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The Modeling of Shock-Wave
Pressures, Energies, and
Temperatures Within the Human
Brain Due to Improvised Explosive
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and Burgers’ Equations
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This second paper adopts a more rigorous, in-depth approach to modeling the resulting

dynamic-pressures in the human brain, following a transitory improvised explosive

device (IED) shock-wave entering the head. Determining more complicated boundary

conditions, a set of particular-solutions for both Burgers’ and the Transport equations

has been obtained to describe the highly damped neurological pressures, complete

with respective graphical plots. Many of these two-dimensional solution-curves closely

resemble the Friedlander curve [1–4], not only illustrating enormous over-pressures that

result almost immediately after the initial impact, but under-pressures experimentally

depicted in all cases, due to oscillatory motion. It appears, given experimental evidence,

that most—if not all—of these models can be aptly described by damped sinusoidal

functions, these facts being further corroborated by existing literature, referencingmodels

expounded by Friedlander’s seminal work [1–4]. Using other advanced mathematical

techniques, such as the Hopf-Cole Transformation, application of the Dirac-delta function

and the Heat-Diffusion equation, expressions have been determined tomodel and predict

the associated energies and temperatures within this paper.

Keywords: traumatic brain injury, PDEs, IED-blast, pressure, under-pressure, energy, temperature, Heat-Diffusion

equation

INTRODUCTION

In Paper 1, a one-dimensional model of the human head, through which a shock-wave due to
an improvised explosive device (IED) blast traveled, was developed. Within this scenario, the
initial shock-wave was modeled with a partial differential equation (PDE) known as Burgers’
equation and, from the assumed initial boundary-condition, several shock-wave solution-curves
were graphically plotted using experimental data derived from existing literature. It was hoped that,
given this primary data, the theoretical calculations would match the experimental observations.
Thus, future predictions about as-yet unknown IED neurological shock-waves should be possible.
In setting up the preparatory conditions to tackle the challenges of this paper, it was indicated that
the sheer violence of the shock-wave may have significantly harmful effects upon the human brain
during and after battle, and a physics-based discussion about some of these issues followed.
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In addition to high-velocity longitudinal pressure-waves,
observed to cause significant brain trauma, it is mentioned
that shear—or transverse—waves can be explained by similar
physics-based mathematics, in terms of the way in which waves
behave during their propagation through the brain.

In continuing this mathematical discourse, we turn to further
worked solutions of Burgers’ equation by first considering
damped sinusoidal motion of the resulting, dynamic, variation
in pressure following initial transitory shock-wave propagation
through the human head.

MODELING OF VARIATION OF PRESSURE
IN TERMS OF U (T,X)

From each of the Equations (19) and (20) in Paper 1, the
resulting second-order Burgers’ equation is obtained as expressed
in Equation (16). When γ ∼= 0, Equation (16) reduces to the first-
order Burgers’ equation. In each of these two cases, one can see
that the non-linearly varying pressure can be expressed solely in
terms of u (t, x) and its derivatives.

From the results outlined by Mediavilla et al. and Moore
et al. [5, 6], one can assume that decreases (or increases) in
the observed pressure can be modeled by an exponentially
decreasing sinusoidal curve of either of the form e−ωx sin (ωx)
ore−ωx cos (ωx). Here, the Cauchy Problem has again been
adopted, whereby each of these latter boundary conditions
satisfies its requirements, outlined within definition 1, in
Paper 1.

A Friedlander-Type Model of
Pressure-Variation
Commencing with Equations (16), (17), and (26) of Paper 1, and
following through with the previous working, we find:

{

b
∫

du = c
∫

dx
a
∫

du = c
∫

dt
(49)

as before. Assuming c = 0, we have:

u = A
(

k
)

(50)

By observing the experimentally obtained graphs, the decreasing-
sinusoidal pressure-waves can be conveniently modeled
by applying either of the functions representing the most
appropriate boundary conditions:

u (x) = αe−ωx sin (ωx) (51)

or:

u (x) = βe−x sin (ωx) (52)

yielding the maximum (or minimum) pressure at some non-zero
value of x (and t, usually approximated to zero) after impact.
Using calculus to determine such maximum and minimum
pressure values, either Equation (51) or (52) maymodel the given
observations appropriate to the underlying physical situation,

whereby α and β are constants of proportionality, and are
determined by the parameters involved.

From the above boundary condition, since the initial pressure
is represented by u (0) = 0, we see this satisfying the zero-
pressure outlined in the experimental results of Moore et al.
[6].

However, the pressure at x = 0.176 m is also taken to be zero.
Thus:

sin (ωx) = 0 (53)

Assuming e−ωx 6= 0, we deduce that ω = 125n
22 π , such that

both boundary conditions at x = 0 and x = 0.176 are satisfied.
In this case, we see that ω is expressed as integer values, n, of
the angle, 125

22 π , for n = 0, 1, 2,.... For simplicity, we can set
n = 1, thus obtaining a single wave whose angular-frequency is
ω = 125

22 π .
Keeping ω in its present form, for the first boundary

condition, we can write Equation (51) as:

A
(

k
)

= αe−ωk sin
(

ωk
)

(54)

Since experiments show that neurological pressure decreases in
magnitude as time increases—where x is fixed and t is large—we
can assume from Equation (23) of Paper 1, that the characteristic,
k, and therefore, ωk, is ultimately very small, such that:

limk→∞
{

u
(

k
)}

= limk→∞
{

A
(

k
)}

= limk→∞
{

αe−ωk sin
(

ωk
)

}

= αωk (55)

By applying the Cauchy Problem in definition 1 and expanding
both e−ωk and sin (ωk) each, as k → 0 and t → ∞ , as in the
subsection Elementary Model for Pressure-Wave With Simple
Undamped Sinusoidal Function, we find that the product of these
two functions can be approximately written:

A
(

k
) ∼= αωk (56)

Assuming γ = 0, such that c = 0, then the third ODE from
Equation (26) becomes:

∫

dx = A
(

k
)

∫

dt (57)

yielding:

x = A
(

k
)

t + k (58)

As Moore et al., [6], pointed out, their description of their shock-
tube experiments indicated that the initial neurological pressure-
wave was delayed by t0 = 4.5 × 10−4 and t = t0 = 4.8 × 10−4

s for both tensile and compressive peak-pressures of 6.5 MPa and
0.89 MPa respectively, making the average time-phase for each
of these occurrences t = t0 = 4.65 × 10−4 s after the initial
shock-wave impact. The average spatial-phase shift for each of
these maximum pressures for a 5 m/s impact simulation [6], is
2.325 × 10−3 m, which is equal to just over a millimeter. For
example, the shock-wave peaked at this fractional time somewhat
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discontinuously, after propagating through x = x0 ∼= 2.325 ×
10−3 m of brain tissue, apparently at standard pressure levels.
Therefore, these two statistics may be used as the shift in the
phase-angle, to correctly, and as accurately as possible, model the
whole motion.

By using the mechanics of a wave shifted toward the right-
hand-side, Equation (58) can be re-written as:

x− x0 = A
(

k
)

(t − t0)+ k (59)

and substituting Equation (56) into this, we obtain:

x− x0 = αωk (t − t0)+ k (60)

or:

x− x0 = k [αω (t − t0)+ 1] (61)

becoming:

k =
{

x− x0

αω (t − t0)+ 1

}

(62)

Substituting this last affine characteristic equation into the
solution gives:

u (t, x) = αe
−
{

ω(x−x0)
αω(t−t0)+1

}

sin

{

ω (x− x0)

αω (t − t0)+ 1

}

(63)

Likewise, adoption of the boundary condition illustrated by
Equation (52) yields:

u (t, x) = βe
−
{

x−x0
βω(t−t0)+1

}

sin

{

ω (x− x0)

βω (t − t0)+ 1

}

(64)

Note that, although Equations (63) and (64) are partially
expressed as quotients of the units of space divided by the units
of time, each equation nonetheless satisfies the definition of the
Cauchy problem in definition 1 of Paper 1. This is because either
of the functions still remains analytic at the initial time, t = 0,
yielding specific maximum pressure values solely in terms of x at
this point, whereby u (0, x) = u(x), as necessary and required.

Determination of the Value of Constants of
Proportionality, α and β, and Maximum
Pressure, PM
As before, considering limits, we find that the boundary
condition at x = 0 yields zero pressure, or u (t, x) = 0, and at
x = 0.176 m the pressure is also approximately zero as t → ∞.
The conclusion is that ω = 125

22 π .
Substituting the general variate k, into Equations (51) and (52)

respectively, we obtain:

u
(

k
)

= αe−ωk sin
(

ωk
)

(65)

and:

u
(

k
)

= βe−k sin
(

ωk
)

(66)

each of which can be differentiated to obtain the peak values at
uk
(

k
)

= 0:

uk
(

k
)

= −αωe−ωk sin
(

ωk
)

+ αωe−ωk cos
(

ωk
)

= 0 (67)

and:

uk
(

k
)

= −βe−k sin
(

ωk
)

+ βωe−k cos
(

ωk
)

= 0 (68)

Solving Equations (67) and (68) separately yields two
trigonometric functions for each:

tan
(

ωk
)

= 1 (69)

and:

tan
(

ωk
)

= ω (70)

Since ω = 125
22 π for both Equations (69) and (70) respectively,

they each yield the respective values of k as π
4ω and 0.0848647. . . .

Given that the peak-pressures for u
(

k
)

occur at the above two
values for k and can be represented by some value, PM , at these
points, by substituting k = π

4ω and k = 0.085 into Equations (65)
and (66) respectively, they become:

u
(

k
)

=
α
√
2
e−

π
4 = PM (71)

or:

u
(

k
)

= βe−0.085 sin (1.51) = PM (72)

leading to:

α = PM
√
2e

π
4 (73)

and:

β = PMe0.085 csc (1.51) ∼= PM1.09 (74)

Therefore, Equations (65) and (66) can be written:

u (t, x) = PM
√
2e

π
4 e

−
{

ω(x−2.325×10−3)
αω(t−4.65×10−4)+1

}

sin

{

ω
(

x− 2.325× 10−3
)

αω
(

t − 4.65× 10−4
)

+ 1

}

(75)

and:

u (t, x) = PM1.09e
−
{

x−2.325×10−3

βω(t−4.65×10−4)+1

}

sin

{

ω
(

x− 2.325× 10−3
)

βω
(

t − 4.65× 10−4
)

+ 1

}

(76)

Using Burgers’ equation to model a propagating incident
pressure-wave with a peak value of u (T, L) = 30, 000 Pa, for
example, where T = 4.65 × 10−4 s and L = 2.325 × 10−3 m at
30,000 Pa [5, 6], initially obtaining Equations (75) and (76) by the
above analytical methods, indicates, for a calculated maximum
value of PM ∼= 30,000 Pa, the solution shown in Figure 7A below.
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It is notable that, after the shock-discontinuity, this pressure-
curve does not appear to display a negative-phase—otherwise
referred to as an under-pressure—but, unlike Figure 7B, it is a
non-linear wave since A

(

k
)

= u(t, x) is a variable coefficient
(and a function of the independent variables, t and x) of the ux
term in the original Burgers’ equation. However, as t increases
indefinitely, the pressure wave monotonically converges to the
normal atmospheric base pressure-level (taken to be zero), as
observed by Mediavilla et al. [5].

