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An increasingly important problem in the era of Big Data is fitting data to distributions.

However, many stop at visually inspecting the fits or use the coefficient of determination

as a measure of the goodness of fit. In general, goodness-of-fit measures do not allow

us to tell which of several distributions fit the data best. Also, the likelihood of drawing

the data from a distribution can be low even when the fit is good. To overcome these

limitations, Clauset et al. advocated a three-step procedure for fitting any distribution: (i)

estimate parameter(s) accurately, (ii) choosing and calculating an appropriate goodness

of fit, (iii) test its significance to determine how likely this goodness of fit will appear in

samples of the distribution. When we perform this significance testing on exponential

distributions, we often obtain low significance values despite the fits being visually good.

This led to our realization that most fitting methods do not account for effects due

to the finite number of elements and the finite largest element. The former produces

sample size dependence in the goodness of fits and the latter introduces a bias in the

estimated parameter and the goodness of fit. We propose modifications to account for

both and show that these corrections improve the significance of the fits of both real

and simulated data. In addition, we used simulations and analytical approximations to

verify that convergence rate of the estimated parameters toward its true value depends

on how fast the largest element converge to infinity, and provide fast inversion formulas

to obtain p-values directly from the adjusted test statistics, in place of doing more Monte

Carlo simulations.

Keywords: significance testing, finite sample effects, curve fitting, maximum likelihood, p-test

1. INTRODUCTION

The current era of Big Data has ushered in a new way to look at Science—and that is letting the data
speak for itself. Because of this, we are now much more concerned about empirical distributions
than we have in the past, and to check what the empirical distributions could be in statistically
rigorous ways. In the past, many tests on empirical data were performed against the univariate
normal distribution [1]. Some of these tests focus on the goodness-of-fit of higher order moments
[2–4], while others compare the test statistics against an Empirical Distribution Function (EDF) [5–
8]. In 2011, Nornadiah and Yap performed a systematic comparison of Anderson-Darling (AD),
Lilliefors, Kolmogorov-Smirnov (KS), and Shapiro-Wilk (SW), using numerical simulations and
concluded that the SW test is the best, followed closely by the AD test for a given significance [9].
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Among these tests, the KS and Lilliefors tests can also be
applied to non-normal distributions. In fact, many real-world
data do not follow normal distributions. For instance, many
social systems are known to have power-law distributions [10].
These include the financial returns [11–14], word count [15, 16],
city size [17, 18], home price [19–21], wealth and income [22, 23]
distributions. One simple but naive way to detect a power law is to
plot the data in log-log scale, fit it to a straight line and determine
the goodness of fit. However, this simple method has three
major flaws: (i) many distributions (e.g., exponential, gamma,
log-normal) can also look straight in log-log plot, especially if
the range of data is small; (ii) the goodness of fit only quantifies
how well the fit is visually but does not tell us how plausible
the fit is; and (iii) if our data looks straight in both log-log
and semi-log plots, the goodness of fit values obtained from
the two cannot be directly compared since they were obtained
from plots of different scales. Clauset, Shalizi, and Newman
(CSN) address precisely these three points in their 2009 paper
[24], and the test they proposed is now considered by many
the gold standard in curve fitting. We shall describe the main
idea of the CSN technique in greater mathematical detail in
section 2.

Since the CSN test can be applied across distributions, we
also use it to fit data that appear exponentially distributed. On
many occasions, we discovered that the exponential fits look
good visually, but have significance values (p-value) much lower
than fits of other data to power laws, even though the latter
look visibly poorer. In fact, in the CSN paper where empirical
data is tested against a power law (PL), log-normal, exponential
(EXP), stretched exponential, and a power law with cut-off, the
exponential distribution consistently performs poorer than the
other distributions. This was also the case when Brzezinski tested
the upper-tail wealth data for China, Russia, US, and the World
using the CSN method [25]. In these papers, the data might
truly be non-exponentially distributed, so it is not surprising the
exponential fits fail. However, the low p-values for the visually
convincing exponential fits to our data suggest that something
fundamental was missed.

