [1]:
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Definition 3. The parametrix kernel is a non-negative function

Kprx(x̂, ŷ; t) = e−
arccos2 x̂·ŷ

4t = e−
θ2

4t ,

defined for t > 0 and attaining global maximum 1 at θ = 0.

Note that this kernel is assumed to be restricted to the positive

orthant. The normalization factor (4π t)−
n−1
2 is numerically

unstable as t ↓ 0 and complicates hyperparameter tuning; as
a global scaling factor of the kernel can be absorbed into the
misclassification C-parameter in SVM, this overall normalization
term is ignored in this paper. Importantly, the parametrix kernel
Kprx is merely the Gaussian multiplicative factor without any
asymptotic expansion terms in the full parametrix expansion
Gprx of the heat kernel on a hypersphere [1, 12], as described
below. The leading order term in the full parametrix expansion
was derived in Berger et al. [12] and quoted in Lafferty and
Lebanon [1]. For the sake of completeness, we include the details
here and also extend the calculation to higher order terms.

The Laplace operator on manifold M equiped with a
Riemannian metric gµν acts on a function f that depends only
on the geodesic distance r from a fixed point as

1f (r) = f ′′(r)+
(

log
√
g
)′
f ′(r), (1)

where g ≡ det(gµν) and
′ denotes the radial derivative. Due to

the nonvanishing metric derivative in Equation (1), the canonical
diffusion function

G(r, t) =
(

1

4π t

)
d
2

exp

(

− r2

4t

)

(2)

does not satisfy the heat equation; that is, (1 − ∂t)G(r, t) 6= 0
(Supplementary Material, section 2). For sufficiently small time
t and geodesic distance r, the parametrix expansion of the heat
kernel on a full hypersphere proposes an approximate solution

Kp(r, t) = G(r, t)
(

u0(r)+ u1(r)t + u2(r)t
2 + · · · + up(r)t

p
)

,

where the functions ui should be found such that Kp satisfies

the heat equation to order tp−d/2, which is small for t ≪ 1 and
p > d/2; more precisely, we seek ui such that

(1 − ∂t)Kp = G tp 1up. (3)

Taking the time derivative of Kp yields

∂tKp = G ·
[(

− d

2t
+ r2

4t2

)

(

u0 + u1t + u2t
2 + · · · + upt

p
)

+
(

u1 + 2u2t + · · · + pupt
p−1
)]

,

while the Laplacian of Kp is

1Kp =
(

u0 + u1t + · · · + upt
p
)

1G

+ G1
(

u0 + u1t + · · · + upt
p
)

+ 2G′ (u0 + u1t + · · · + upt
p
)′
.

One can easily compute

1G =
[(

− 1

2t
+ r2

4t2

)

− r

2t
(log

√
g)′
]

G

and

G′ (u0 + u1t + · · · )′ = − r

2t

(

u′0 + u′1t + · · ·
)

G.

The left-hand side of Equation (3) is thus equal to G multiplied
by

(

u0 + · · · + upt
p
)

[

− r

2t
(log

√
g)′ + d − 1

2t

]

+ 1
(

u0 + · · · + upt
p
)

+

− r

t

(

u′0 + · · · + u′pt
p
)

−
(

u1 + 2u2t + · · · + pupt
p−1
)

,

and we need to solve for ui such that all the coefficients of tq in
this expression, for q < p, vanish.

For q = −1, we need to solve

u0
r

2

[

−(log
√
g)′ + d − 1

r

]

= ru′0 ,

or equivalently,

(

log u0
)′ = −1

2
(log

√
g)′ + d − 1

2r
.

Integrating with respect to r yields

log u0 = −1

2

[

log
√
g − (d − 1) log r

]

+ const.,

where we implicitly take only the radial part of log
√
g. Thus, we

get

u0 = const.×
( √

g

rd−1

)− 1
2

∝
(

sin r

r

)− d−1
2

as the zeroth-order term in the parametrix expansion. Using this
expression of u0, the remaining terms become

r
[

(u1 + u2t + · · · ) (log u0)′ −
(

u′1 + u′2t + · · ·
)]

+

+ (1u0 + t1u1 + · · · ) − (u1 + 2u2t + · · · ) ,

and we obtain the recursion relation

uk+1(log u0)
′ − u′k+1 = −1uk − (k+ 1)uk+1

r
.

Algebraic manipulations show that

(log rk+1 − log u0 + log uk+1)
′uk+1 = r−11uk ,

from which we get

(

uk+1r
k+1

u0

)′

= r(k+1)−1u−1
0 1uk.
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Integrating this equation and rearranging terms, we finally get

uk+1 = r−(k+1)u0

∫ r

0
dr̃ r̃ku−1

0 1uk. (4)

Setting k = 0 in this recursion equation, we find the second
correction term to be

u1 = u0

r

∫ r

0
dr̃ u−1

0 1u0

= u0

r

∫ r

0
dr̃ u−1

0

(

u′′0 + u′0(log
√
g)′
)

.

From our previously obtained solution for u0, we find

u′0 =
1

2

(

d − 1

r
− g′

2g

)

u0,

and

u′′0 = 1

4

[

(d − 1)(d − 3)

r2
− g′(d − 1)

gr
− g′′

g
+ 5

4

(

g′

g

)2
]

u0.

Substituting these expressions into the recursion relation for u1
yields

u1 =
u0

4r

∫ r

0
dr

[

(d − 1)(d − 3)

r2
− g′′

g
+ 3

4

(

g′

g

)2
]

.

For the hypersphere Sd, where d ≡ n − 1 and g = const. ×
sin2(d−1) r, we have

g′

g
= 2(d − 1)

tan r

and

g′′

g
= 2(d − 1)

(

2d − 3

tan2 r
− 1

)

.