In the case of the Transport equation (or the linear Burgers’
equation) solution, however, illustrated by Figures 7B, 10A,B, it
is evident that the variation in pressure-values, u (t, x), especially
according to the different wave velocities represented by c over
the given ranges 0 ≤ x ≤ 0.176 m and 0 ≤ t ≤ 0.004 s, descend
into negative values for various parameter values, respectively,
after a certain point over the range 0.002 ≤ t ≤ 0.004
s, [5–7]. This solution also describes negative under-pressures
reasonably consistent with published literature and, although the
theoretical graphs in this publication are not completely identical
to their experimental counterparts, there are still considerable
similarities and trends—for example: general shape, periodicity,
and convergence with increasing time.

By analyzing each graph below, one observes that the higher
the wave-velocity, c, the sooner the maximum pressure, u (t, x),
occurs in all cases and is often of a higher value. This latter feature
is especially true when all the reflected waves in Figure 10A are
added together and then re-plotted as a single wave, illustrated
in Figure 10B. For different wave-velocities, more appropriate
values of α (and β ) can be found, via calculus and algebra, so that
observed graphical peak pressures yield their respective values as
witnessed during experimental observations.

Returning to Figure 7A, it appears that the pressure is largely
constant along the x-axis, due to the spatial coordinate being
fixed—and therefore effectively static—although non-linear with

respect to t, over the given limits. This graph, illustrating
a solution for the Burgers’ equation, is again non-linear. In
Figure 7B, there is similar spatially-axial behavior, except for the
periodicity and the presence of under-pressures with-respect-to
time, the latter of which [8] suggests may be due to compression
of the skull and recoil of the brain. However, the graph’s
solution-curve—like the Transport equation from which it is
derived—is linear, as will be described in the section Preamble
to Cauchy Problem when the equation is solved. A fuller picture
of either graph’s behavior would be obtained by considering
longer-term analysis of the variables; variability becomes more
obvious, especially within the dynamic-based models as part of
the Mathematica software.

In some of the Transport equation solutions in Figures 10A,B,
below, it is easier to see that u (t, x) is often negatively valued
between 2 and 5ms, but then becomes slightly positive whilst
converging to zero pressure with increasing time. Very similar
results for the data used in this research were recorded by
Mediavilla et al. and Moore et al. [5, 6], whose pressure-time
graphs exhibited negative values of u (t, x) between the above
limits in many cases.

As the experimental results further indicate, the plotted graphs
within this research sometimes show the presence of under-
pressures, as in Figures 7A–10B, immediately after a shock-
wave’s instantaneous entry into the brain up to the point
of discontinuity. At the time, the reasons for these apparent
under-pressures were not clear, [8], but can be described, not
only by application of more appropriate sinusoidal boundary
conditions shown below, but also because of the reflection and
transmission coefficients associated with each wave rebounding
within the skull and brain. For example, it is known that when
impact waves are reflected from a surface, they often display a
trough immediately after rebounding (as opposed to the original
incoming peak) due to the nature of the reflection coefficients

FIGURE 7 | (A) The plot of u (t, x) = PM
√
2e

π
4 e

−
{

x−2.325×10−3

α
(

t−4.65×10−4
)

+1

}

sin

{

x−2.325×10−3

α
(

t−4.65×10−4
)

+1

}

vs. t and x. Note here that t commences at 0 s and runs to 0.04 s, with

x ranging from 0 to 0.176m. As t approaches an infinite value, the pressure, u (t, x), monotonically decreases to zero with respect to both axes. These factors are

consistent with the limiting value of u (t, x), in which x is fixed as opposed to infinitely increasing time, t. (B) Plot of the linear wave,

u (t, x) = αe−
1
4 (4t−x)sin

{

125
88 π (4t− x)

}

. In this graph, since the angular-frequency, ω , has been omitted in the exponential factor, it is evident that the wave is now

periodic in the t-direction as compared to the plotted monotonically decreasing wave in (A). Note here that t commences at 0 and runs to 2 s, with x ranging from 0 to

0.176m. As t → ∞ , the pressure-oscillations gradually become damped out to zero.
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(Paper 1) and energy considerations. Even if implicitly related,
reflection of such waves could be associated with both initial and
subsequent under-pressures—at either side of a given parameter
on the t − x axes—whereby there does appear to be a link.
Mediavilla et al. [5], also state that “the initial pressure in the
gelatin becomes negative (in the first 0.5ms); after which it
follows the surrounding air pressure within the tube. The reason
for this pressure drop might be due to experimental setup,
since a new series of experiments did not show this effect”. The
authors’ assertions here could be correctly founded, given that
any phase difference in an emitted wave, possibly due to differing
experimental setup, could conceivably affect the periodicity of the
incoming, transmitted, and reflected waves’ peaks and troughs.
As suggested above, this may further tie in with the compression
of the skull and recoil of the brain, [8], but in ways that are
dictated by the physical positioning and directional nature of
both the apparatus and the emitted waves, respectively. If this
is so, then one could potentially explain either the presence or
absence of apparently inconsistently occurring under-pressures
that were previously unexplained.

Pressure-Time Solution-Curves for Different

Maximum Pressures and Boundary Conditions

Closely Resembling the Friedlander Curve
The constant of proportionality, ω, in the exponential term of
Equation (75), is of small consequence and, in Figures 8A,B,
the graphs of this equation indicate the presence of very slightly
less acute discontinuities, compared to those in the second series
of pressure-profiles in Figures 9A,B, as modeled by Equation
(76). Both sets of curves are close fits for the experimental
data, describing the apparently misunderstood physics. All these
profiles seem to resemble aspects of the Friedlander curve,
[1–4], particularly for a range of modeled incident pressures
commencing at 30,000 Pa and higher over given spatio-temporal
ranges. The time ranges have been chosen so that both sets
of graphs may be compared, and because they indicate similar
times observed within current shock-tube literature. Sometimes,
however, shorter spatio-temporal ranges have been chosen here
for the purposes of illustrating clearer and more discernible
solution curves. This should be considered when comparing
them with other authors’ findings.

Introduction to Smoother and More Continuous

Friedlander-Type Solution-Curves Illustrating

Observed Under-Pressures
By considering a wider range of parameters, more accurate
solutions of the observed under-pressures can be calculated,
providing reasonably appropriate descriptions of this
phenomenon. Since the transverse components of a pressure-
wave can also be equally as damaging to such as axons and white
matter, [6], their respective shear wave-velocities, such as c = 4,
10, and 30m per second, [5], yield some of the two-dimensional
graphs in Figures 10A–16A, in which the peak-pressures occur
sooner when the shock-wave impact-velocities are higher. For
example, this becomes especially noticeable when substituting
longitudinal velocities—of a factor of 100 times or more than
the shear ones above—into the Transport equation solution,

FIGURE 8 | (A) The variation of wave-pressure vs. time for a series of different

transmitted and reflected waves described by Equation (75). (B) The variation

of wave-pressure vs. time for the superposition of each of the waves in (A)

there is a chaotic region of highly alternating pressure close to t = 0.00045 s.

again illustrated by Figures 10A,B. Furthermore, they provide
examples that the inherent mathematics of each situation
automatically dictates both over- and under-pressures, often (if
not always) to be observed and certainly to be expected.

In addition, further shock-tube experiments have been
developed for shock-wave velocities of 40m per second and
higher, by authors such as [5], as shown in Figures 7A–10B.

These two-dimensional graphs of u (t, x), for the various
values of c, have again been plotted with respect to t (but with
the latter x variable fixed, x ≤ 0.176); each of them displays
a smooth and non-periodic pressure-curve, as plotted from the
derived general solutions:

u (t, x) = αe−
125π
22c (ct−x) sin

{

125

22c
π (ct − x)

}

(77)

and:

u (t, x) = βe−
1
c (ct−x) sin

{

125

22c
π (ct − x)

}

(78)

Each of the plotted pressure-curves for these two equations
represent some appropriately calculated values of the effective
maximum pressures, for various values of α and β , whereby:

α = PM
√
2e

π
4 (79)
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FIGURE 9 | (A) The variation of wave-pressure vs. time for a series of different

transmitted and reflected waves described by Equation (76). (B) The variation

of wave-pressure vs. time for the superposition of each of the waves in (A)

there is a chaotic region of highly alternating pressure close to t = 0.00045 s.

(C) The variation of wave-pressure vs. time for

u (t, x) = αe
−
(

1
c x−(t−t0)

)

sin

{

ω
(

1
c x −

(

t− t0
)

)}

, for a shear wave-velocity

of 4 m/s and temporal-phase, t0. The solution blows-up given that

e
−
(

1
c x−(t−t0)

)

→ ∞, as t → ∞, where x
c is both fixed and finite, and is

eventually exceeded by this increasing temporal-variable, t.

and:

β = PMe0.085csc (1.51) ∼= 1.09PM (80)

which are associated with the respective velocity, c, of the
traveling shock-wave. Both Equations (77) and (78) are derived
in the subsection Approximate, Smoother and More Continuous
Forms of the Friedlander Curve to model Pressure Versus Time

FIGURE 10 | (A) The variation of wave-pressure vs. time for differing

wave-velocity: higher velocity waves peak sooner than those of lower velocity

(some curves have been omitted for clearer visibility). (B) The variation of

wave-pressure vs. time for the superposition of each of the 40 m/s waves in

(A). Here, after the point where the curve first becomes positive, the maximum

peak-pressure is 122,192 Pa and the minimum is −5280.39 Pa (−0.052 atm).

from Initial-Boundary-Conditions, and their solutions plotted
respectively.

Further Analysis of Pressure Curves
Mathematical analysis shows that, in Equation (75) for example,
the minimum and maximum pressures oscillate between the
values of approximately −PM and PM close to the discontinuity
at the point where t ∼= 4.65 × 10−4 s. Therefore, regardless of
the small, fixed, value of x, we find that as t → 4.65 × 10−4 s,
then k → ∞ , and so u (t, x) passes through u = 0 Pa between
the pressures of −PM and PM at least once. Due to this multiply
valued (and highly oscillatory) condition of the function’s value
at this point, it fails to converge to a limit here. This explains why
one first observes an under-pressure between the origin and the
discontinuity at t = 4.65× 10−4 s—as can be witnessed from the
green curve in Figure 8A—and then an overpressure thereafter
ultimately decaying, exponentially, with increasing time. Similar
analyses can be carried out on Equation (76) yielding slightly
more complex results as shown in Figure 10B.