We realized there are two issues associated with fitting data
to distributions defined over (0,∞). First, there is the finite
largest element effect (FLE), due to the largest element in the
data being finite. Second, we also encounter the finite number
of elements effect (FNE), due to the sample size dependence
of the goodness-of-fit measures. These two finite sample effects
are well studied for Generalized Moment Methods (GMMs)
[26, 27] but often neglected in tests of statistical significance.
After describing the CSN test, we illustrate in section 2 the
FLE and FNE effects by applying the test to three real data
sets. With the insights gained, we designed both the estimators
and test statistic to account for the FLE and FNE effects in
section 3.1. Since real data is frequently polluted by noise, we
also discuss the impact of noise on the p-value, and propose
a test statistic that accounts for noise in section 4. Finally, in
section 5, we apply the adjusted test statistics on our real data sets
and compare the p-values obtained against those from the CSN
test.

2. REEXAMINING SIGNIFICANCE TESTING
FOR EMPIRICAL DISTRIBUTIONS

Sometimes we have reasons to believe that our large data
sets may be described by well known distributions, such as
the normal distribution, power law distribution, exponential
distribution, and so on, but with best-fit parameter values that
we need to determine. Commonly used methods to perform
parameter estimation include Maximum Likelihood Estimation
(MLE) [28], Maximum Entropy Method (MEM) [29–31], least
square regressions [32], and direct or indirect computation of
moments [33]. Since it is possible to fit any distribution to any
data set, we need to compute its goodness of fit, which can be the
KS distance [7], the coefficient of determination (R2) and other
forms of distance measure [34, 35].

In a recent statement, the American Statistical Association
warned the scientific community that the p-value “was never
intended to be a substitute for scientific reasoning” [36, para.
2], and outline six principles that can prevent its misuse
[37]. A Nature commentary on this statement also added that
“[r]esearchers should describe not only the data analyses that
produced statistically significant results, . . . , but all statistical tests
and choices made in calculations” [38, para. 3]. We heed the
warning in this paper, but argue that when properly computed
and interpreted, the p-value is useful in that it provides a
quantitative and objective alternative to visual inspection of the
fits. The latter is frequently subjective and biased. This utility
becomes important when we are comparing fits of two or more
data sets to two or more distributions, and have the ambiguity of
being able to choose from two or more definitions of goodness
of fit. This is why we need to go beyond the goodness of fits,
to establish how plausible different distributions are for different
data sets.

In 2009, Clauset, Shalizi, and Newman (CSN) did precisely
this by coming up with a p-test model that use the well-known
PL distribution as an illustration. They started by writing down
the probability density function for the PL distribution

fPL = α − 1

x1−α
min

x−α , (1)

for x ∈ [xmin,∞), with exponent α. The CSN p-test involves four
major steps:

CSN(i) MLE Estimation of α: Given an empirical data with
S observations, with the ordered statistic Y = {y1, y2, . . . , yS},
sorted such that yi ≤ yi+1, the CSN algorithm (CSN(ia))

first constructs the S subsets X(j) = {x(j)1 = yj, x
(j)
2 =

yj+1, . . . , x
(j)
N=S−j+1 = yS}. (CSN(ib)) For each X(j), we estimate

α(j) using the MLE method that maximizes the log-likelihood
function,

lnLPL = ln

[

N
∏

i=1

fPL
(

xi|α̂
)

]

= N ln

(

α̂ − 1

xmin

)

−α̂

N
∑

i=1

ln

(

xi

xmin

)

.

(2)
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Applying the maximizing condition ∂(lnL)
∂α

= 0 yields

α̂ = 1+
〈

ln
x

xmin

〉−1

, (3)

where the hat indicates an estimated parameter and 〈x〉 =
1
N

∑N
i=1 xi indicates the expectation value of the random

variable x.
CSN(ii) KS Distance: If X follows probability distribution

function fX with cumulative distribution function FX , then its
probability integral transform u = FX(x) is a standard uniform
distribution function (U(0, 1)). For any PL distributed sample
X = {x1 = xmin, x2, . . . , xN}with estimated α̂, we (CSN(iia)) first

transform the sample toU(s) = {u(s)i = FPL(xi|α̂)}Ni=1. (CSN(iib))
Then we calculate the KS distance

dKS = ∀Ni=1 sup

(∣

∣

∣

∣

ui −
i

N

∣

∣

∣

∣

)

(4)

between U(s) and U(0, 1). Here we make use of the fact that the
CDF of U(0, 1) is a linear function, FU(u) = u.