Thus,

u1 = u0

4r

∫ r

0
dr̃

[

(d − 1)(d − 3)

r̃2
− (d − 1)

(

d − 3

tan2 r̃
− 2

)]

= u0(d − 1)

4r2

[

3− d + (d − 1)r2 + (d − 3)r cot r
]

. (5)

Notice that u1(r) = 0 when d = 1 and u1(r) = u0(r) when d = 3.
For d = 2, u1/u0 is an increasing function in r and diverges to∞
at r = π . By contrast, for d > 3, u1/u0 is a decreasing function
in r and diverges to −∞ at r = π ; u1/u0 is relatively constant
for r < π and starts to decrease rapidly only near π . Therefore,
the first order correction is not able to remove the unphysical
behavior near r = 0 in high dimensions where, according to the
first order parametrix kernel, the surrounding area is hotter than
the heat source.

Next, we apply Equation (4) again to obtain u2 as

u2 = u0

r2

∫ r

0
dr̃ r̃u−1

0 1u1

= u0

r2

∫ r

0
dr̃ r̃u−1

0

(

u′′1 + u′1(log
√
g)′
)

.

After some cumbersome algebraic manipulations, we find

u2

u0
= d − 1

32

[

(d − 3)3 + (d − 3)(d − 5)(d − 7)

r4
− (d − 3)2(d − 5)

r3 tan r

+ 2(d − 1)2(d − 3)

r tan r
+ (d + 1)(d − 3)(d − 5)

r2 sin r

]

. (6)

Again, d = 1 and d = 3 are special dimensions, where u2(r) = 0
for d = 1, and u2(r) = u0/2 for d = 3; for other dimensions,
u2(r) is singular at both r = 0 and π . Note that on S1, the
metric in geodesic polar coordinate is g11 = 1, so all parametrix
expansion coefficients uk(r) must vanish identically, as we have
explicitly shown above.

Thus, the full Gprx defined on a hypersphere, where the
geodesic distance r is just the arc length θ , suffers from numerous

problems. The zeroth order correction term u0 = (sin θ/θ)−
n−2
2

diverges at θ = π ; this behavior is not a major problem if θ is
restricted to the range [0, π

2 ]. Moreover, Gprx is also unphysical
as θ ↓ 0 when (n − 2)t > 3; this condition on dimension and

time is obtained by expanding e−θ2/4t = 1 − θ2

4t + O(θ4) and

(sin θ/θ)−
n−2
2 = 1 + θ2

12 (n − 2) + O(θ3), and noting that the
leading order θ2 term in the product of the two factors is a non-
decreasing function of distance θ when n−2

12 ≥ 1
4t , corresponding

to the unphysical situation of nearby points being hotter than the
heat source itself. As the feature dimension n is typically very
large, the restriction (n − 2)t < 3 implies that we need to take
the diffusion time to be very small, thus making the similarity
measure captured by Gprx decay too fast away from each data
point for use in clustering applications. In this work, we further
computed the first and second order correction terms, denoted
u1 and u2 in Equations (5), (6), respectively. In high dimensions,
the divergence of u1/u0 and u2/u0 at θ = π is not a major
problem, as we expect the expansion to be valid only in the
vicinity θ ↓ 0; however, the divergence of u2/u0 at θ = 0 (to
−∞ in high dimensions) is pathological, and thus, we truncate
our approximation toO(t2). Since u1(θ) is not able to correct the
unphysical behavior of the parametrix kernel near θ = 0 in high
dimensions, we conclude that the parametrix approximation fails
in high dimensions. Hence, the only remaining part of Gprx still
applicable to SVM classification is the Gaussian factor, which
is clearly not a heat kernel on the hypersphere. The failure
of this perturbative expansion using the Euclidean heat kernel
as a starting point suggests that diffusion in R

d and Sd are
fundamentally different and that the exact hyperspherical heat
kernel derived from a non-perturbative approach will likely yield
better insights into the diffusion process.

2.2. Exact Hyperspherical Heat Kernel
By definition, the exact heat kernelGext(x̂, ŷ; t) is the fundamental
solution to heat equation ∂tu + L̂2u = 0 where −L̂2 is the
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hyperspherical Laplacian [13, 14, 19, 20]. In the language of
operator theory, Gext(x̂, ŷ; t) is an integral kernel, or Green’s
function, for the operator exp{−L̂2t} and has an associated
eigenfunction expansion. Because L̂2 and exp{−L̂2t} share the
same eigenfunctions, obtaining the eigenfunction expansion
of Gext(x̂, ŷ; t) amounts to solving for the complete basis
of eigenfunctions of L̂2. The spectral decomposition of the
Laplacian is in turn facilitated by embedding Sn−1 in R

n and
utilizing the global rotational symmetry of Sn−1 in R

n. The
Euclidean space harmonic functions, which are the solutions to
the Laplace equation ∇2u = 0 in R

n, can be projected to the
unit hypersphere Sn−1 through the usual separation of radial and
angular variables [17, 18]. In this formalism, the hyperspherical
Laplacian −L̂2 on Sn−1 naturally arises as the angular part of
the Euclidean Laplacian on R

n, and L̂2 can be interpreted as the
squared angular momentum operator in R

n [18].
The resulting eigenfunctions of L̂2 are known as the

hyperspherical harmonics and generalize the usual spherical
harmonics in R

3 to higher dimensions. Each hyperspherical
harmonic is equipped with a triplet of parameters or “quantum
numbers” (ℓ, {mi},α): the degree ℓ, magnetic quantum numbers
{mi} and α = n

2−1. In the eigenfunction expansion of exp{−L̂2t},
we use the addition theorem of hyperspherical harmonics to
sum over the magnetic quantum number {mi} and obtain the
following result:

Theorem 1. The exact hyperspherical heat kernel Gext(x̂, ŷ; t) can
be expanded as a uniformly and absolutely convergent power series

Gext(x̂, ŷ; t) =
∞
∑

ℓ=0

e−ℓ(ℓ+n−2)t 2ℓ + n− 2

n− 2

1

ASn−1
C

n
2−1

ℓ (x̂ · ŷ)

in the interval x̂ · ŷ ∈ [−1, 1] and for t > 0, where Cα
ℓ (w) are the

Gegenbauer polynomials and ASn−1 = 2π
n
2

Ŵ( n
2 )

is the surface area of

Sn−1. Since the kernel depends on x̂ and ŷ only through x̂ · ŷ, we
will write Gext(x̂, ŷ; t) = Gext(x̂ · ŷ; t).