The last analytic and graphical feature, described above and
explained further in this section, indicates that the apparent

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 August 2018 | Volume 4 | Article 30

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Mason IED Neurological Shock-Waves and Energies

occurrence of initial negative pressure magnitudes, or under-
pressures, are also inherent physical factors within this area of
science, especially from the viewpoint of certain mathematical
models. Within the literature, they have normally been explained
as features associated with erroneous experimental methodology,
[5, 6], but this is not necessarily the case. Whilst there may be
issues surrounding this suggestion (for example, those affecting
the phase of a transmitted wave resulting in the presence of
inconsistently occurring under-pressures, as mentioned earlier),
the negative under-pressures, illustrated by the graphs up to
the occurrence of the discontinuity in both Figures 8A,B, 9A,B,
are largely due to the underlying universal physical laws of
shock-wave mechanics associated with this area of neurological
dynamics. The given PDE s, such as Burgers’ and the Transport
equations, are fundamental in describing many aspects of the
experimental observations, including the parts played by the
inherent sinusoidal motion and conservation laws, which would
otherwise be insufficiently understood—if at all—for making
significant advances.

Proof By the Characteristic Method—an
Initial-Boundary Value Problem
Two alternative solutions to Equations (75) and (76), as
illustrated above, are Equations (77) and (78), derived as follows.
It is intended that they will supplement what has already been
discovered, whilst simultaneously offering a different perspective
to this area of shock-wave dynamics. There are certainly
similarities between all the plotted solutions in this section
and the section Boundary Conditions Within a Typical Case,
but there are other facets that each group illustrates more
convincingly, compared to the other. In short, both sets of
solutions have strengths and weaknesses; where one fails to
illuminate, the other does.

For a wave traveling to the right-hand-side, the wave-velocity
can be expressed in two possible Galilean ways, namely:

u (t, x) = u (x− ct) (81)

and:

u (t, x) = u
(x

c
− t
)

(82)

Equation (81) was used in the sections from Appropriate
Boundary Condition Leading to a Characteristic Solution in the
Case of a Shock Wave to Elementary Model for Pressure Wave
With Simple Undamped Sinusoidal Function, and Equation (82)
has been adopted in this section, largely because it adopts a
more appropriate relativistic-time-shift (measured in seconds),
given that

(

x
c − t

)

aids in the calculation and plotting of pressure
vs. time, which is largely in the graphical format adopted
by experimental observation. Had we needed to calculate the
pressure vs. distance solutions, then Equation (81)—in which
the relativistic-distance-shift in terms of the spatial co-ordinates,

(x− ct), is important—would have been adopted instead.
To plot each of the two-dimensional graphs, in Figures 8A–

10B as accurately as possible, we must solve the above problem
by considering the wave-profile whose maximum pressure

characteristics are further shifted by a factor of t = 4.65 × 10−4

and x = 2.325 × 10−3 m along both axes, respectively. For
example, as Mediavilla et al. [5] observe, the analysis within this
research further shows a discontinuous jump in pressure from
0Pa to a maximum, PM , for each profile at these values of t and
x. Partially using data gleaned from Moore et al. [6], this feature
has been recreated by substituting an appropriate expression for
the characteristic variable, k, into the boundary conditions in
Equations (51) and (52), namely:

u (x) = αe−ωx sin (ωx)

and:

u (x) = βe−x sin (ωx)

Approximate, Smoother and More
Continuous Forms of the Friedlander
Curve to Model Pressure vs. Time From
Initial-Boundary-Conditions
As much literature indicates, a solution-profile of a pressure-
wave is often most appropriately modeled by the Friedlander
curve, [1–4]. This section of the research demonstrates that this
area of shock-wave physics, modeled by both the non-linear
Burgers’ equation, and its linear version, the Transport equation,
yields very similar theoretical results to those observed during
experimentation.

By commencing, this time, with the linear form of Burgers’
equation—or the Transport equation—in which u = A

(

k
)

= c,
we have:

ut + cux = 0 (83)

and following through with the integration as in the section
Determining General Boundary Conditions in Each Case, we
find:

u = A
(

k
)

= c (84)

Since we now model the given situation with regards to
the initial-boundary conditions, we must introduce a dummy
variable, s, into the system of the three ODEs representing the
characteristics. The initial conditions are written as t0 (s) = t0,
and x0 (s) = x0, and a slightly different approach to solve
this problem—compared to those previously employed in the
sections Burgers Equation Derivation in Terms of Velocity
and Pressure—Simplified Result of Navier-Stokes Equation and
Boundary Conditions Within a Typical Case—will now be
adopted.

We commence with:

dt

ds
=

1

c

dx

ds
=

1

µ

du

ds
(85)

As in the sections Boundary Conditions Within a Typical Case
and Modeling of Variation of Pressure in Terms of u (t, x),
we write the ODEs separately, divide each one by the dummy
variable, ds, and equate to unity. Rather than complicating
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matters, this procedure simplifies the process, since all one needs
is to integrate the equations with respect to ds. The purpose of
applying this approach is to allow three separate solutions, one
in terms of t (s), the other in terms of x (s) and the third in
terms of u (s) . At the end of the exercise, application of the initial
conditions will show that s = k, which helps to simplify the end
result.

As above, we write:

dt

ds
= 1;

1

c

dx

ds
= 1;

1

µ

du

ds
= 1 (86)

When t (s) = t0,
x(s)
c = x0

c = k, each of these ODEs yield, in turn,
the results:

t = s+ t0 (87)

and:

1

c
x = s+ k (88)

and, since µ = 0, separating out the variables and solving, we
have:

u = A (s) (89)

Since k = x0
c in Equation (86), where k is the constant-valued

intercept of the linear characteristic with the x-axis when s = 0 at
t = t0, each of the Equations (85) and (86) becomes:

s = t − t0 (90)

k =
1

c
x− s (91)

respectively or, for easier calculation, Equation (91) may be
written:

ck = x− cs (92)

Substituting Equation (90) into Equation (92) results in:

ck = x− c (t − t0) (93)

then, dividing both sides of Equation (93) by c, we have:

k =
1

c
(x− ct + ct0) (94)

or otherwise:

k =
1

c
(x− ct)+ t0 (95)

In Equation (95), we see that k is clearly linear, regardless of the
values of t and x (where x is fixed), and we only require the phase-
shift for the pressure-wave to be written in terms of t0, and not
x0, due to the linearity of the system as defined by the Transport
equation. One may graph the solution-curves with respect to the
spatial-axis as well, in which only the spatial phase-shift, x0, is
required, and not t0, largely depending on the nature of each
solution that one requires. These latter features are illustrated

below, in which Equation (95) has been regularly used as the
independent variable in the plotting of a number of profiles for
the pressure-waves as they propagate with respect to time, t,
as commensurate with the literature. The formula will also be
derived to plot the pressure-wave with respect to x, should it be
required for scientific analysis.

To summarize the above analysis, given the linear Transport
equation has been employed as required, to model a range
of shear-wave velocities, c = 4, 10, 30, 40 m/s, along with
longitudinal velocities such as 1,463 m/s, [5], for example, the
above analysis often demonstrates no change in the spatial-axis
as t increases, although the pressure itself does vary with time
even at fixed values of x. For example, compare taking a snapshot
of the pressure-wave at a fixed and static value of x, whereby the
wave only propagates with respect to the time-axis.

Substituting Equation (95) into Equation (82) for the required
boundary condition, we have:

u (t, x) = u

(

1

c
(x− ct)+ t0

)

(96)

in which only the temporal-phase shift in t0 is shown. Hence, a
solution still propagating only with respect to time, t, where x is
fixed, is thus considered.

We can also write Equation (96) as:

u (t, x) = u

(

1

c
x− (t − t0)

)

(97)

We now re-work the whole Cauchy Problem, but this time only
considering the spatial-shift, x0, for a pressure wave propagating
with respect to x, along with the initial condition k = x0

c . From

Equations (87) and (88), we write k = t − s and s = 1
c (x− x0)

and then, substituting the latter expression into the former for
time, we obtain:

k = t −
1

c
(x− x0) (98)

as before, such that:

u (t, x) = u

(

t −
1

c
(x− x0)

)

(99)

For the time-phase solutions, if we substitute Equation (95) into
each of the boundary conditions, Equations (51) and (52), we
have:

u (t, x) = αe−ω
(

1
c x−(t−t0)

)

sin

{

ω

(

1

c
x− (t − t0)

)}

(100)

and:

u (t, x) = βe−
(

1
c x−(t−t0)

)

sin

{

ω

(

1

c
x− (t − t0)

)}

(101)

in which only the time-phase, t0, and thus the propagation of
the pressure-wave with respect to time, only, for fixed x, is now
evident. A typical solution for the pressure-wave of 30,000 Pa,
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as given in Equation (101) —in which the indicial angular-
frequency, ω, is absent—and with a shear-wave velocity of 4
m/s, is shown in Figure 9C below. A further analysis showing
the pressure appearing to blow up as t increases, indefinitely, is
explained at the end of the section Use of the Cauchy Problem
to Determine More Appropriate Spatial Boundary Conditions
for Shock-wave Solution for a similar curve, in which the shear
wave-velocity is 40m per second.

For solutions involving only the spatial phase, x0, and the
subsequent propagation of the pressure-wave with respect to x,
for fixed t, then we substitute Equation (97) into Equations (51)
and (52) to obtain:

u (t, x) = αe−ω
(

t− 1
c (x−x0)

)

sin

{

ω

(

t −
1

c
(x− x0)

)}

(102)

and:

u (t, x) = βe−
(

t− 1
c (x−x0)

)

sin

{

ω

(

t −
1

c
(x− x0)

)}

(103)

Note that Equations (100)–(103) differ, slightly, from the more
intuitively formed functions of (106) and (107) below, in which
the temporal phase-shift along the t-axis was simultaneously
considered alongside the spatial phase-shift with respect to
the x-axis. However, although the intuitive approach does not
always greatly affect the outcome of the solution-curves, in this
individual case—for small values of time, t, and due to the
vanishingly small magnitude of the temporal phase-shift—strictly
speaking, it is incorrect. This is due to the above explanations
regarding the wave’s linearity.