CSN(iii) Determining xmin: To determine xmin, (CSN(iiia))
we calculate the KS distance for each X(j) with its corresponding
α̂(j). (CSN(iiib)) The set X(j) that yields the lowest KS distance

(d
(em)
KS ) gives us x̂

(em)
min = yj and α̂(em) = α̂(j). The superscript

“(em)” indicates a parameter obtained from empirical data.

CSN(iv) Significance Testing: After α̂(em) and x̂
(em)
min have been

estimated from Y = {y1, y2, . . . , yS}, we test how plausible it is for

X = {x1 = x̂
(em)
min , x2, . . . , xN} ⊂ Y to be a sample taken from a PL

distribution. This is done by (CSN(iva)) sampling the PLM times

using α̂(em) and x̂
(em)
min . (CSN(ivb)) For the mth simulated sample

we go throughCSN(i) toCSN(iii) to obtain d
(m)
KS . (CSN(ivc)) The

significance measure

p = 1

M

M
∑

m=1

I{d(em)
KS <d

(m)
KS }, I{x} =

{

1 if x = True;
0 if x = False

(5)

is the fraction of simulated samples whose fits are poorer than
that of the data.

Extending the CSN method to other distributions, we
performed p-testing on the Taiwan home price per square foot
(fitted to EXP), Taiwan income (fitted to EXP), and the Straits
Times Index normalized return (fitted to PL) (see Supplementary
Information section 3 for more descriptions on the data sets).
The fits and p-values are shown in Figure 1. All fits are visually
good yet only the p-value for the Taiwan housing is appreciable.
We realized the reason for this is simple: while the EXP and PL
distributions are defined over (0,∞), when we collect data from
the real world we can only obtain a finite number of elements.
Moreover, the largest element in the data is finite. However,
existing tests for statistical significance generally do not account
for the effects produced by having a finite number of elements
(FNE) and a finite largest element (FLE). In the next section we
will explain how the parameters and test statistics can be adjusted
for FNE and FLE.

At this stage, we might wonder whether the Taiwan income
data would have been better fitted to a truncated EXP (TEXP)
distribution

f truncEXP (x) = β exp[−β(x− xmin)]

1− exp[−β(xmax − xmin)]
, (6)

since it is obtained by removing the power-law tail. The Taiwan
home price per square foot data was also truncated, but for a
different reason: the small number of largest elements are clearly
outliers that would not fit the EXP distribution. Ideally, we should
be using untruncated data, like the Straits Times Index data,
to illustrate the method that we will describe in the following
sections. In the rest of the paper, we will use all three data sets as if
they were untruncated, to illustrate how well our method works
on different data types. To do so, we will compare the adjusted
parameter and test statistic against the unadjusted parameter and
test statistic meant for the untruncated EXP distribution.

3. FINITE-SAMPLE ADJUSTMENTS

3.1. Parameter Adjustment for Finite
Largest Element
Here, we will illustrate the effects of FLE using an asymptotic EXP
distribution. The same discussion can be generalized to other
distributions (see Supplementary Information section 1).

The EXP distribution is defined as

fEXP (x) = β exp [−β (x− xmin)] , (7)

with β as a sole parameter for x ∈ [xmin,∞). Maximizing the
likelihood function L =

∏N
i=1 P(X = xi|xmin, β̂), we find the

estimated parameter

β̂ = 1

〈x〉 − xmin
. (8)

If we use the mean obtained from data 〈x〉data as 〈x〉 in Equation
(8) we will obtain the unadjusted estimator βunadj. However, due
to the FLE, we can only average up till xmax. As such 〈x〉data will
be biased downwards and Equation (8) over-estimates β̂ .

To adjust for the FLE, we add the truncated part back into
〈x〉data, to define the adjusted 〈x〉adj as

〈x〉adj = 〈x〉data
∫ xmax

xmin

fEXP (x) dx+
∫ ∞

xmax

xfEXP (x) dx.

= 〈x〉data
{

1− exp [−β (xmax − xmin)]
}

+ exp [−β (xmax − xmin)]

β
[βxmax + 1] .

(9)

Inserting 〈x〉adj into Equation (8), we obtain a nonlinear equation
[

β̂adj (xmax − 〈x〉data) + 1
]

exp
[

−β̂adj (xmax − xmin)

]

+ β̂adj (〈x〉data − xmin) − 1 = 0 (10)

that we solve using MATLAB’s builtin nonlinear solver function
nlinfit() to obtain β̂adj.
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FIGURE 1 | p-testing on (A) 2012–2014 Taiwan home price per square foot, (B) 2012 Taiwan lower-tail income (fitted to EXP), and (C) 2009–2016 Straits Times Index

normalized return (fitted to PL). For each plot, N represents the number of data points (larger than xmin) fitted. the black dots represent empirical data while the blue

dashed line represents the fit. All fits are visually good, yet only the p-value (PKS in percentage) for Taiwan home price is appreciable.

