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Ellsberg paradox in decision theory posits that people will inevitably choose a known

probability of winning over an unknown probability of winning even if the known probability

is low [1]. One of the prevailing theories that addresses the Ellsberg paradox is known as

“ambiguity-aversion.” In this study, we investigated the properties of ambiguity-aversion

in four distinct types of reinforcement learning algorithms: ucb1-tuned [2], modified

ucb1-tuned, softmax [3], and tug-of-war [4, 5]. We took the following scenario as our

sample, in which there were two slot machines and each machine dispenses a coin

according to a probability that is generated by its own probability density function

(PDF). We then investigated the choices of a learning algorithm in such multi-armed

bandit tasks. There were different reactions in multi-armed bandit tasks, depending

on the ambiguity-preference in the learning algorithms. Notably, we discovered a clear

performance enhancement related to ambiguity-preference in a learning algorithm.

Although this study does not directly address the issue of ambiguity-aversion theory

highlighted in Ellsberg paradox, the differences among different learning algorithms

suggest that there is room for further study regarding the Ellsberg paradox and the

decision theory.

Keywords: decision making, Ellsberg paradox, ambiguity aversion, reinforcement learning, machine learning,

artificial intelligence, natural computing, neuroeconomics

1. INTRODUCTION

Recently, neuroeconomics has been developing into an increasingly important academic discipline
that helps to explain human behavior. Ellsberg paradox is a crucial topic in neuroeconomics, and
researchers have employed various theories to approach and to resolve the paradox. The basic
concept behind the Ellsberg paradox is that people will always choose a known probability of
winning over an unknown probability of winning, even if the known probability is low and the
unknown probability could be a near guarantee of winning.

Let us start with an example. Suppose we have an urn that contains 30 red balls and 60 other
balls that are either black or yellow. We do not know how many black or yellow balls are there, but
we know that the total number of black balls plus the total number of yellow balls equals 60. The
balls are well mixed so that each individual ball is as likely to be drawn as any other.
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You are now given a choice between two gambles:

[Gamble A] You receive $100 if you draw a red ball,
[Gamble B] You receive $100 if you draw a black ball.

In addition, you are given the choice between these two gambles
(about a different draw from the same urn):

[Gamble C] You receive $100 if you draw a red or yellow ball,
[Gamble D] You receive $100 if you draw a black or yellow
ball.

Participants are tempted to choose [Gamble A] and [Gamble
D]. However, these choices violate the postulates of subjective
expected utility [1].

It is well known that ambiguity-aversion property of decision-
making is one of the prevailing theories advanced to explain this
paradox. On the other hand, reinforcement learning algorithms,
such as ucb1-tuned [2], modified ucb1-tuned, softmax [3], and
tug-of-war dynamics [4, 5], have been employed in multiple
approaches in artificial intelligence (AI) applications. There is
tremendous potential for neuroeconomic studies to investigate
the properties of decision-making through the use of AI
(learning) algorithms. This study is the first attempt to investigate
the properties of learning algorithms with regards to the
ambiguity-preference point of view.

In this study, we took a multi-armed bandit problem (MAB)
as a decision-making problem. We considered two slot machines
A and B. Each machine gave rewards with individual probability
density function (PDF) whose mean and standard deviations
were µA (µB) and σA (σB), respectively. The player makes
a decision on which machine to play at each trial, trying
to maximize the total reward obtained after repeating several
trials. The MAB is used to determine the optimal strategy for
finding the machine with the highest rewards as accurately and
quickly as possible by referring to past experiences. The MAB is
related to many application problems in diverse fields, such as
communications (cognitive networks [6, 7]), commerce (internet
advertising [8]), and entertainment (Monte Carlo tree search
techniques in computer game programs [9, 10]).

In this study, we focused on limited MAB cases. Machine A
has constant probability 1/3, and machine B has probabilities
generated by normal distribution N( 1

3 + 1 µ, σ 2 ). Here, we
hypothesize that the total rewards from probabilities generated
by a PDF is the same as the total rewards directly from the same
PDF if we only focus on the average rewards using 1, 000 samples.
On the basis of this hypothesis, we consider MABs, where PDFs
are δ( 13 ) and N( 1

3 + 1 µ, σ 2 ). Here, δ(x) is a delta function. In
this study, “ambiguity” is expressed by σ although “ambiguity”
becomes “risk” if our hypothesis does not hold.