Again, by adopting the proper analysis, one can take a relevant
snapshot of the propagating wave, either with respect to the t-axis
or with respect to x, depending on the model required, but not
simultaneously, since neither of the phase-factors occur together
if one adopts the above (correct) analytical approach. Ideally, one
should only ever use the correctly derived analytical case, as the
intuitive version often fails to yield the correct analysis and can
be considerably misleading.

As discussed above, one can think about this Transport
problem without considering the Cauchy Problem. Although not
as analytically correct since the time-phase magnitudes are so
vanishingly small, their presence in the solutions, below, make
virtually no difference to the outcome of the analyses.

To illustrate the potential shortcomings of the intuitive
approach, we proceed as follows, and write the general solution
as:

u (t, x) = u

(

1

c
(x− x0)− (t − t0)

)

(104)

Therefore, given the actual two possible boundary conditions in
Equations (51) and (52), namely:

u (x) = αe−ωx sin (ωx) (105)

and:

u (x) = βe−x sin (ωx) (106)

then each of these expressions can be written more explicitly:

u (t, x) = αe−ω
{

1
c (x−x0)−(t−t0)

}

sin

{

ω

(

1

c
(x− x0)− (t − t0)

)}

(107)
and:

u (t, x) = βe−
{

1
c (x−x0)−(t−t0)

}

sin

{

ω

(

1

c
(x− x0)− (t − t0)

)}

(108)
As usual, the temporal and spatial coordinates are transformed
by the vanishingly small temporal-phase of 4.65× 10−4 s and the
spatial-phase of 2.325× 10−3 m, so the characteristic variable, k,
can now be re-written:

k =
1

c

(

x− 2.325× 10−3
)

−
(

t − 4.65× 10−4
)

(109)

which simplifies to:

k =
1

c
(x− ct)+

(

4.65× 10−4c− 2.325× 10−3

c

)

(110)

Substituting the characteristic Equation (110) into either of the
boundary conditions, Equations (65) and (66), we obtain the
solutions:

u (t, x) = αeω(4.65×10−4c−2.325×10−3) e−
ω
c (x−ct)

sin
{ω

c

(

x− ct + 4.65× 10−4c− 2.325× 10−3
)

}

(111)

and:

u (t, x) = βe(4.65×10−4c−2.325×10−3) e−
1
c (x−ct)

sin
{ω

c

(

x− ct + 4.65× 10−4c− 2.325× 10−3
)

}

(112)

In these latter two equations, and as explained above in the
section Determining General Boundary Conditions in Each
Case, the time phase in these is so vanishingly small that it
effectively reduces each expression to the solution illustrated
in Equation (101) in the section Approximate, Smoother and
More Continuous Forms of the Friedlander Curve to model
Pressure Versus Time from Initial-Boundary-Conditions. It may
be concluded that there would be no substantial difference in the
graphical curves for any of the three if they were to be plotted
with the inclusion of this temporal-factor, although the problem
of “blow-up” of their solutions materializes as time increases
without bound, as shown in Figure 9C. This is at least one
modeling problem in the case of a system in which convergence
is required.

By first plotting Equation (102) separately for successive
constant, maximum-valued, reflection coefficients, R = 0.555,
defined by the Power Series from Paper 1, the latter of which is
stated here again:

ψ = 2A

[

1− nR+
n (n− 1)

2
R2 −

n (n− 1) (n− 2)

6
R3

+ . . .− O
(

Rn
)

]

+ 2ARn (113)
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we obtain the profiles in Figure 10A, below. Here, we have
substituted various test velocities representing c, such as
4, 10, 30, 40 and 1,463 m/s, each corresponding to multiples
of the frequency of around 7,700 Hz, [5], with the same initial
maximum incident pressure of 30,000 Pa for each situation.
Detailed inspection of each graph, along with appropriate
mathematical analysis—as each successive higher velocity is
applied with its corresponding wave-frequency variations—
shows the phase-angle along the t-axis decreasing. This means
that maximum pressure, PM , occurs sooner, after the point
where it first becomes positive. The underlying physics is true,
regardless of what the subsequent maximum pressure in each
case happens to be. However, when reflection coefficients are
applied, the respective maximum pressure either increases or
decreases (due to constructive and destructive superposition)
depending on the wave component of the sequence and the
extent of the superposition applied. Figure 10B shows the total
sum of all the individual superimposed reflected waves described
by Equation (102) for a 40 m/s test-velocity, assuming that the
reflection coefficient of R = 0.555 is still applicable. It also
demonstrates why IED shock-wave mechanics often results in
greatly magnified pressures within the brain, post-shock. In this
case, the magnification yields just over four times the initial
30 kPa incident pressure up to the peak-value of 122,192 Pa
at around 0.4 ms, before decaying as time increases. This is
to be expected given the four-fold calculation of the previous
reflection-coefficient theory in Paper 1. It is also found that the
minimum value is −5,280.39 Pa, or 0.052 atm (0.052 bar) below
normal brain-pressure, at around the value of t = 1.8 ms after
the initial shock-wave impact, before rising again slightly, and
converging to a normal level.

It has to be noted, here, that consecutive reflection-coefficients
are likely to decrease in magnitude every time the wave rebounds
from each side of the skull due to the successive reductions
in wave-velocity or frequency. This means that maximum
and minimum brain pressure will differ, in reality, from that
calculated for the constant and unchanging value of R = 0.555
in this particular case.

It is also worth mentioning that, unlike the solution-
curves in the section Pressure-Time Solution-Curves for
Different Maximum Pressures and Boundary Conditions Closely
Resembling the Friedlander Curve—in which the time-phase
is vanishingly small with t0 = 4.65 × 10−4 s—the time-
phases in Figure 10A are much greater by comparison, especially
at low velocities, c. These factors are a combined result of
other parameters inherent in the method of solution, ultimately
taking into consideration initial-boundary-conditions whilst also
explaining the under-pressures between around 2 and 5ms, as
observed in shock-tube experiments [5, 6].

Negatively-Damped Decreasing Sinusoidal
Pressure-Curve Solutions
By applying Equation (103), which does not involve the factor
of ω in the exponential term, instead of obtaining a smoothly
decreasing curve, one now obtains the oscillatory, and therefore
periodic, amplitude-decreasing profiles in Figures 11A–C. This

negatively damped feature of the solution-curve is due to the
exponential term approaching zero magnitude, therefore causing
the observed, more gradual, decay. Again, if one plots Equation
(100), the exponentially increasing term (for ct > x) causes
positive damping and the subsequent rapid blowing up of each
oscillatory solution for an unbounded, indeterminate length of
time. This latter fact is largely due to the positions of t and
x, relative to each other in the exponent, leading to positive
indicial values after the point where ct = x. In combination
with the sinusoidal term, this positively increasing exponential
term causes the oscillatory nature of the solution to vary
wildly, as shown in both Figures 12A,B below. As explained
in the section Proof by the Characteristic Method—an Initial-
Boundary Value Problem regarding the similar, butmore gradual,
positive damping effects of Equation (101) and its solution
curve, Figure 9C, the pressure cannot increase indefinitely,
largely due to the conservation laws. However, the analysis
of this theory may also further explain the physics occurring
during experimental observations regarding apparent increases
in pressure magnitudes.

Also, for all these less-damped sinusoidal curves, when
velocities, c, increase with greater magnitude, the onset of the
initially increased pressures, and their subsequently damped
oscillations, again occur more closely to the origin, just as they
do for more heavily damped cases, in each successive case.

By increasing the time-interval between 0 and 5 s, over which
the pressure-wave propagates, one can see the convergent nature
of each more clearly over this longer duration, whilst keeping
x fixed at 0.176m. The graphs representing each of these test
velocities of 4, 10, and 40 m/s, once again, with the same
maximum pressure, PM = 50,000 Pa, appear to yield considerably
decaying pressure-waves in each of the Figures 12A–C. The
corresponding profiles for a velocity of 40 m/s, as used by Moore
et al. [6], are plotted in Figures 13A,B.

In the above figures, it is evident that the variation in
pressure-values, u (t, x), especially given the three-different test
wave-velocities, c = 4, 10 and 30 m/s over the given ranges,
0 ≤ x ≤ 0.176m and 0 ≤ t ≤ 0.5 s, descend into
negative values, respectively, after a certain point. By analyzing
each graph in Figures 13A,B above, one observes that the
higher the wave-velocity, c, the higher the initial maximum
pressure, u (t, x), appears to be in many cases. For different
wave-velocities, more appropriate values of α can potentially be
found, via calculus, so that observed graphical peak pressures
yield their respective values as witnessed during experimental
observations.

Whilst analyzed in simultaneous combination with the spatial
phase in Equations (110) and (112) in the section Approximate,
Smoother and More Continuous Forms of the Friedlander
Curve to model Pressure Versus Time from Initial-Boundary-
Conditions, when taken on its own, the temporal variable and
phase—in the absence of the spatial version—could be partially
responsible for experimentally observed increases in pressure
magnitudes within the brain, after the initial, transitory shock.
However, other factors, such as parabolic reflection, may be a
concomitant factor in this respect. One should consider that, due
to conservation issues previously mentioned, the pressure cannot
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FIGURE 11 | (A) The variation of wave-pressure vs. time for a wave-velocity of

4 m/s. (B) The variation of wave-pressure vs. time for a wave-velocity of 10

m/s. (C) The variation of wave-pressure vs. time for a wave-velocity of 30 m/s.

increase indefinitely, as appears to be the case in Figures 14A,B,
above.

NATURE OF
INITIAL-BOUNDARY-CONDITIONS
ULTIMATELY DETERMINING TYPE OF
DAMPED PRESSURE OBSERVED DURING
EXPERIMENTAL SHOCK-TUBE
OBSERVATIONS

At the beginning of the section Approximate, Smoother and
More Continuous Forms of the Friedlander Curve to model
Pressure Versus Time from Initial-Boundary-Conditions and
thereafter, a solution of the problem via the method of
characteristics illustrates that the nature of either observed, or
chosen, initial conditions dictates the type of damped pressure
observed, particularly as witnessed during experimental shock-
tube simulations.

FIGURE 12 | (A) The variation of wave-pressure, PM = 50, 000 Pa, vs. time for

a wave-velocity of 4 m/s over the time interval of 0 ≤ t ≤ 5 s. Note the rapidly

decreasing profile, complete with both under-pressures and over-pressures.

(B) The variation of wave-pressure, PM = 50, 000 Pa, vs. time for a

wave-velocity of 10 m/s over the time interval of 0 ≤ t ≤ 5 s. Note the rapidly

decreasing profile, complete with both under-pressures and over-pressures.

(C) The variation of wave-pressure, PM = 50, 000 Pa, vs. time for a

wave-velocity of 30 m/s over the time interval of 0 ≤ t ≤ 5 s. Note the rapidly

decreasing profile, complete with both under-pressures and over-pressures.