To test the performance of this adjustment formula, we
simulated 1, 000 sets of EXP distributed data for 10−4 ≤
βT ≤ 102, by using the inverse cumulative function for EXP
distribution

F−1
EXP(u,βT) = xmin −

1

βT
ln(1− u). (11)

This transforms U(0, 1) distributed elements {ui} to EXP
distributed elements {xi}. Using this transformation F−1

EXP, 0 and
1 map to xmin and ∞ respectively. It is also useful to note that
Equation (11) is the inverse of the CDF of the EXP distribution,

FEXP(x,βT) = 1− exp [β (xmin − x)] . (12)

To simulate the effect of a FLE with xmax = F−1
EXP(0.9), we

sampled 1,000 sets of EXP distributed data usingU(0, 0.9) instead
of U(0, 1) with xmin = 0. Thereafter, we estimated β̂unadj and

β̂adj using Equations (8) and (10). Figure 2 shows the relative
estimation errors

1β̂ =

√

〈
(

β̂ − βT

)2
〉

βT
(13)

of β̂unadj and β̂adj with respect to the true beta βT . As we can

see from the Figure 2, 1β̂unadj is about 38% for small samples

N ∼ 102 and decreases to 34% for large samples N ∼ 104. On
the other hand, 1β̂adj starts at 20%, but decreases to 2% as the
number of data points is increased. Although it can be shown that
the bias of β̂unadj vanishes with increasing sample sizes [24, 39],
we find it converging very slowly with increasing sample size
in the unfortunate situation of a small xmax. In contrast, β̂adj

converges very quickly even for small xmax as we have accounted
for the FLE.

In the Supplementary Information section 1, we show details
for our derivation of the theoretical estimation

βunadj ≈ βT + βT [βTxmax + 1] exp
(

−βT(xmax − xmin)
)

+O
{

(βTxmax+1)2 exp
(

−2βT(xmax − xmin)
)}

. (14)

By defining xmax = xmin − β−1
T ln(δ), and substitute xmax in

Equation (14) with δ, the theoretical relative estimation error is
expressed as

1βunadj = δ
[

1− ln(δ)+ βTxmin

]

, δ ∈ [0, 1]. (15)

Equation (15) shows that the estimation error has no explicit
dependence on sample size. This tells us that the β̂unadj is always
larger than the βT because of the FLE effect. The convergence
rate then depends on how rapidly xmax approaches infinity (δ
approaches zero) with increasing sample size.

3.2. Test Statistic Adjustment for FLE
For a finite sample, FEXP(x) < 1 for all x < ∞. Mathematically,
this means that FEXP(x) ∼ U(0, 1 − δ), where F−1

EXP(xmax) =
1 − δ. This observation is important, because dKS is obtained by

comparing U(s) = {u(s)i = FEXP(xi|β̂)}Ni=1 against U(0, 1) (see
Equation 4). This tell us that for a fair comparison, we need to
rescale all elements inU(s) by a factor of 1/(1−δ). Figure 3 shows
the dKS measured for the 1000 sets of EXP distributed data with
finite largest element xmax = F−1(0.9) for various βT and sample
sizes N. For each sample, we use Equation (10) to estimate the
β̂adj and transformed this data to U(s) using Equation (12). After
that, we measure dKS with Equation (4) to obtain unadjusted KS
distance, KSunadj and adjusted KS distance, KSadj using the non-

rescaled and rescaled U(s), respectively. KSunadj goes from 0.14

for small samples N ∼ 102, to 0.10 for large samples N ∼ 105. In
contrast, KSadj decrease from 0.06 for small samples to 0.006 for
large samples.
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FIGURE 2 | Relative estimation errors of (A) β̂unadj and (B) β̂adj measured from 1,000 simulated samples using different βT and N with xmin = 0 and

xmax = F−1
EXP

(0.9). Due to the FLE, 1βunadj remains high (close to the theoretical relative error of ǫ(δ = 0.1, xmin = 0) = 0.1 [1− ln(0.1)] ≈ 33%) even for large N. In

contrast, 1βadj decreases rapidly with increasing N.