2. LEARNING ALGORITHMS

2.1. Ambiguity-Neutral: SOFTMAX
Algorithm
SOFTMAX algorithm is a well-known algorithm for solving
MABs [3]. In this algorithm, the selecting probability of A or B,

P′A(t) or P
′
B(t), is given by the following Boltzmann distributions:

P′A(t) =
exp[β · QA(t)]

exp[β · QA(t)]+ exp[β · QB(t)]
, (1)

P′B(t) =
exp[β · QB(t)]

exp[β · QA(t)]+ exp[β · QB(t)]
, (2)

where Qk(t) (k ∈ {A,B}) is given by

∑Nk(t)

j=1 Rk(j)

Nk(t)
. Here, Nk(t) is the

number of selections of machine k until time t and Rk(j) is the
reward from machine k at time j. β is a time-dependent form in
our study, which is as follows:

β(t) = τ · t. (3)

β = 0 corresponds to a random selection and β → ∞

corresponds to a greedy action. The SOFTMAX algorithm is
“ambiguity-neutral” because “ambiguity” σ is not used in the
algorithm.

2.2. Ambiguity-Neutral: Tug-Of-War
Dynamics
In the tug-of-war (TOW) dynamics, a machine that has larger
Xk (k ∈ {A,B}) is played in each time [4, 5]. Displacement XA

(= −XB) is determined by the following equations:

XA(t + 1) = QA(t)− QB(t)+ ξ (t), (4)

Qk(t) =

Nk(t)
∑

j=1

(Rk(j)− K). (5)

Here, Qk(t) is an “estimate” of information of past experiences
accumulated from the initial time 1 to the current time t, Nk(t)
is the number of selections of machine k until time t, Rk(j)
is the reward from machine k at time j, ξ (t) is an arbitrary
fluctuation to which the body is subjected, and K is a parameter.
Consequently, the TOW evolves according to a simple rule: in
addition to the fluctuation, if machine k is played at each time t,
Rk−K is added to Xk(t). The TOW is also “ambiguity-neutral”
because “ambiguity” σ is not used in the algorithm.

2.3. Ambiguity-Preference: UCB1-Tuned
Algorithm
In the UCB1-tuned algorithm, a machine that has larger “index”
is played in each time [2].

Initialization: Play each machine once.
Loop: Play machine j that maximizes following index,

xj(t)+

√

ln(n)

nj
min(

1

4
,Vj(nj)), (6)

Vj(s) = (
1

s

s
∑

τ=1

x2j,τ )− x2j,s +

√

2ln(t)

s
, (7)

where xj(t) is the average reward obtained from machine j, nj
is the number of times machine j has been played so far, and
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n is the overall number of plays done so far. The UCB1-tuned
algorithm has “ambiguity-preference” property because it selects
high variance (“ambiguity”) machines in the early stage.

2.4. Ambiguity-Aversion: Modified
UCB1-Tuned Algorithm
In the modified UCB1-tuned algorithm, a machine that has
larger “index” is played in each time. Compared to UCB1-tuned
algorithm, the sign of the second term in the index becomes
minus.

Initialization: Play each machine once.
Loop: Play machine j that maximizes following index,

xj(t)−

√

ln(n)

nj
min(

1

4
,Vj(nj)), (8)

Vj(s) = (
1

s

s
∑

τ=1

x2j,τ )− x2j,s +

√

2ln(t)

s
, (9)

where xj(t) is the average reward obtained from machine j, nj is
the number of times machine j has been played so far, and n is the
overall number of plays done so far. The UCB1-tuned algorithm
has “ambiguity-aversion” property because it selects low variance
(“ambiguity”) machines in the early stage.

3. RESULTS

In this study, we focused on the following limited MAB cases. On
the basis of the hypothesis, we considered MABs where PDF of
machine A is δ( 13 ), and PDF of machine B is N( 1

3 + 1 µ, σ 2 ),
respectively. “Ambiguity” is expressed by σ .