A proof of similar expansions can be found in standard textbooks
on orthogonal polynomials and geometric analysis, e.g., [17]. For
the sake of completeness, we include a proof in Supplementary
Material section 2.5.3.

Note that the exact kernel Gext is a Mercer kernel re-expressed
by summing over the degenerate eigenstates indexed by {m}. As
before, we will rescale the kernel by self-similarity and define:

Definition 4. The exact kernel Kext(x̂, ŷ; t) is the exact heat kernel
normalized by self-similarity:

Kext(x̂, ŷ; t) = Gext(x̂ · ŷ; t)
Gext(1; t) ,

which is defined for t > 0, is non-negative, and attains global
maximum 1 at x̂ · ŷ = 1.

Note that unlike Kprx(x̂, ŷ; t), Kext(x̂, ŷ; t) explicitly depends on
the feature dimension n. In general, SVM kernel hyperparameter
tuning can be computationally costly for a data set with both high

feature dimension and large sample size. In particular, choosing
an appropriate diffusion time scale is an important challenge.
On the one hand, choosing a very large value of t will make
the series converge rapidly; but, then, all points will become
uniformly similar, and the kernel will not be very useful. On
the other hand, a too small value of t will make most data pairs
too dissimilar, again limiting the applicability of the kernel. In
practice, we thus need a guideline for a finite time scale at which
the degree of “self-relatedness” is not singular, but still larger
than the “relatedness” averaged over the whole hypersphere.
Examining the asymptotic behavior of the exact heat kernel in
high feature dimension n shows that an appropriate time scale is
t ∼ O(log n/n); in this regime the numerical sum in Theorem 1
satisfies a stopping condition at low orders in ℓ and the sample
points are in moderate diffusion proximity to each other so that
they can be accurately classified (SupplementaryMaterial, section
2.5.4).

Figure 1A illustrates the diffusion process captured by
our exact kernel Kext(x̂, ŷ; t) in three feature dimensions at
time t = t∗ log 3/3, for t∗ = 0.5, 1.0, 2.0. In Figure 1B,
we systematically compared the behavior of (1) dimension-
independent parametrix kernel Kprx at time t = 0.5, 1.0, 2.0 and
(2) exact kernelKext on Sn−1 at t = t∗ log n/n for t∗ = 0.5, 1.0, 2.0
and n = 3, 100, 200. By symmetry, the slope of Kext vanished at
the south pole θ = π for any time t and dimension n. In sharp
contrast, Kprx had a negative slope at θ = π , again highlighting
a singular behavior of the parametrix kernel. The “relatedness”
measured by Kext at the sweet spot t = log n/nwas finite over the
whole hypersphere with sufficient contrast between nearby and
far away points. Moreover, the characteristic behavior of Kext at
t = log n/n did not change significantly for different values of
the feature dimension n, confirming that the optimal t for many
classification applications will likely reside near the “sweet spot”
t = log n/n.

2.3. SVM Classifications
Linear SVM seeks a separating hyperplane that maximizes the
margin, i.e., the distance to the nearest data point. The primal
formulation of SVM attempts tominimize the norm of the weight
vector w that is normal to the separating hyperplane, subject to
either hard or soft margin constraints. In the so-called Lagrange
dual formulation of SVM, one applies the Representer Theorem
to rewrite the weight as a linear combination of data points; in
this set-up, the dot products of data points naturally appear, and
kernel SVM replaces the dot product operation with a chosen
kernel evaluation. The ultimate hope is that the data points will
become linearly separable in the new feature space implicitly
defined by the kernel.

We evaluated the performance of kernel SVM using the

1. linear kernel K lin(x, y) = x · y,
2. Gaussian RBF Krbf(x, y; γ ) = exp{−γ |x− y|2},
3. cosine kernel Kcos(x̂, ŷ) = x̂ · ŷ,
4. parametrix kernel Kprx(x̂, ŷ; t), and
5. exact kernel Kext(x̂, ŷ; t),

on two independent data sets: (1) WebKB data of websites
from four universities (WebKB-4-University) [21], and (2)
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FIGURE 1 | (A) Color maps of the exact kernel Kext on S2 at rescaled time t* = 0.5, 1.0, 2.0; the white paths are simulated random walks on S2 with the Monte Carlo

time approximately equal to t = t* log 3/3. (B) Plots of the parametrix kernel Kprx and exact kernel Kext on Sn−1, for n = 3, 100, 200, as functions of the geodesic

distance.