FIGURE 3 | The median KS distances for (A) KSunadj and (B) KSadj measured from 1,000 simulated samples using different βT and N. The xmin is set to 0 and

xmax = F−1
EXP

(0.9). Because of the FLE, KSunadj remains above δ = 0.10 while KSadj converges to zero for large N.

3.3. Adjustment for Finite Number of
Elements
Until now, we have only discussed adjustments to the estimated
parameter and the KS distance to eliminate the bias caused by

the FLE. Besides the FLE effect, we also need to consider the bias

caused by having a finite number of elements in the sample. As we

can see from Figure 3, the KS distance decreases as the sample

size increases. Therefore, in order to have a fair comparison of
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the goodness of fit for various sample sizes, we need to determine
how dKS changes as a function of N. To do this, we simulated
106 samples of various sizes N from U(0, 1). For each sample we
determined dKS using Equation (4), so that for each N we end up
with 106 KS distances. In Figure 4 we show the KS distances at
different deciles, which exhibits the asymptotic behavior

dKS(℘KS,N) =

(

100
℘KS

− 1
)−0.176

exp(−0.274)

N0.492
, N > 50 (16)

that we settled for, after experimenting with several functional
forms (see Supplementary Information section 2). This result
agrees with our expectation that dKS → 0 as N → ∞. It
also suggests that if we have two samples with sizes N1 and N2

from the same distribution, we should compareN0.492
1 d

(1)
KS against

N0.492
2 d

(2)
KS . Otherwise, if N2 > N1 then naturally d

(2)
KS < d

(1)
KS and

we will be lead to the wrong conclusion that the N2 sample fits
the distribution better.

In this section, we presented explicitly the procedures to
obtain the adjusted parameter, as well as the steps to perform
significance testing on this estimated parameter. Although we
demonstrated this explicitly using the EXP distribution as an
example, one should note that this method can also be applied
to other distributions. The inclusion of xmax when fitting
empirical data have been previously considered by [40–42] for
the truncated PL distribution. Like these, the method presented
in this paper can be easily extended to fit different distributions,
but unlike these, we can easily conduct significance testing across
them. This is because by extending xmax to infinity, we can
compute the probability integral transform to map arbitrary
distributions to the standard uniform distribution, and ensure
that during statistical significance testing our goodness-of-fit
measure can be distribution independent [see CSN(ii)].

More importantly, fitting data to untruncated distributions
defined over [xmin,∞) is commonly encountered in practice,
where no xmax is expected from theoretical considerations,
but the largest element in our data is finite. If we fit to the
truncated versions of the distributions, we might get better
estimates of the distribution parameters, but we will not be
able to justify inserting these estimates into the untruncated
distributions, in the absence of a limiting procedure involving
larger and larger xmax. Moreover, when researchers expect to
be dealing with the untruncated distribution, they will not use
the truncated distribution for estimation. In contrast, our self-
consistent adjustment procedure would be ontologically easier to
justify.

4. THE EFFECTS OF RANDOM NOISE

Besides having to work with finite samples and finite largest
elements, we will also in practice encounter imperfections
while collecting samples for various reasons, such as undetected
samples, contamination by background noise, and recording
errors. We call such noises that occur at the element level
elementary noise. When we convert these samples to a
distribution, noise will also be present at the distribution

level that we refer to as distribution noise. In principle the
information at the distribution level is more robust compared to
the elementary level, as we expect random and thus uncorrelated
noise to cancel each other. This means that the distribution is
less sensitive to elementary noise, but we still worry whether
the distribution noise may play an important role in our test
of statistical significance. In order to account for the effects of
distribution noise, we need to first be able to quantify distribution
noise, and thereafter understand how it affects significance
testing.