For positive 1µ, we investigate 30 cases where 1µ = 0.00,
0.05, 0.10, 0.15, and 0.20, and σ = 0.05, 0.10, 0.15, 0.20, 0.25,
and 0.30, respectively. Figure 1 shows performance comparison
between four learning algorithms for the MABs. The horizontal

FIGURE 1 | Performance comparison between four learning algorithms for

MAB where PDFs are δ( 13 ) and N( 13 + 1 µ, σ2). 1 µ is positive (cases where

machine B is correct decision).

axis denotes 1 µ (6 different σ cases for each either 1 µ). The
vertical axis denotes total rewards (average of 1, 000 samples)
until time t = 1, 000 (also see Appendix in Supplementary
Material).

For positive 1µ cases, machine B is the correct selection
because expected value of machine B is higher than A. This
means that ambiguity-preference is needed for correct selections.
The UCB1-tuned algorithm (ambiguity-preference) has
higher performance than the modified UCB1-tuned algorithm
(ambiguity-aversion) in the positive 1µ cases. Performance
of the UCB1-tuned algorithms (ambiguity-preference) slightly
increases as the ambiguity (σ ) of the problems increases,
whereas performance of the modified UCB1-tuned algorithms
(ambiguity-aversion) largely decreases as ambiguity (σ ) of the
problems increases.

Performances of TOW and SOFTMAX are higher than those
of UCB1-tuned and modified UCB1-tuned algorithms because
each of the former two algorithms has a parameter that optimized
the problems. That is, each of the two algorithms has an
advantage over the latter two algorithms that have no parameter.
Performances of the former two algorithms (ambiguity-neutral)
slightly decrease as ambiguity (σ ) of the problems increases. This
is because incorrect decisions are slightly increased as estimation
for mean value of rewards becomes largely fluctuated.

For negative 1µ, we also investigated 30 cases where 1µ

= 0.00, 0.05, 0.10, 0.15, and 0.20, and σ = 0.05, 0.10, 0.15,
0.20, 0.25, and 0.30, respectively. Figure 2 shows the performance
comparison between four learning algorithms for the MABs. The
horizontal axis denotes 1 µ (6 different σ cases for each 1 µ).
The vertical axis denotes total rewards (average of 1, 000 samples)
until time t = 1, 000 (also see Appendix in Supplementary
Material).

For negative 1µ cases, machine A is correct selection
because expected value of machine A is higher than B. This
means that ambiguity-aversion is needed for correct selections.
The modified UCB1-tuned algorithm (ambiguity-aversion)

FIGURE 2 | Performance comparison between four learning algorithms for

MAB where PDFs are δ( 13 ) and N( 13 + 1 µ, σ2). 1 µ is negative (cases where

machine A is correct decision).
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has higher performance than the UCB1-tuned algorithm
(ambiguity-preference) in the negative 1µ cases only in σ =

0.05. Performance of the UCB1-tuned algorithms (ambiguity-
preference) slightly increases as ambiguity (σ ) of the problems
increases, whereas performance of the modified UCB1-tuned
algorithms (ambiguity-aversion) largely decreases as ambiguity
(σ ) of the problems increases.

Performances of TOW and SOFTMAX are higher than
those of UCB1-tuned and modified UCB1-tuned algorithms
because each of the former two algorithms has a parameter
that optimized the problems as well as the positive 1µ cases.
Performances of the former two algorithms (ambiguity-neutral)
also slightly decrease as the ambiguity (σ ) of the problems
increases because of the same reason as the positive 1µ

cases.

4. CONCLUSION AND DISCUSSION

In both cases (positive 1µ and negative 1µ), performance
of the UCB1-tuned algorithms (ambiguity-preference) slightly
increases as the ambiguity (σ ) of the problems increases,
whereas performance of the modified UCB1-tuned algorithms
(ambiguity-aversion) largely decreases as the ambiguity (σ ) of
the problems increases. This means that ambiguity-aversion
property of learning algorithm has a negative contribution to
its performances for MABs, whereas ambiguity-preference has a
positive contribution.

From these limited computer simulation results, we conclude
that ambiguity-aversion property does not work for efficient
decision-making in the learning point of view (repeated

decision-making situations). Another point of view will be

necessary for justification of ambiguity-aversion property.
We suggest that the differences among learning algorithms
require further study on the Ellsberg paradox and decision
theory.
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