TABLE 1 | WebKB-4-University Document Classification.

mr lin (%) rbf (%) cos (%) prx (%) ext (%)

100 74.2 75.1 84.4 85.4 85.6

200 80.9 82.0 89.2 89.6 89.9

300 83.2 84.1 89.9 90.5 91.1

400 86.7 86.1 91.3 91.7 92.3

Performance test on four-class (student, faculty, course, and project) classification of

WebKB-4-University word count data with different number mr of representatives for each

class, for mr = 100, 200, 300, 400. The entries show the average of optimal 5-fold cross-

validation mean accuracy scores of five runs. The exact kernel (ext) reduced the error of

parametrix kernel (prx) by 1 ∼ 7% and the Gaussian RBF (rbf) by 41 ∼ 45%; the cosine

kernel (cos) also reduced the error of linear kernel (lin) by 34 ∼ 43%. The bold values

indicate the highest accuracy score in each row.

glioblastomamultiforme (GBM)mutation data from The Cancer
Genome Atlas (TCGA) with 5-fold cross-validations (CV)
(Supplementary Material, section 1). The WebKB-4-University
data contained 4,199 documents in total comprising four classes:
student (1,641), faculty (1,124), course (930), and project (504);
in our analysis, however, we selected an equal number of
representative samples from each class, so that the training and
testing sets had balanced classes. Table 1 shows the average
optimal prediction accuracy scores of the five kernels for a
varying number of representative samples, using 393 most
frequent word features (Supplementary Material, section 1). The
exact kernel outperformed the Gaussian RBF and parametrix
kernel, reducing the error by 41 ∼ 45% and by 1 ∼ 7%,
respectively. Changing the feature dimension did not affect the
performance much (Table 2).

In the TCGA-GBM data, there were 497 samples, and we
aimed to impute the mutation status of one gene—i.e., mutant

TABLE 2 | WebKB-4-University Document Classification.

n mr lin (%) rbf (%) cos (%) prx (%) ext (%)

393 400 86.73 86.27 91.57 91.99 92.44

726 400 86.78 86.95 92.62 92.91 93.00

1,023 400 85.56 86.11 92.62 92.74 92.91

1,312 400 85.78 86.75 92.56 92.81 93.03

Comparison of kernel SVMs on the WebKB-4-University data with a fixed sample size

mr , but varying feature dimension n. To account for the randomness in selecting the

representative samples using KMeans (Supplementary Material, section 1), we performed

fives runs of representative selection, and then performed CV using the training and test

sets obtained from each run. Finally, we averaged the five mean CV scores to assess the

performance of each classifier on the imbalancedWebKB-4-University data set. The exact

(ext) and cosine (cos) kernels outperformed the Gaussian RBF (rbf) and linear (lin) kernels

in various feature dimensions n = 393,726,1,023, and 1,312, with fixed and balanced

class size mr = 400. A word was selected as a feature if its total count was greater than

1/10, 1/20, 1/30 or 1/40 times the total number of web pages in the WebKB-4-University

data set, with the different thresholds corresponding to the different rows in the table. The

exact kernel reduced the errors of Gaussian RBF and parametrix kernels by 45∼ 48% and

1 ∼ 6%, respectively; the cosine kernel reduced the errors of linear kernel by 36 ∼ 49%.

The bold values indicate the highest accuracy score in each row.

or wild-type—from the mutation counts of other genes. For each
imputation target, we first counted the number mr of mutant
samples and then selected an equal number of wild-type samples
for 5-fold CV. Imputation tests were performed for top 102
imputable genes (Supplementary Material, section 1). Table 3
shows the average prediction accuracy scores for 5 biologically
interesting genes known to be important for cancer [22]:

1. ZMYM4 (mr = 33) is implicated in an antiapoptotic activity;
[23, 24];
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2. ADGRB3 (mr = 37) is a brain-specific angiogenesis inhibitor
[25–27];

3. NFX1 (mr = 42) is a repressor of hTERT transcription [28]
and is thought to regulate inflammatory response [29];

4. P2RX7 (mr = 48) encodes an ATP receptor which plays a key
role in restricting tumor growth and metastases [30–32];

5. COL1A2 (mr = 61) is overexpressed in the medulloblastoma
microenvironment and is a potential therapeutic target
[33–35].

For the remaining genes, the exact kernel generally outperformed
the linear, cosine and parametrix kernels (Figure 2). However,

TABLE 3 | TCGA-GBM Genotype Imputation.

lin (%) rbf (%) cos (%) prx (%) ext (%)

ZMYM4 82.9 84.0 83.6 84.1 85.1

ADGRB3 75.7 81.0 78.0 79.5 79.3

NFX1 73.0 81.2 80.9 82.7 82.5

P2RX7 79.2 84.1 85.0 84.0 85.0

COL1A2 68.4 70.5 72.9 73.9 74.2

Performance test on binary classification of mutant vs. wild-type in TCGA-GBM mutation

count data. The rows are different genes, the mutation statuses of which were imputed

using mr samples in each mutant and wild-type class. The entries show the average of

optimal 5-fold cross-validation mean accuracy scores of five runs. The bold values indicate

the highest accuracy score in each row.

even though the exact kernel dramatically outperformed the
Gaussian RBF in theWebKB-4-University classification problem,
the advantage of the exact kernel in this mutation analysis was
not evident (Figure 2). It is possible that the radial degree of
freedom

∑n
i=1 xi in this case, corresponding to the genome-wide

mutation load in each sample, contained important covariate
information not captured by the hyperspherical heat kernel.
The difference in accuracy between the hyperspherical kernels
(cos, prx, and ext) and the Euclidean kernels (lin and rbf) also
hinted some weak dependence on class size mr (Figure 2), or
equivalently the sample size m = 2mr. In fact, the level of
accuracy showed much stronger correlation with the “effective
sample size” m̃ related to the empirical Vapnik-Chervonenkis
(VC) dimension [4, 7, 36–38] of a kernel SVM classifier
(Figures 3A–E); moreover, the advantage of the exact kernel
over the Guassian RBF kernel grew with the effective sample
size ratio m̃cos/m̃lin (Figure 3F, Supplementary Material, section
2.5.5).