Suppose we now randomly generate a set of EXP data. After
adjusting for FLE, we obtained the distribution parameters and

use it to transform this set to U(s) = {u(s)i = FEXP(xi|β̂)}Ni=1
following the procedure outlined in section 3.1. Then as
illustrated in Figures 5A–C, a natural way to measure the
distribution noise is to plot the histogram, count the frequency
for each bin, and compare it to the expected frequency from
U(0, 1). Since this can be more accurately done for smaller bin
sizes, we use the intervals between sorted elements as a collection
of non-uniform bins, as shown in Figures 5D–F. For a data set
consisting of N elements, each bin carry a weight of 1/N, evenly
distributed within the interval (ui−1, ui], such that the probability
density is

f (ui−1, ui) =
1
N

ui − ui−1
. (17)

As the theoretical probability density for U(0, 1) is 1, we define
the distribution noise dDN mathematically to be

dDN =

√

√

√

√

∑N
i=1 (ui − ui−1)

2
[

f (ui−1, ui)− 1
]2

∑N
i=1 (ui − ui−1)

2

=

√

√

√

√

√

∑N
i=1 (ui − ui−1)

2
(

1
N(ui−ui−1)

− 1
)2

∑N
i=1 (ui − ui−1)

2
, (18)

where u0 = 0 and uN = 1. We need to weigh the deviation of
each bin by (ui − ui−1)

2 because the bins are non-uniform, and
also to keep dDN finite.

4.1. Relation between Distribution Noise
and Sample Size
As with section 3.3, we simulated 106 samples from U(0, 1) with
different N. For each sample, we calculate the distribution noise
dDN using Equation (18) and plot its deciles against N as shown
in Figure 6. After experimenting with several functional forms,
we write down the relationship between dDN and N at percentile
℘DN as

dDN(℘DN ,N) = 〈dDN〉+8(℘DN−50)
exp

(

− [50−|℘DN−50|]0.430
|℘DN−50|0.302

)

N0.495
,

(19)
where 8(x) represents the sign of x, and

〈dDN〉 =
√

1

2
+ 2− N

2N2

(

N

N + 0.5

)

(20)
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FIGURE 4 | Log-log plot of dKS against N for different deciles going from the 10th percentile (blue) to the 90th (red), obtained from 106 simulations.

FIGURE 5 | Illustration of the distribution noise we would measure if we sample 10 elements from U(0, 1), rescaled such that the largest element becomes 1. In (A,C)

we use 5 uniform bins whereas in (D,F) we use the intervals between sorted elements as the bins. Counts are shown as (A,D), and frequencies are shown as (B,E).

Whereas the probability densities calculated using Equation (17) are shown on the as (C,F).

is the analytically derived distribution noise, that converges to
1/
√
2 as N → ∞ (refer to Supplementary Information section 2

for more details). This result suggests that if we have two samples
with sizes N1 and N2 with N2 > N1 from the same distribution,
we should compare N0.495

1 (d
(1)
DN − 1/

√
2) against N0.495

2 (d
(2)
DN −

1/
√
2). Otherwise, we risk making the wrong conclusion that the

N2 sample fits the distribution better if d
(1)
DN > d

(2)
DN .

4.2. Relationship between Distribution
Noise and KS Distance
As measures for statistical deviations, dDN and dKS are different
in that dDN measures deviation at the probability density level,

whereas the dKS measure it at the cumulative density level. As

a result, dKS assigns more weight to the tail of the distribution,

while dDN is more sensitive to deviations in the body of the

distribution. Therefore, if we wish to combine these twomeasures

to estimate the significance level, we need to first investigate the

relationship between dKS and dDN . We do this by simulating
106 samples from U(0, 1) for various sample sizes, and for each
sample, we calculate dKS and dDN using Equations (4) and

(18) respectively, to obtain 106 pairs of dKS and dDN . We then
compute the Pearson correlation between dKS and dDN and

learned that (see Supplementary Information section 2 for the

comparison of fits)
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FIGURE 6 | Relationship between distribution noise dDN and sample size N at deciles going from the 10th percentile (blue) to the 90th (red), obtained from 106

simulations. The dDN value converges to 1/
√
2 as N increases.

ρdKS ,dDN (N) = e

N0.481
. (21)

As expected, dKS is positively correlated with dDN . Since dKS is a
measure at the cumulative level, the random distribution noises
cancel each other, thus the correlation between dKS and dDN
vanishes as N → ∞.

5. APPLICATION TO SIGNIFICANCE
TESTING

5.1. Significance Level for a Given
Distribution
To perform significance testing given dKS and dDN , we need the
percentile values ℘KS and ℘DN . ℘KS can be obtained by inverting
Equation (16), as

℘KS(dKS,N) = 100
(

1+
(

dKSN0.492 exp(0.274)
)− 1

0.176

)
. (22)

Similarly, we invert Equation (19), and solve

℘0.430
DN + (50− ℘DN)

0.302 ln(|η|N0.495) = 0, η < 0

℘DN − 50 = 0, η = 0

(100− ℘DN)
0.430 + (℘DN − 50)0.302 ln(|η|N0.495) = 0, η > 0

(23)
to get ℘DN , where η = dDN − 〈dDN〉.