Commencing with the solution of the separable ordinary
differential Equations (85) and (86), in which the second,
alternative, initial spatial condition is taken to be x0 =
2.325 × 10−3 m [5], with k = x0

c , the generalized
unknown quasi-constant, k, yields Equation (98), which may be
written:

k = t −
1

c

(

x− 2.325× 10−3
)

(114)

In the analysis describing the experimental observations, the
pressure, u (t, x), was often seen to increase to a local peak-
maximum at the point where x0 = 2.325 × 10−3 m and then
to decay to zero, possibly whilst oscillating.

Since Equation (102) is often positive (as in the section
Pressure-Time Solution-Curves for Different Maximum
Pressures and Boundary Conditions Closely Resembling the
Friedlander Curve), from the point at which the phase first
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FIGURE 13 | (A) The variation of wave-pressure vs. time for a wave-velocity of

40m/s. (B) The variation of wave-pressure for a wave-velocity of 40 m/s over

the time interval of 0 ≤ t ≤ 5 s. Note the rapidly decreasing profile, complete

with under-pressures and over-pressures.

occurs, up to the maximum peak and negatively damped
thereafter, as shown in Figures 10A,B, the most appropriate
boundary condition one should use is either of the Equations
(51) or (52). At least one of these boundary conditions
yields a particular-solution suitably matching experimentally
observed data, as the graphical plots illustrate. Since either
of these boundary conditions involves an exponential term,
ultimately decaying over increasing time after the occurrence
of the peak, due solely to the negatively increasing indicial
exponent, both are more appropriate for that part of the model
where a positively damped exponential term is ultimately
increasing indefinitely. This yields to the conclusion that either
of the boundary conditions, Equations (51) or (52), lead to
the correct usage of Equations (102) and (103) in the form
of:

u (t, x) = αe−ω
(

t− 1
c (x−2.325×10−3)

)

sin

{

ω

(

t −
1

c

(

x− 2.325× 10−3
)

)}

(115)

and:

u (t, x) = βe−
(

t− 1
c (x−2.325×10−3)

)

sin

{

ω

(

t −
1

c

(

x− 2.325× 10−3
)

)}

(116)

each suggesting that they describe the observed
physics.

When, however, the same initial conditions are reversed, such
that t0 = 4.65 × 10−4 s, [6], and, again, k = x0

c , we similarly

FIGURE 14 | (A) The variation of wave-pressure vs. time for any pressure

magnitude and for any positive- or negative-valued shear wave-velocity, c.

Therefore, the solution blows-up given e
−
(

1
c x−(t−t0)

)

→ ∞, as t → ∞,

where x
c is both fixed and finite, and is eventually exceeded by the increasing

temporal-variable, t. In this diagram, a wave-velocity of c = 4 m/s was

adopted to highlight the phase-shift more clearly. Note the apparent existence

of an under-pressure between the occurrence of the phase and the time

t = 0.2 s. (B) The variation of wave-pressure vs. time for any pressure

magnitude and for any positive- or negative-valued larger shear wave-velocity

of c was adopted. Therefore, the solution blows-up given e−
1
c (x−ct)) → ∞, as

t → ∞, where x
c is both fixed and finite, eventually exceeded by this

increasing temporal-variable, t. In the plotting of this diagram, the

wave-velocity of c = 40 m/s was used. (C) A solution curve for the variable

pressure: u (t, x) = αe

(

1
c x−(t−t0)

)

sin

{

ω
(

1
c x −

(

t− t0
)

)}

, where x is fixed at

0.176m, t0 = 4.65× 10−4s, x0 = 2.325× 10−3m, c = 4m/s, ω = 125
22 π ,

and α = 54, 500 Pa, each scaled appropriately to yield a maximum test

pressure at t0 = 4.65× 10−4 s of 50,000Pa. Graphs for any values of the

shear wave-velocity c are similar, as before, although for higher values than

4 m/s the phase approaches the origin more closely and rapidly. Note the

initial under-pressure in this solution-curve.

obtain the two previous equations, Equations (100) and (101), for
the purposes of considering the time-phases alone.

We may write:

u (t, x) = αe−ω
(

1
c x−(t−4.65×10−4)

)

sin

{

ω

(

1

c
x−

(

t − 4.65× 10−4
)

)}

(117)
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and:

u (t, x) = βe−
(

1
c x−(t−4.65×10−4)

)

sin

{

ω

(

1

c
x−

(

t − 4.65× 10−4
)

)}

(118)

Here, one may observe that the solution-curves blow-up as t →
∞ and are not ideal, long term, for the purposes of plotting
the pressure for the above model, given previously mentioned
conservation issues.

However, unless an experimentally observed pressure increase
needs modeling, again to plot eventually decreasing pressure
variation as before, Equations (99) and (100) can be modified to
plot the solutions of u (t, x) vs. tif the boundary conditions:

u (x) = αe−ωx sin
(

ωk
)

(119)

and:

u (x) = βe−x sin
(

ωk
)

(120)

are adopted, in which the indicial part of the exponential function
in each of the above is positive. This means that, when Equation
(95) is substituted into the above, the particular-solutions can be
re-written as:

u (t, x) = αeω
(

1
c x−(t−4.65×10−4)

)

sin

{

ω

(

1

c
x−

(

t − 4.65× 10−4
)

)}

(121)

and:

u (t, x) = βe
(

1
c x−(t−4.65×10−4)

)

sin

{

ω

(

1

c
x−

(

t − 4.65× 10−4
)

)}

(122)

To model either of these latter equations depends on which
is more physically appropriate. It is noticeable that, as
time increases, the analysis indicates the indicial part of
each exponential becoming negative—and hence a decreasing
pressure—once more, for fixed x as t → ∞ , as shown in
Figure 14C, above.

Hopf-Cole Transformation in Obtaining
Heat-Diffusion Equation From Burgers’
Equation to Model Shock-Wave Energies
The next step is to supplement existing theory of observational
results by predicting the neurological shock- and pressure-
wave energies that may eventually be detected following the
exposure of military personnel to IEDs. According to Risling [9],
pressure-wave energies are very difficult to measure. Considering
this, one should at least be able to theoretically predict their
magnitudes prior to any discovery not yet cited in any existing
academic literature. To calculate the energies of a resulting shock-
and pressure-wave system, we need to use the Heat-Diffusion
equation. Since these energies are directly related to the initial
impact, we need to illustrate the validity of using the Heat-
Diffusion equation, which turns out to be closely linked to

Burgers’ equation for the shock-wave solution. This is achieved
by solving Burgers’ equation via another method, utilizing the
Hopf-Cole Transformation.

Commencing once again with Equations (15) or (16),
representing the wave-propagation of a shock- and pressure-
wave, we have:

ut + uux = γuxx

in which the energy-profiles are similarly non-linear. We put:

u (t, x) = ψx (123)

such that ut = ψxt , ux = ψxx and uxx = ψxxx. Then, substituting
each of these derivatives into either Equations (15) or (16) yields
the respective PDE, as shown below in Equation (124):

ψxt + ψxψxx = γψxxx (124)

This transformed Burgers’ equation can now be written in its
alternative form:

∂

∂x
(ψt)+

∂

∂x

(

1

2
ψx

2

)

= γ
∂

∂x
(ψxx) (125)

or otherwise:

∂

∂x

(

ψt +
1

2
ψx

2

)

= γ
∂

∂x
(ψxx) (126)

Eliminating the partial derivatives, we obtain:

ψt +
1

2
ψx

2 = γψxx (127)

Now, let:

ψ = −2γ ln (φ) (128)

such that:

ψt = −2γ
φt

φ
(129)

ψx = −2γ
φx

φ
(130)

and:

ψxx = 2γ

(

φx

φ

)2

− 2γ
φxx

φ
(131) (131)

Each of the above was obtained using normal differential rules
of calculus and elementary algebra. Substituting each of these
differential expressions into Equation (108), we obtain:

− 2γ
φt

φ
+

1

2

(

2γ
φx

φ

)2

= 2γ 2

(

φx

φ

)2

− 2γ 2 φxx

φ
(132)

or:

− 2γ
φt

φ
+ 2γ 2

(

φx

φ

)2

= 2γ 2

(

φx

φ

)2

− 2γ 2 φxx

φ
(133)
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leading to:

− 2γ
φt

φ
= −2γ 2 φxx

φ
(134)

Simplifying Equation (134) by canceling the factors of −2γ and
φ on each side, we obtain the final Heat-Diffusion equation:

φt = γφxx (135)

in which γ now represents the thermal-diffusivity coefficient,
1.38 × 10−7m2/s. In fact, the sum of both this and the
mass diffusivity term of 1 × 10−9m2/s, namely 1.381 ×
10−7m2/s, barely differs from the former and, it appears that
in transitioning from the solution for Burgers’ equation to the
Heat-Diffusion equation, there has somehow been a branching
off (or bifurcation) of the brain’s original mass-diffusivity value to
that of its own thermal-diffusivity, as characterized in the latter.
This has been achieved via the simple but celebrated Hopf-Cole
Transformation that appears to have potential similarities with
the Hopf-Cole Bifurcation process.

Conservation of Energy and Calculation of
Total Energy Within Each System
Given the validity of conservation laws, we show that the total
energy, ET , of any system is constant, prior to commencing the
derivation of the necessarymomentum- and energy-distributions
and their respective values.