By construction, our definition of the hyperspherical map
exploits only the positive portion of the whole hypersphere,
where the parametrix and exact heat kernels seem to have similar
performances. However, if we allow the data set to assume
negative values, i.e., the feature space is the usual Rn\{0} instead
of Rn

≥0\{0}, then we may apply the usual projective map, where

each vector in the Euclidean space is normalized by its L2-
norm. As shown in Figure 1B, the parametrix kernel is singular

FIGURE 2 | Comparison of the classification accuracy of SVM using linear (lin), cosine (cos), Gaussian RBF (rbf), parametrix (prx), and exact (ext) kernels on TCGA

mutation count data. The plots show the ratio of accuracy scores for two different kernels. For visualization purpose, we excluded one gene with mr = 250. The ratios

rbf/lin, prx/cos, and ext/cos were essentially constant in class size mr and greater than 1; in other words, the Gaussian RBF (rbf) kernel outperformed the linear (lin)

kernel, while the exact (ext) and parametrix (prx) kernels outperformed the cosine (cos) kernel uniformly over all values of class size mr. However, the more negative

slope in the linear fit of cos/lin hints that the accuracy scores of cosine and linear kernels may depend on the class size mr; the exact kernel also tended to outperform

Gaussian RBF kernel when mr was small.
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FIGURE 3 | (A) A strong linear relation is seen between the VC-bound for cosine kernel µ∗ cos
VC

and class size mr. The dashed line marks y = x; the VC-bound for

linear kernel, however, was a constant µ∗lin
VC

= 439. (B–E) The scatter plots of accuracy scores for cosine (cos), linear (lin), exact (ext), and Gaussian RBF (rbf) kernels

vs. the effective sample size m̃ = 2mr/µ
∗
VC

; the accuracy scores of exact and cosine kernels increased with the effective sample size, whereas those of Gaussian RBF

and linear kernels tended to decrease with the effective sample size. (F) The ratio of ext vs. rbf accuracy scores is positively correlated with the ratio m̃cos/m̃lin of

effective sample sizes.

at θ = π and qualitatively deviates from the exact kernel for
large values of θ . Thus, when data points populate the whole
hypersphere, we expect to find more significant differences in
performance between the exact and parametrix kernels. For
example, Table 4 shows the kernel SVM classifications of 91
S&P500 Financials stocks against 64 Information Technology
stocks (m = 155) using their log-return instances between
January 5, 2015 and November 18, 2016 as features. As long as
the number of features was greater than sample size, n > m,
the exact kernel outperformed all other kernels and reduced the
error of Gaussian RBF by 29 ∼ 51% and that of parametrix kernel
by 17 ∼ 51%.

3. DISCUSSION

This paper has constructed the exact hyperspherical heat
kernel using the complete basis of high-dimensional angular
momentum eigenfunctions and tested its performance in kernel
SVM. We have shown that the exact kernel and cosine kernel,
both of which employ the hyperspherical maps, often outperform
the Gaussian RBF and linear kernels. The advantage of using
hyperspherical kernels likely arises from the hyperspherical
maps of feature space, and the exact kernel may further
improve the decision boundary flexibility of the raw cosine
kernel. To be specific, the hyperspherical maps remove the
less informative radial degree of freedom in a nonlinear

TABLE 4 | S&P500 Stock Classification.

n m lin (%) rbf (%) cos (%) prx (%) ext (%)

475 155 98.06 98.69 98.69 98.69 99.35

238 155 95.50 96.77 94.82 96.13 98.06

159 155 94.86 95.48 95.48 96.13 96.79

119 155 92.86 93.53 91.57 94.15 94.15

95 155 91.55 95.50 94.19 94.15 94.79

Classifications were performed on m = 155 stocks from S&P500 companies: 91 Financial

vs. 64 Information Technology. The 475 log-return instances between January 5, 2015

and November 18, 2016 were used as features. We uniformly subsampled the instances

to generate variations in the feature dimension n. Here, we report the mean 5-fold CV

accuracy score for each kernel. Although the two classes were slightly imbalanced, all

scores were much larger than the “random score” 91/155 ≈ 58.7%, calculated from the

majority class size and sample size. For n > m, the exact (ext) kernel outperformed all

other kernels and reduced the errors of Gaussian RBF (rbf) and parametrix (prx) kernels

by 29∼ 51% and 17∼ 51%, respectively. When n < m, the exact kernel started to lose its

advantage over the Gaussian RBF kernel. The bold values indicate the highest accuracy

score in each row.

fashion and compactify the Euclidean feature space into a
unit hypersphere where all data points may then be enclosed
within a finite radius. By contrast, our numerical estimations
using TCGA-GBM data show that for linear kernel SVM, the
margin M tends to be much smaller than the data range R in
order to accommodate the separation of strongly mixed data
points of different class labels; as a result, the ratio R/M was
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much larger than that for cosine kernel SVM. This insight
may be summarized by the fact that the upper bound on
the empirical VC-dimension of linear kernel SVM tends to
be much larger than that for cosine kernel SVM, especially
in high dimensions, suggesting that the cosine kernel SVM
is less sensitive to noise and more generalizable to unseen
data. The exact kernel is equipped with an additional tunable
hyperparameter, namely the diffusion time t, which adjusts the
curvature of nonlinear decision boundary and thus adds to the
advantage of hyperspherical maps. Moreover, the hyperspherical
kernels often have larger effective sample sizes than their
Euclidean counterparts and, thus, may be especially useful
for analyzing data with a small sample size in high feature
dimensions.

The failure of the parametrix expansion of heat kernel,
especially in dimensions n ≫ 3, signals a dramatic difference
between diffusion in a non-compact space and that on a compact
manifold. It remains to be examined how these differences
in diffusion process, random walk and topology between
non-compact Euclidean spaces and compact manifolds like a
hypersphere help improve clustering performance as supported
by the results of this paper.

AUTHOR CONTRIBUTIONS

JS conceived the project and supervised CZ who performed the
calculations and analyses. CZ and JS wrote the manuscript.

FUNDING

This research was supported by a Distinguished Scientist
Award from Sontag Foundation and the Grainger Engineering
Breakthroughs Initiative.