Substituting the empirical KS distance d
(em)
KS and empirical

distribution noise d
(em)
DN into Equations (22) and (23), we obtain

℘
(em)
KS and ℘

(em)
DN . This is an alternative way of obtaining the p-

value without the need to perform Monte-Carlo (re)sampling
again (CSN method), since we have already done so in

sections 3 and 4. The percentage of simulated U(0, 1) samples

with dKS/DN > d
(em)
KS/DN is 100 − ℘

(em)
KS/DN . Since dKS and

dDN are not independent (Equation 21), we discount the
correlation between dKS and dDN , and define the significance level
(p-value) as

p(℘KS,℘DN ,N) =
√

(

1− ℘KS

100

) (

1− ℘DN

100

) (

1− e

N0.481

)

,

(24)
to avoid overestimating the significance level.

5.2. Fitting to Empirical Data
We follow the steps outlined in the CSN algorithm (section 2)
to fit the empirical data, but with two important modifications:
(Ii) the parameters (CSN(ib)) and goodness of fit (CSN(iib))
are adjusted for the finite largest element; and (Iii) the p-
value (CSN(ivc)) is adjusted for the finite number of elements
effect. Meanwhile, optional modifications are (Oi) to incorporate
distribution noise as another dimension for goodness of fit, so

that the p-value can be determined via d
(em)
KS , d

(em)
DN , or both; (Oii)

instead of using bootstrapping to determine the p-value in the
CSN method, which is very slow for large samples, one can use
the fast inversion formulae Equations (22), (23), or (24).

Figure 7 shows the fits and p-testing results for Taiwan
housing price, Taiwan wealth, and Straits Times Index
normalized returns. It is reassuring that after modifications
the p-values of all distributions increased. In particular, the two
distributions (Figures 7B,C) that did not meet the p > 0.1
criterion (as suggested by Clauset et al. [24]) before modification,
now have p > 0.5. This is in agreement with our visual
assessment of the three fits. We also understand now that a
large δ (small xmax) is the main reason for Taiwan wealth to fail
p-testing before adjustment (although the fit is visually good).
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FIGURE 7 | p-testing results for (A) 2012–2014 Taiwan home price per square foot (fitted to EXP), (B) 2012 Taiwan lower-tail income (fitted to EXP), and (C)

2009–2016 Straits Times Index normalized return (fitted to PL) before and after finite-sample adjustments. In this figure, the N represent the number of fitted data, and

the empirical CDF that is adjusted for FLE is shown as black dots, while the unadjusted and adjusted fits are shown as blue and red dashed line respectively.

PKS/DN-values (in percentage) are for unadjusted (blue) and adjusted (red) fits. We separate the p-values obtained using the CSN method (left) from those using

Equations (22) or (23) (right) by a “/”.

In general, our correction formulas perform the best when δ

is large due to small sample sizes or truncations. Readers can
refer to Supplementary Information section 4 for more plots
and instances where small δ values affects the significance
testing.

There are several limitations one should note while obtaining
PKS/DN using Equations (22) or (23). First, it is only applicable
to large samples (see Figures 4, 6). Second, these equations
are obtained after experimenting with several functional forms
and are only approximate. Lastly, pKS measured using the CSN
method are consistently smaller than that based on Equation
(22). This is due to the CSN algorithm having an extra step to
select xmin that minimizes dKS of each simulated sample, and
thus the algorithm is stricter than our fast inversion formulae.
However, the inversion formulae Equations (22) and (23) are
convenient and provide an upper bound for PKS/DN . We make
the codes for the procedures used in parameter estimation and
significance testing available at https://github.com/BoonKinTeh/
StatisticalSignificanceTesting for both these two methods, but
leave it to the reader to decide which method to use.

All in all, when we test for statistical significance, we need
to be aware of finite sample effects, namely the finite largest
element effect and the finite number of elements effect. Beyond
the KS distance measured at the cumulative distribution level,
we also introduce an alternative measure of the goodness of

fit based on the distribution noise at the probability density
level.
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