Henceforth, the above Heat-Diffusion Equation, (135), can be
written in two forms:

∫

∂

∂t
(φ) dx = γ

∫

∂

∂x
(φx) dx (136)

or:

d

dt

∫

φdx = γ
d

dx

∫

φxdx (137)

Since the difference between the two sides of Equation (136), and
therefore Equation (137), is zero, we may write:

d

dt

∫

φdx− γ
d

dx

∫

φxdx = 0 (138)

or, more explicitly:

1

γ

d

dt

∫

φdx =
d

dx

{

[φ]RL
}

=
d

dx
{C} = 0 (139)

where C is a constant.
Hence, dividing both sides by γ , for convenience, and then

integrating the RHS by parts over the range L ≤ x ≤ R, with a
more general variable, k, yields:

1

γ

d

dk

∫

φdk = 0 (140)

or, multiplying by γ dk again, and integrating, we may write:

φ
(

k
)

= K1 (141)

where K1 is also constant.
Although Equation (141) indeed represents a constant of

integration, it is actually a function of k, namely the evolutionary
(and spatially-based) function, E

(

k
)

, since it has been integrated
with respect to the independent variable, as can be seen in
Equation (140). We can therefore assert that the total energy is
constant (for the resulting Heat-Diffusion equation), E (t, x) =
E
(

k
)

= K1, hence the whole system is conservative.
Similarly, multiplying each side of Equation (135) by φ and

then integrating, we have:

∫

φφtdx = γ

R
∫

L

φφxxdx (142)

1

γ

∫

∂

∂t

(

1

2
φ2
)

dx =
R
∫

L

φφxxdx (143)

1

γ

∫

∂

∂t

(

1

2
φ2
)

dx = [φφx]
R
L −

R
∫

L

φx
2dx (144)

Since the functional time-evolution of φ
(

k
)

, over the given
spatial-range is known to be:

φ
(

k
)

=
1

γ

d

dt

∫ (

1

2
φ2
)

dk (145)

then Equation (145) can be written:

φ (t) = [φφx]
R
L −

R
∫

L

φx
2dx (146)

It turns out that the above integral, Equation (145), in tandem
with Equation (138), can be written more simply as:

φ
(

k
)

=
R
∫

L

φ
(

k
)

dk = K2 (147)

where K2 is constant.
As explained by Olver [10], by simply integrating Equation

(135) with respect to dx, between any two, given, spatial limits,
x = L and x = R, in combination with Equation (137), one can
similarly show that φ

(

k
)

is equal to a constant value. In the case
of the sections Burgers Equation Derivation in Terms of Velocity
and Pressure—Simplified Result of Navier-Stokes Equation and
Boundary Conditions Within a Typical Case, a general variate,
k, has been introduced, prior to considering phase-shifts and the
factor ct, such that, at t = 0, we have:

φ
(

k
)

= K1 (148)

Equation (147), like Equation (145), represents both the total sum
and the time-evolution of this quantity over the spatial interval
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L ≤ x ≤ R, where L = 0 and R = 0.176 m. Thus, we may
write:

φ
(

k
)

=
∫ 0.176

0
φ
(

x− ct − 2.325× 10−3
)

dk = K1 (149)

or, more succinctly:

K1 = φ
(

k
)

(150)

which is identical to Equation (147), and where K1 represents
the steady-state equilibrium of the solution, φ

(

k
)

, as t → ∞,
therefore satisfying the strong maximum principle:

φ
(

k
)

≤ φ (0) ≤ φ (M)

The above principle may also be applied to the spectral
distribution of energies, E (ω):

E
(

k
)

= φ
(

k
)

(151)

again, in which the energy-conservation of the system, is evident.
Equation (150) also yields the maximum Energy, E (ξ) =

E (0, x) = E (0, ξ) Joules, at the spatial coordinate, x = ξ when
time t = 0 s. This mathematical statement can be explained more
literally in terms that, as t → ∞ , the dynamic energy-profile
of E

(

k
)

, never yields a greater magnitude, at any spatial-point, x,
nor at any time, t, than the initial maximum value, E (ξ). This
latter point is a strong factor associated with the total finite energy
of the system, in keeping with conservation laws. If total energy
were to be calculated to be greater, or even infinite, in magnitude,
than E (ξ), then the law dictating that energy must be conserved
would be violated.

From Equation (123), ψx = u (t, x) can be re-written in terms
of k, such that ψk

(

k
)

= u (0, x) = u
(

k
)

. Thus:

ψ
(

k
)

=
∫

u
(

k
)

dk (152)

particularly when the time is initially zero. Hence, substituting
Equation (128), ψ

(

k
)

= −2γ ln (φ), into Equation (151):

− 2γ ln (φ) =
∫

u
(

k
)

dk (153)

and, after further algebraic manipulation:

ET =
∫ k

0
φ (κ) dκ =

∫ k

0

{

e
− 1

2γ

∫

u(κ)dκ
}

dκ (154)

or, more simply:

E (t) =
∫ k

0

{

e
− 1

2γ

∫

u(κ)dκ
}

dκ (155)

By re-substituting k = x − 2.325 × 10−3, and by applying
integration-by-parts of the exponent, − 1

2γ

∫

u
(

k
)

dk, between

the given limits of L = 0 and R = 0.176 m, and where

α represents maximum pressure, with ω = 125
22 π , as in the

sections Burgers Equation Derivation in Terms of Velocity
and Pressure—Simplified Result of Navier-Stokes Equation and
Boundary Conditions Within a Typical Case, we find:

1

2γ

∫ R

L
u
(

k
)

dk =
1

2γ

∫ k

0
αe−κ sin (ωκ) dκ (156)

where k = x − ct − 2.325 × 10−3 + 4.65 × 10−4c. Whether
x = 0 at t = 0, or x = 2.325 × 10−3 m at t = 4.65 × 10−4 s,
the scaling makes no difference to the analysis, nor to any of the
values obtained.

Integrating Equation (156) by parts, we obtain:

1

2γ

∫ k

0
u (κ) dκ =

1

2γ

(

PM
√
2e

π
4

ω2 + 1

)

[

ω−ωe−k cos
(

ωk
)

−e−k sin
(

ωk
)

]

(157)

At the point where x = 2.325 × 10−3 m and t = 4.65 ×
10−4 s, where we take a maximum test-pressure of 50,000 Pa
to occur, it transpires that Equation (157) yields a zero result.
So, by correctly adopting the original boundary condition, in
the case of the sections Burgers Equation Derivation in Terms
of Velocity and Pressure—Simplified Result of Navier-Stokes
Equation, we obtain the maximummagnitude of the right-hand-

side of Equation (156), namely α = 1
2γ

(

PM
√
2e
π
4

ω2+1

)

Joules, which

bears the same value irrespective of the shear-wave velocity of
c m/s. Substituting the usual values into the constant coefficient
part of Equation (157), this equates to:

α =
1

2γ

(

PM
√
2e

π
4

ω2 + 1

)

= 2.43× 1011 (158)

The right-hand-side of Equation (157) can now be substituted
into the energy-evolution Equation (154):

ET =
∫ k

0

{

e−2.43×1011 [ω−ωe−κ cos(ωκ)−e−κ sin(ωκ)]
}

dκ (159)

but, since the analytic solution to this latter equation, Equation
(159), is very complex to obtain, only the graph of Equation
(157) has been plotted in Figure 15 below. As an illustration,
the graphical plot of Equation (157), Figure 15, displays damped
periodic behavior, thus rapidly approaching the very large
limiting value of 3.1× 1010 Joules.

Having established the long-term behavior of Equation (157),
which ultimately approaches a constant value, it is possible to
predict the behavior of the long-term energy profile. The energy,
defined by Equation (159), when integrated itself between any
spatial limits, ultimately yields a value approaching a constant
total energy magnitude with increasing time and space, seen in
Figure 15 below. This is because the exponent in Equation (159)
has a negative limiting value, meaning the exponential of this
parameter results in a constant result for the long-term energy
itself.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 August 2018 | Volume 4 | Article 30

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Mason IED Neurological Shock-Waves and Energies

FIGURE 15 | Plot of u (x) vs. x illustrating the function’s tendency to approach

the limiting value of approximately 3.1× 1010 Pascals, assuming that there is

no loss, nor transfer, of energy into or out of the system, according to the

adiabatic law.

The above statement is consistent with knowledge of shock-
wave energies, in which all energy profiles drop, usually rapidly,
to zero, or at least to negligible values with increasing time.

Thus, the plot in Figure 15 yields a maximum peak value
of 5.74 × 1010 Joules when x = 0 m at t = 4.65 × 10−4 s,
with a rapidly decreasing profile that approaches the limit of
around 3.1 × 1010 Joules at x = 0.176 m, when using γ =
1.39 × 10−7m2/s. Since the long-term behavior of the energy is
calculated from the equation:

E (t) =
∫ ∞

0
e−

∫

u(k)dkdk (160)

on substituting the value
∫

u (x) dx = 3.1 × 1010 into the above,
we find that:

E (t) =
∫ c

0
e−4×1012dx =

[

e−3.1×1010x
]C

0

∼= 0 (161)

So the above factor, in which E (t) ∼= 0, not only suggests that
the long term energy certainly dissipates to a negligible quantity,
it also reinforces the principle of conservation of energy, in
this case stating that the total energy, ETotal, never exceeds the
maximum energy of the whole system, such that ETotal ≤ E (ξ),
or alternatively depicted by ETotal ≤ EMax.

Criticisms and Potential Problems With the Model in

the Section on Conservation of Energy and the

Calculation of Total Energy of Each System
In the section Hopf-Cole Transformation in obtaining Heat-
Diffusion Equation from Burgers’ Equation to model Shock-
Wave Energies, the analysis suggests that Equation (135), using
the original boundary condition, u

(

k
)

= αe−k sin (ωk) dk,
therefore results in a total energy of magnitude, ET , which is
consistent with energy conservation laws. However, the solutions
from this point onwards often tend to indicate that Dirac-delta
based Gaussian functions—such as the Normal distribution—
become important factors in understanding the nature and

behavior of energy transfers. Just how relevant these are to IED-
blast wave mechanics in the human brain remains to be seen, due
to the conservation laws and the finite nature of energy. If they are
relevant, then it is conceivable that a modified Gaussian approach
will be more appropriate.

Application of Fourier Transform to
Uniform Distribution (Boxcar Function) to
Obtain Gaussian-Based sinc (ω) Function
In this section, application of the Fourier Transform to the
Uniform Distribution (Boxcar Function) will be discussed. This
application of the given integrals will result in the obtaining of
the Gaussian-based sinc (ω)momentum-space function.

As Olver [10] suggests, the approach required to deduce a
more appropriate model would develop an equation involving
a characteristic variable k, perhaps in the form of a variable
quotient. For example, using Fourier Analysis, one can deduce:

k =
(x− ξ)
2
√
t

(162)

in which ξ represents one’s choice of spatial limits, or spatial-
phase values, along the x-axis.

In the section Determination of the Value of the Constants
of Proportionality, α and β , and Maximum Pressure, PM , the
characteristic variable in Equation (75), for example, can be
written:

k = u (t, x) =
(x− x0)

ct
(163)

Since the energy, as described in the last two sections, is largely
concentrated at a single point, from which its evolution with
respect to time often very rapidly decays in accordance with the
conservation laws, it is necessary to consider this factor in the
following section, modeling this dynamic process as accurately as
possible.