ACKNOWLEDGMENTS

We thank Alex Finnegan and Hu Jin for critical reading of
the manuscript and helpful comments. We also thank Mohith
Manjunath for his help with the TCGA data.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2018.00001/full#supplementary-material

REFERENCES

1. Lafferty J, Lebanon G. Diffusion kernels on statistical manifolds. J. Mach.

Learn. Res. (2005) 6:129–63.

2. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning.

Data Mining, Inference, and Prediction. Springer Science and Business

Media (2013). Available online at: http://books.google.com/books?id=

yPfZBwAAQBAJ&printsec=frontcover&dq=The+elelment+of+statistical+

learning&hl=&cd=4&source=gbs_api

3. Evgeniou T, Pontil M. Support vector machines: theory and applications. In:

Machine Learning and Its Applications. Berlin, Heidelberg: Springer (2001).

p. 249–57. Available online at: http://link.springer.com/10.1007/3-540-44673-

7_12

4. Boser BE, Guyon IM, Vapnik VN. A Training Algorithm for Optimal Margin

Classifiers. New York, NY: ACM (1992). Available online at: http://portal.acm.

org/citation.cfm?doid=130385.130401

5. Cortes C, Vapnik V. Support-vector networks.Mach Learn. (1995) 20:273–97.

doi: 10.1007/BF00994018

6. Freund Y, Schapire RE. Large margin classification using the perceptron

algorithm.Mach Learn. (1999) 37:277–96. doi: 10.1023/A:1007662407062

7. Guyon I, Boser B, Vapnik V. Automatic capacity tuning of very large VC-

dimension classifiers. In: Advances in Neural Information Processing Systems.

(1993). p. 147–55. Available online at: https://pdfs.semanticscholar.org/4c8e/

d38dff557e9c762836a8a80808c64a8dc76e.pdf

8. Kaufman L, Rousseeuw PJ. Finding groups in data. In: Kaufman L,

Rousseeuw PJ, editors. An Introduction to Cluster Analysis. Hoboken, NJ:

John Wiley & Sons (2009). Available online at: http://doi.wiley.com/10.1002/

9780470316801.

9. Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a Geometric

framework for learning from labeled and unlabeled examples. J Mach Learn

Res. (2006) 7:2399–434.

10. Aronszajn N. Theory of reproducing kernels. Trans Am Math Soc. (1950)

68:337. doi: 10.1090/S0002-9947-1950-0051437-7

11. Paulsen VI, Raghupathi M. An Introduction to the Theory of Reproducing

Kernel Hilbert Spaces (Cambridge Studies in Advanced Mathematics).

Cambridge University Press (2016). Available online at: http://books.google.

com/books?id=rEfGCwAAQBAJ&printsec=frontcover&dq=intitle:An+

introduction+to+the+theory+of+reproducing+kernel+Hilbert+spaces&hl=&

cd=1&source=gbs_api

12. Berger M, Gauduchon P, Mazet E. Le Spectre d’une Variété Riemannienne.

Springer (1971). Available online at: http://scholar.google.com/scholar?q=

related:bCbU4y_3CgsJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5

13. Hsu EP. Stochastic analysis on manifolds, Volume 38 of Graduate Studies in

Mathematics. American Mathematical Society (2002). Available online at:

http://scholar.google.com/scholar?q=related:r70JUPP2G14J:scholar.google.

com/&hl=en&num=20&as_sdt=0,5.

14. Varopoulos NT. Random Walks and Brownian Motion on Manifolds.

Symposia Mathematica (1987). Available online at: http://scholar.google.

com/scholar?q=related:oap-nC2spI8J:scholar.google.com/&hl=en&num=

20&as_sdt=0,5

15. Ng A, Jordan M, Weiss Y, Dietterich T, Becker S. Advances in Neural

Information Processing Systems, 14, Chapter On spectral clustering: analysis

and an algorithm (2002). Available online at: http://scholar.google.com/

scholar?q=related:N4YMyham6pUJ:scholar.google.com/&hl=en&num=20&

as_sdt=0,5

16. Coifman RR, Lafon S. Diffusion maps. Appl Comput Harmon Anal. (2006)

21:5–30. doi: 10.1016/j.acha.2006.04.006

17. Atkinson K, Han W. Spherical Harmonics and Approximations on the Unit

Sphere: An Introduction. Springer Science & Business Media (2012). Available

online at: http://books.google.com/books?id=RnZ8SMAb6T8C&printsec=

frontcover&dq=intitle:Spherical+harmonics+and+approximations+on+the+

unit+sphere+an+introduction&hl=&cd=1&source=gbs_api

18. Wen ZY, Avery J. Some properties of hyperspherical harmonics. J Math Phys.

(1985) 26:396–9. doi: 10.1063/1.526621

19. Stone M, Goldbart P. Mathematics for Physics: A Guided Tour for Graduate

Students. Cambridge: Cambridge University Press (2009). Cambridge

University Press. Available online at: http://ebooks.cambridge.org/ref/id/

CBO9780511627040

20. Grigor’yan A. Analytic and geometric background of recurrence and non-

explosion of the Brownian motion on Riemannian manifolds. Bull Am Math

Soc. (1999) 36:135–249. doi: 10.1090/S0273-0979-99-00776-4

21. Craven M, McCallum A, PiPasquo D, Mitchell T. Learning to extract

symbolic knowledge from the World Wide Web. In: Proceedings of the

National Conference on Artificial Intelligence. (1998). p. 509–16. Available

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 January 2018 | Volume 4 | Article 1

https://www.frontiersin.org/articles/10.3389/fams.2018.00001/full#supplementary-material
http://books.google.com/books?id=yPfZBwAAQBAJ&printsec=frontcover&dq=The+elelment+of+statistical+learning&hl=&cd=4&source=gbs_api
http://books.google.com/books?id=yPfZBwAAQBAJ&printsec=frontcover&dq=The+elelment+of+statistical+learning&hl=&cd=4&source=gbs_api
http://books.google.com/books?id=yPfZBwAAQBAJ&printsec=frontcover&dq=The+elelment+of+statistical+learning&hl=&cd=4&source=gbs_api
http://link.springer.com/10.1007/3-540-44673-7_12
http://link.springer.com/10.1007/3-540-44673-7_12
http://portal.acm.org/citation.cfm?doid=130385.130401
http://portal.acm.org/citation.cfm?doid=130385.130401
https://doi.org/10.1007/BF00994018
https://doi.org/10.1023/A:1007662407062
https://pdfs.semanticscholar.org/4c8e/d38dff557e9c762836a8a80808c64a8dc76e.pdf
https://pdfs.semanticscholar.org/4c8e/d38dff557e9c762836a8a80808c64a8dc76e.pdf
http://doi.wiley.com/10.1002/9780470316801
http://doi.wiley.com/10.1002/9780470316801
https://doi.org/10.1090/S0002-9947-1950-0051437-7
http://books.google.com/books?id=rEfGCwAAQBAJ&printsec=frontcover&dq=intitle:An+introduction+to+the+theory+of+reproducing+kernel+Hilbert+spaces&hl=&cd=1&source=gbs_api
http://books.google.com/books?id=rEfGCwAAQBAJ&printsec=frontcover&dq=intitle:An+introduction+to+the+theory+of+reproducing+kernel+Hilbert+spaces&hl=&cd=1&source=gbs_api
http://books.google.com/books?id=rEfGCwAAQBAJ&printsec=frontcover&dq=intitle:An+introduction+to+the+theory+of+reproducing+kernel+Hilbert+spaces&hl=&cd=1&source=gbs_api
http://books.google.com/books?id=rEfGCwAAQBAJ&printsec=frontcover&dq=intitle:An+introduction+to+the+theory+of+reproducing+kernel+Hilbert+spaces&hl=&cd=1&source=gbs_api
http://scholar.google.com/scholar?q=related:bCbU4y_3CgsJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:bCbU4y_3CgsJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:r70JUPP2G14J:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:r70JUPP2G14J:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:oap-nC2spI8J:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:oap-nC2spI8J:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:oap-nC2spI8J:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:N4YMyham6pUJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:N4YMyham6pUJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:N4YMyham6pUJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
https://doi.org/10.1016/j.acha.2006.04.006
http://books.google.com/books?id=RnZ8SMAb6T8C&printsec=frontcover&dq=intitle:Spherical+harmonics+and+approximations+on+the+unit+sphere+an+introduction&hl=&cd=1&source=gbs_api
http://books.google.com/books?id=RnZ8SMAb6T8C&printsec=frontcover&dq=intitle:Spherical+harmonics+and+approximations+on+the+unit+sphere+an+introduction&hl=&cd=1&source=gbs_api
http://books.google.com/books?id=RnZ8SMAb6T8C&printsec=frontcover&dq=intitle:Spherical+harmonics+and+approximations+on+the+unit+sphere+an+introduction&hl=&cd=1&source=gbs_api
https://doi.org/10.1063/1.526621
http://ebooks.cambridge.org/ref/id/CBO9780511627040
http://ebooks.cambridge.org/ref/id/CBO9780511627040
https://doi.org/10.1090/S0273-0979-99-00776-4
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Zhao and Song Exact Hyperspherical Kernel and Applications

online at: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&

identifier=ADA356047

22. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell

(2011) 144:646–74. doi: 10.1016/j.cell.2011.02.013

23. Smedley D. SHORT COMMUNICATION Cloning and Mapping of

Members of the MYM Family. (1999). Available online at: http://ac.els-

cdn.com/S0888754399959189/1-s2.0-S0888754399959189-main.pdf?_

tid=fd1183ce-9ae9-11e6-901c-00000aacb362&acdnat=1477424224_

0985e54b94244b55ec1558e901cb6211

24. Shchors K, Yehiely F, Kular RK, Kotlo KU, Brewer G, Deiss LP. Cell

death inhibiting RNA (CDIR) derived from a 3’-untranslated region binds

AUF1 and heat shock protein 27. J Biol Chem. (2002) 277:47061–72.

doi: 10.1074/jbc.M202272200

25. Zohrabian VM, Nandu H, Gulati N. Gene Expression Profiling of Metastatic

Brain Cancer. Oncology Reports. (2007) Available online at: https://www.

spandidos-publications.com/or/18/2/321/download

26. Kaur B, Brat DJ, Calkins CC, Van Meir EG. Brain angiogenesis

inhibitor 1 is differentially expressed in normal brain and glioblastoma

independently of p53 expression. Am J Pathol. (2010) 162:19–27.

doi: 10.1016/S0002-9440(10)63794-7

27. Hamann J, Aust G, Araç D, Engel FB, Formstone C, Fredriksson R,

et al. International union of basic and clinical pharmacology. XCIV.

adhesion G protein-coupled receptors. Pharmacol Rev. (2015) 67:338–67.

doi: 10.1124/pr.114.009647

28. Yamashita S, Fujii K, Zhao C, Takagi H, Katakura Y. Involvement of the NFX1-

repressor complex in PKC-δ-induced repression of hTERT transcription. J

Biochem. (2016) 160:309–13. doi: 10.1093/jb/mvw038

29. Song Z, Krishna S, Thanos D, Strominger JL, Ono SJ. A novel cysteine-rich

sequence-specific DNA-binding protein interacts with the conserved X-box

motif of the human major histocompatibility complex class II genes via a

repeated Cys-His domain and functions as a transcriptional repressor. J Exp

Med. (1994) 180:1763–74. doi: 10.1084/jem.180.5.1763

30. Adinolfi E, Capece M, Franceschini A, Falzoni S. Accelerated tumor

progression in mice lacking the ATP receptor P2X7. Cancer Res. (2015)

75:635–44. doi: 10.1158/0008-5472.CAN-14-1259

31. Gómez-Villafuertes R, García-Huerta P, Díaz-Hernández JI, Miras-Portugal

MT. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a

pro-survival factor of neuroblastoma cells under limiting growth conditions.