A Concentrated Point-Source of Energy,
E(t), Rapidly Dissipating With Increasing
Time
For the purposes of a straightforward example, we commence
the analysis by considering the general profile of a uniform
distribution, or boxcar function, [10], as:

f (x− ξ) =
{

c
ξ
; − ξ

2 < x < ξ
2

0 ; otherwise
(164)

where we choose a constant, c, to simply represent the constant
height of the rectangular distribution over the given spatial-

limits, − ξ
2 < x <

ξ
2 . In Equation (164), if we assume that

the transformed expression shows the maximum energy of the
whole system (under the subsequent curve that is produced),
f (x− ξ) = E (x− ξ), to be equal to c at the spatial-phase of
x = ξ , then it indicates that the value of E, as measured at
any other point in space or time, cannot be greater than E (ξ)
at any other given point for x 6= ξ . The argument is identical
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at x = ξ = 0, such that E (x− ξ) = E (ξ) = E (0) = c,
and it is again asserted that E (x− ξ) = 0 when x 6= ξ . All
this implies that the dynamic, energy-based, evolutionary system
approximates the Dirac-delta function:

δξ (x) = δ (x− ξ) =
{

c
ξ
; − ξ

2 < x < ξ
2

0 ; otherwise
(165)

whose integral is simply the likelihood of identifying “a particle,”
or at least the maximum energy, E, at x = ξ . It should be
noted here that, normally, the transformation of f (x− ξ) into a
function of frequency, for example, such as F (ω), is usually taken
to represent the momentum space. Certainly, for these models,
it turns out that F (ω) is closely linked to the energy, E (ω), by
way of the spatio-temporal variables, x and t, with E (ω) being
linked to F (ω), because of the areas under the produced curves
and, more appropriately, dynamically represented as a function
of time, or E (t). The units and dimensions of the area under each
curve are those of ML2T−1, or the momentum multiplied by the
distance an object travels.

The general Dirac-delta function states:

∫ ∞

−∞
δξ (x) f (x) dx =

∫ ∞

−∞
δ (x− ξ) f (x) dx = δ (x− ξ) f (ξ)

(166)

or:

f (ξ) =
∫ ∞

−∞
δ (x− ξ) f (x) dx (167)

The main reason why the Boxcar function above, the Dirac-
delta function in the definition below, and thereafter the Fourier
Transform, are discussed with this level of detail, is because each
will occur in the conversion of the initial signal into the energy
contained within the system as a whole.

Definition 2: The Dirac-Delta Function
Since, from Equation (165), the Dirac-delta function states:

f (ξ) =
∫ ∞

−∞
f (x) δ (x− ξ) dx

where the total area (or probability) under its curve generally
needs to be equal to unity, we must consider a normalized sample

between the limits of − ξ
2 < x <

ξ
2 so that, when ω = 2πx

and dx = dω
2π , Equation (165) equates to 1, for any generalized

function, f (x). By substituting in the given limits and angular
variables, we have:

F (ω) =
1

2π

ξ
2
∫

− ξ
2

δ (ω) f (ω) dω = 1 (168)

If the function at a given point in space, ξ , for example, is of a
maximum value, such as Fξ (ω) = FMax, then:

Fξ (ω) =
1

2π

∫ ∞

−∞
δ (x− ω) F (x) dx = FMax (ω) (169)

Here, ω has been used, rather than ξ , since the evolutionary
nature of the potential function, Fξ (ω), is more conveniently
measured in terms of angular-frequency (or just frequency), and
only has a value at the spatial coordinate, x = ω = 2πk.

For the dynamically dissipating, limiting value of the
momentum-space profile, F (ω), with f (x) = e−ikx, we first
determine the correct exponential form of F (ω), via the Dirac-
delta function in Equation (166) above. Thus, setting the whole

area of the curve, δ (x− ξ) to 1 squaremeter, and f (x) = e−i ω2π x,
the Dirac-delta function states:

1

2π

∫ ∞

−∞
δ (x− ω) F (x) dx = F (ξ) (170)

Given that, for an ordinary exponentially decaying curve, f (x) =
e−iωx = e−i2πkx, where dω = 2πdk, then we set k = x − ξ , such
that dx = dv. Hence, Equation (167) can be written:

∫ ∞

−∞
δ (x− ξ) e−iωxdx =

∫ ∞

−∞
δ
(

k
)

e−iω(k+ξ)dx

=
∫ ∞

−∞
δ
(

k
)

e−ikωe−ikξdk (171)

Since dk = dω
2π , we find:

1

2π

∫ ∞

−∞
δ (x− ξ) e−iωxdω =

1

2π
e−ikξ

∫ ∞

−∞
δ (ω) e−ikωdω

=
1

2π
e−ikξ (172)

or:

δξ (ξ) =
1

2π
e−ikξ (173)

Since we know that the given system only approximates to the
Dirac-delta function, such as when we arrive at the sinc (ω)
function from the Boxcar function as ω → ∞ , we can
assume that the actual momentum-space, F, peaks at a maximum
value, FM , rapidly dissipating to a lower limit, usually zero, as
described by an exponentially decaying function. Based on this
latter postulate, on integrating Equation (167) again, we obtain:

u (t, x) =
FM

2π

∫
ξ
2

ξ
2

δ (x− ξ) f (x) dx =
FM

2π
f (ξ) (174)

and by applying the relevant boundary conditions, f (ξ) =
e−2iωξ at t = 0 when x = ξ , we have the following exponentially
decaying profile:

u (0, ξ) = u (ξ) =
FM

2π
e−2iωξ (175)

⇒

u (ξ) =
FM

2π
e−2iωξ (176)

or:

F (ω) =
FM

2π
e−2iωξ (177)
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To convert the boxcar function into a more meaningful
distribution (namely the sinc (ω) function), we apply the Fourier
Transform, converting the function, u (x), into its respective
momentum-space-distribution defined by:

F (ω) =
∫ ξ1

ξ2

u (x) e−2iωxdx (178)

where i =
√
−1 and ω represents the angular-frequency of

the representative momentum-space and energy-spectrum. Since
u (x) = α (x− ξ1)− β (x− ξ2) = c, we can substitute this latter
result into Equation (178). Thus:

F (ω) =
∫ ξ1

ξ2

ce−2iωxdx (179)

which, using elementary mathematics, integrates to:

F (ω) = c

[

−e−2iωx

2iω

]ξ2

ξ1

(180)

⇒

F (ω) = c

[

−e−2iωξ2

2iω
+

e2iωxξ1

2iω

]

(181)

or, more simply:

F (ω) =
c

ω

[

e2iωξ1 − e2iωξ2

2i

]

(182)

In this latter result of Equation (182) if, for example, ξ1 = − 1
2 and

ξ2 = 1
2 , preserving reflective symmetry with a resulting range of

1, we have:

F (ω) =
c

ω

[

eiω − e−iω

2i

]

(183)

which is written:

F (ω) = c

(

sin (ω)

ω

)

(184)

or otherwise defined by:

F (ω) = c sinc (ω) (185)

Here, the momentum, F (ω), is a function of angular-frequency
(or distributed with respect to the angular-frequency), ω, which
represents certain levels of excitation. This is a significant result,
explaining the nature of the Dirac-delta function within the remit
of QuantumMechanics, as briefly discussed above.

What the above function tells us, especially through a
graphical plot, is that as ω → 0 (for increasingly
higher frequencies), then lim

ω→0
{F (ω)} = c. However, when ω

begins to increase, so that the energy wavelengths, λ, become
infinitesimally small (or λ → 0), the science is explained
by the quantum theory inherent in what is now a probability
distribution, assigning a degree of probability to the position of
a sub-atomic particle at time t.

It is a fundamentally quantum mechanical concept that when
the frequency, defined by f = ω

2π , of an energy- or momentum-
space sinc-distributed-energy function becomes ever increasingly
larger, even as it approaches infinity, ω→ ∞, sinc (ωx) becomes
ever thinner and taller in width and height, respectively. It
eventually becomes infinitesimally thin and infinitely tall, and for
every f = ω

2π = 1
λ
reduction in wavelength, the sinc (ω) function

enlarges by a factor of λ, such that:

F (ω) = λb sin (ω) (186)

where b = c
2π .

As demonstrated by algebraic manipulation, this creates
a Gaussian-distribution approaching the Dirac-delta function,
approximating the nature of many quantum mechanical effects.
This would include energy-distributions and momentum-spaces,
for example, witnessed within these areas of physics, mathematics
and science—and also within many associated scenarios.

However, there is another Gaussian function perhaps more
appropriate for illustrating energy distributions. This distribution
is defined by the boundary condition for the momentum-space
alone, namely:

u (x) = e−x2 (187)

or, more generally:

u
(

k
)

= e−k2 (188)

which requires that the distribution of u (t, x) must be square
integrable, such that the distribution of u (t, x) over a smaller
sample of an infinite range can, according toOlver [10], be written
in generalized coordinates as:

E(k) =
1

2

∫ ξ1

ξ2

∣

∣u
(

k
)∣

∣

2
dk (190)

with

FMax =
∫ ξ1

ξ2

∣

∣u
(

k
)
∣

∣

2
dk (191)

each of which obeys the conservation of energy, [10, 11], and still
preserves the resulting normalized-distribution.

Equation (190) may also be shown by multiplying Burgers’
equation, in Equation (17), by u(t, x), and then applying integrals,
to obtain the energy conservation law, [10, 11]:

d

dt

∫ ξ1

ξ2

1

2
u(t, x)2dx = −

d

dx

∫ ξ1

ξ2

1

3
u(t, x)3dx (192)

Within many physical contexts such as this one, and as
highlighted by Green’s Theorem, the right-hand-side of Equation
(192) represents the scalar magnitude of the energy, E, equal to
the flux—the rate of flow of the energy per unit area having the
solution:

d

dt

∫ ξ1

ξ2

1

2
u(t, x)2dx =

1

3

[

u(t, ξ2)
3 − u(t, ξ1)

3
]

(193)
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hence the result in Equation (190).
If one substitutes Equation (188) into Equation (191) and then

proceeds to apply the error function to the resulting integral, one
obtains the scaling factor, in this case, equal to:

FMax =
√

π

2
(194)

Thus, a function such as:

u
(

k
)

= e−ak2 (195)

will return the more general scaling factor or function of the
form:

∫ ξ1

ξ2

∣

∣u
(

k
)∣

∣

2
dk =

√

π

2a
(196)

where a is a parameter assuming either a constant value, or
the form of a variable, such as t or x, dictating the nature of
the resulting energy-space and the latter’s respective individual
values.

To obtain the energy-space resulting from the sinc (ω)

function in Equation (185), one needs to find the integral of its
square, namely:

c2
∫ ξ1

ξ2

|ψ (ω)|2dω = FMax (197)

so that:

c2
∫ ξ1

ξ2

sinc2 (ω) dω = FMax (198)

or, more simply:

∫ ξ1

ξ2

sinc2 (ω) dω =
FMax

c2
(199)

where FMax is the maximum value of the integrated function.