Nat Publ Group (2015) 5:1–15. doi: 10.1038/srep18417

32. Liñán-Rico A, Turco F, Ochoa-Cortes F, Harzman A, Needleman BJ,

Arsenescu R, et al. Molecular signaling and dysfunction of the human

reactive enteric glial cell phenotype. Inflam Bowel Dis. (2016) 22:1812–34.

doi: 10.1097/MIB.0000000000000854

33. Anderton JA, Lindsey JC. Global analysis of the medulloblastoma epigenome

identifies disease-subgroup-specific inactivation of COL1A2. Neuro Oncol.

(2008) 10:981–94. doi: 10.1215/15228517-2008-048

34. Liang Y, Diehn M, Bollen AW, Israel MA, Gupta N. Type I

collagen is overexpressed in medulloblastoma as a component

of tumor microenvironment. J Neuro Oncol. (2007) 86:133–41.

doi: 10.1007/s11060-007-9457-5

35. Schwalbe EC, Lindsey JC, Straughton D, Hogg TL, Cole M, Megahed H, et al.

Rapid diagnosis of medulloblastoma molecular subgroups. Clin Cancer Res.

(2011) 17:1883–1894. doi: 10.1158/1078-0432.CCR-10-2210

36. Vapnik VN. The Nature of Statistical Learning Theory. Springer Science &

Business Media (2013). Available online at: http://books.google.com/books?

id=EoDSBwAAQBAJ&printsec=frontcover&dq=intitle:The+nature+of+

statistical+learning+theory&hl=&cd=1&source=gbs_api

37. Vapnik V, Levin E, Le Cun Y. Measuring the VC-dimension of a learning

machine. Neural Comput. (1994) 6:851–76. doi: 10.1162/neco.1994.6.5.851

38. Paliouras G, Karkaletsis V, Spyropoulos CD. Machine Learning and Its

Applications. Springer (2003). Available online at: http://books.google.com/

books?id=pm5rCQAAQBAJ&pg=PR4&dq=intitle:Machine+learning+and+

its+applications+advanced+lectures&hl=&cd=1&source=gbs_api

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Zhao and Song. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 January 2018 | Volume 4 | Article 1

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA356047
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA356047
https://doi.org/10.1016/j.cell.2011.02.013
http://ac.els-cdn.com/S0888754399959189/1-s2.0-S0888754399959189-main.pdf?_tid=fd1183ce-9ae9-11e6-901c-00000aacb362&acdnat=1477424224_0985e54b94244b55ec1558e901cb6211
http://ac.els-cdn.com/S0888754399959189/1-s2.0-S0888754399959189-main.pdf?_tid=fd1183ce-9ae9-11e6-901c-00000aacb362&acdnat=1477424224_0985e54b94244b55ec1558e901cb6211
http://ac.els-cdn.com/S0888754399959189/1-s2.0-S0888754399959189-main.pdf?_tid=fd1183ce-9ae9-11e6-901c-00000aacb362&acdnat=1477424224_0985e54b94244b55ec1558e901cb6211
http://ac.els-cdn.com/S0888754399959189/1-s2.0-S0888754399959189-main.pdf?_tid=fd1183ce-9ae9-11e6-901c-00000aacb362&acdnat=1477424224_0985e54b94244b55ec1558e901cb6211
https://doi.org/10.1074/jbc.M202272200
https://www.spandidos-publications.com/or/18/2/321/download
https://www.spandidos-publications.com/or/18/2/321/download
https://doi.org/10.1016/S0002-9440(10)63794-7
https://doi.org/10.1124/pr.114.009647
https://doi.org/10.1093/jb/mvw038
https://doi.org/10.1084/jem.180.5.1763
https://doi.org/10.1158/0008-5472.CAN-14-1259
https://doi.org/10.1038/srep18417
https://doi.org/10.1097/MIB.0000000000000854
https://doi.org/10.1215/15228517-2008-048
https://doi.org/10.1007/s11060-007-9457-5
https://doi.org/10.1158/1078-0432.CCR-10-2210
http://books.google.com/books?id=EoDSBwAAQBAJ&printsec=frontcover&dq=intitle:The+nature+of+statistical+learning+theory&hl=&cd=1&source=gbs_api
http://books.google.com/books?id=EoDSBwAAQBAJ&printsec=frontcover&dq=intitle:The+nature+of+statistical+learning+theory&hl=&cd=1&source=gbs_api
http://books.google.com/books?id=EoDSBwAAQBAJ&printsec=frontcover&dq=intitle:The+nature+of+statistical+learning+theory&hl=&cd=1&source=gbs_api
https://doi.org/10.1162/neco.1994.6.5.851
http://books.google.com/books?id=pm5rCQAAQBAJ&pg=PR4&dq=intitle:Machine+learning+and+its+applications+advanced+lectures&hl=&cd=1&source=gbs_api
http://books.google.com/books?id=pm5rCQAAQBAJ&pg=PR4&dq=intitle:Machine+learning+and+its+applications+advanced+lectures&hl=&cd=1&source=gbs_api
http://books.google.com/books?id=pm5rCQAAQBAJ&pg=PR4&dq=intitle:Machine+learning+and+its+applications+advanced+lectures&hl=&cd=1&source=gbs_api
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Exact Heat Kernel on a Hypersphere and Its Applications in Kernel SVM
	1. Introduction
	2. Results
	2.1. Parametrix Expansion
	2.2. Exact Hyperspherical Heat Kernel
	2.3. SVM Classifications

	3. Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