Heat Equation Modeling the Brain’s
Existing Natural Temperature Variation
In the section Hopf-Cole Transformation in obtaining Heat-
Diffusion Equation from Burgers’ Equation to model Shock-
Wave Energies, the Heat-Diffusion equation, Equation (134), was
expressed in terms of φ(t, x), which itself is some function of
u(t, x), thus linking the two. The solution to Burgers equation,
in terms of each of these variables, will be achieved at a later
stage but, for now, we re-state the Heat-Diffusion equation for
a constant, existing, initial temperature, u0, in the absence of
any external energy input. This permits thermal energy to be
naturally transferred from regions of high to low potential, as will
occur for the human brain undergoing many complex influences.
This relationship is more simply written as:

ut = γuxx + u0 (200)

where the same functional notation, u(t, x), is now assumed to
describe the transfer of energy in the human brain, resulting in

an increase in its thermal energy. Here, γ represents the heat-
diffusion coefficient equal to 1.39× 10−7m2/s, verified from data
given by Elwassif et al. [12].

We should consider that, unlike the energy defined by Burgers’
equation in Equation (190), the Heat-Diffusion equation yields
the total energy, for zero initial temperature, of the system as:

E(t) = ρc

∫ ξ1

ξ2

|u (t, x)| dx (201)

where ρ is the density of the brain, taken to be a constant overall
value of 1,040 kg/m3, and cp represents the brain’s specific heat
capacity of 3,650 Jkg−1C−1.

The complexity of this situation requires some assumptions,
based on pressure profiles in earlier sections. To facilitate a
simpler solution, we first solve the Heat-Diffusion equation for
an un-forced system (in the absence of an IED-blast) where the
temperature decays to zero:

ut = γuxx (202)

and then reintroduce the constant heat source, u0 6= 0, into the
final, time-independent, steady state solution:

u (t, x) = v (t, x)+ u∗(t, x) (203)

A further assumption can bemade that, at t = ǫ > 0, there is zero
energy flux due to the absence of an IED-blast and, therefore, a
zero-energy pulse until the point where x = ξ > 0, the latter
being the point of any shock-wave impact immediately after a
blast.

At x = 0 when t = 0, we may adopt both Dirichlet and
Neumann boundary conditions, u (t, 0) = u0, u (t, L) = u0,
u (0, x) = u (x) = φ (x) and ux (t, 0) = ux (t, L) = 0, so that
periodic boundary conditions enable the solution to be satisfied
at the given limits, and where the brain’s own natural heat-source,
u0, represents the normal temperature or energy of the human
brain at both x = 0 and t = 0. Given the absence of any IED-
energy pulse, in adopting the Heat-Diffusion equation, we may
assume that the temperature profile will oscillate about the brain’s
natural temperature, [12–17], to some extent so that, under
normal circumstances u0 → 37◦C (or 310.15 Kelvin) as t → ∞ .

We commence by modeling the behavior of the solution over
the range stipulated by 0 ≤ x ≤ L, with L = 0.176 m, whereby
we consider a narrow “bar-like column” through the brain [18],
except with different boundary conditions that will be considered
at a later stage.

Using the following eigen-function substitution for an
exponentially decaying sinusoidal temperature profile to solve
Equation (202), we have:

u (t, x) =
∑∞

1
φn (x) e

−γω2t (204)

where λ > 0. Putting γω2 = λ and partially differentiating
Equation (204) for ut and uxx, we obtain the equivalent
eigen-functions, otherwise illustrating a summation of ordinary
differential equations (ODEs), denoted as:

ut = −
∑∞

1
λφn (x) e

−λt (205)
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and:

uxx =
∑∞

1
e−λt

d2φn

dx2
(206)

Substituting Equations (205) and (206) into Equation (202) the
following ordinary differential equation (ODE) is obtained:

γ
∑∞

1
e−λt

d2φn

dx2
= −

∑∞

1
λφn (x) e

−λt (207)

On re-substituting λ = γω2, canceling the common summation
signs and other factors on both sides and separating the variables,
we obtain the second order, simple-harmonic-motion, ODE:

d2φn

dx2
= −ω2φn (x) (208)

to which the solution is:

φn (x) = A cos (ωx)+ B sin (ωx) (209)

where, from Equation (202), φn (x) = u(x) at t = 0.
Since this is a thermal energy or temperature-based problem,

rather than one based solely on the flux-based profile, we need
to use both Dirichlet and Neumann Boundary Conditions, which
assume that at x= 0 and x = L, u (t, 0) = u (t, L) = u0 = 37 and
∂
∂xu (t, 0) =

∂
∂xu (t, L) = 0.

Given that u (t, 0) = u (t, L) = 37, then the second partial
derivative of Equation (208), which is the derivative of Equation
(203), is:

uxx =
∂2u

∂x2
= 0 (210)

The basic steady-state temperature solution is the analogy to
Equation (209), and can be obtained after reversing the process,
re-integrating Equation (210), twice, and solving simultaneously
with Equation (209), the solution being:

u (x) = Ax+ B (211)

where A and B are constants of integration.
Substituting both sets of initial conditions into Equations

(209) and (211) at x = 0 and x = L = 0.176 m indicates that
A = 0 and B = b0 = 37◦C. Thus:

φn (x) =
∑∞

1
bn sinωx (212)

where, from Equation (204), we see that φ0 (x) = b0 = u0 is
another solution.

By substituting Equation (212) into Equation (204), we may
write:

u(t, x) =
∑∞

1
cne

−γω2t sin (nωx) (213)

which is the sinusoidal temperature profile for zero initial
temperature (u0 = 0◦C when x = 0 at t = 0).

This complementary solution may now be added to u0 to
obtain the general steady-state solution, again indicated by

Equation (203). This amounts to shifting Equation (213) along
the vertical axis of its graph by u0 = 37◦C units to produce the
steady-state temperature profile for the human brain about this
temperature, given by the more general series of n solutions:

u (t, x) = u0 +
∑∞

1
cne

−γω2t sin (nωx) (214)

By letting lim
n→∞

n = ∞ , and ω = π
L , Fourier Analysis tells us

there are any number of such eigen-solutions as follows:

u (t, x) = u0 +
∑∞

1
cne

−γ ( nπL )
2
t sin

(nπx

L

)

(215)

where u0 is the equilibrium, average, long-term temperature (of
37◦C), about which it varies, slightly, over time, and where the
sequence of terms containing cn, for n = 1, 2, 3, . . . , are the
Fourier coefficients [10].

Assuming the limit of a discrete sequence of the form of
Equation (215) approaches the steady-state solution of u0, with
t set equal to a constant, ǫ, it can be shown that since:

limδξ→0

∑∞

1

cnL

nπ
e−γω

2t sin (ξ) =
cn

nω
e−γω

2ǫ

∫ ∞

0
sin (ξ) dξ

(216)
after finding the first Fourier coefficient, c1, using the formula:

cn =
2

L

∫ L

0
u0 sin

(nπx

L

)

dx, n = 1, 2, 3, . . . , ω =
π

L
(217)

we obtain:

cn =
4u0

nπ

where we have:

u (t, x) = u0 +
∑∞

1

4u0

nπ
e−γ (

nπ
L )

2
t sin

(nπx

L

)

(218)

and, by applying the Riemann sum [10], Equation (218) can
be expanded and integrated, namely via the Riemann integral,
initially as a first closed form approximation for the above series
in the form of:

u (t, x) = u0 +
4u0L

π

∫ ω

ω=0
e−aω2 sin (Lω)

Lω
dω (219)

where we have set a = γ ǫ , ω ∼= nπ
L , and dω = π

L , from Olver
[10], p. 265, 2014.

However, since Equation (219) yields absurdly high Dirac-
delta type values (which requires application of the Fourier
Transform), it is therefore inappropriate for modeling the
variation of the normally existing brain temperature in this
specific case. To overcome this issue, we can instead write
Equation (218) as a Riemann integral in terms of the spatial
variablex, namely:

u (t, x) = u0 +
∫ π/L

0

4u0L

π2
e−γ (

nπ
L )

2
t sin

{

nπ

L

(

x+
L

2

)}

dx

(220)
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for the range −0.088 < x < 0.088, where dx ∼= 1x = π
nL in the

limit.
This yields a more reasonable range for the temperature

distribution than the series represented by Equation (219).
It also smooths out the otherwise much higher temperature
values (including the peak value) of Equation (218), which
is the un-transformed solution briefly discussed below, whilst
simultaneously illustrating the naturally varying sinusoidal
profile. Within this context, the conversion of each summand
within the original series in Equation (218) to either a definite
or an indefinite integral in Equation (220) serves to sum over all
eventualities within the convergent limit. This produces a more
accurate result for a brain that has not yet been subject to an
IED-blast.

The temperature profile, as expressed by Equation (200) and
its solution for the given parameters in the section Calculation
of the Brain’s Existing Natural Temperature Variation below,
in producing each of the snapshots-in-time displayed by
Figures 16A–G, indicates the presence of slight instabilities in the
existing brain temperature even in the absence of other external
influences.

In Figure 16B, there is a sharp increase (but only by a fraction
of a degree), then a sharp decrease in temperature between 10
and 20 s, before rising again and approaching the equilibrium
temperature. Figures 16C–G continue to outline this increase
and decrease in energy and temperature even further, along with
the behavior of each profile oscillating to an even greater extent
as time approaches the 11 h stage in Figure 16G.

Although this profile appears to finally approach the
equilibrium temperature of 37◦C at approximately the 13 h stage
in Figure 16G, because of the nature of the mathematically
convergent sequence that forms it, one may assume that
these temperature oscillations will always continue to occur
indefinitely due to the sinusoidal term in Equation (218) and
other biological influences such as the existing heat-source of the
brain.

Calculation of the Brain’s Existing Natural
Temperature Variation
The calculation of possible naturally existing energies and
temperatures within the brain now follows. From Equation (211),
we know that at x = 0 when t = 0, then u (x) = u0, such that
E0 = ρcpu0. Therefore, since the total energy is obtained from
Equation (201), we have:

E (t) = ρcp

∫ L

0
u(t, x)dx

but only in situations when the initial internal temperature and
energy, u0 and E0, are themselves zero.

However, we know that the initial energy is not zero, due to
existing brain temperature, so we may rewrite the above energy
integral, Equation (201), as:

∫ E

E0

dE = ρcp

∫ L

0
u(t, x)dx (221)

FIGURE 16 | (A) Heat-Solution up to 35 s. (B) Heat-Solution up to 60 s. (C)

Heat-Solution up to 160 s. (D) Heat-Solution up to 30min. (E) Heat-Solution

up to 5 h. (F) Heat-Solution up to 11 h. (G) Heat-Solution up to 16 h.
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so:

E− E0 = ρcp

∫ L

0
u(t, x)dx (222)

where if, as stated, E0 = ρcpu0 is a non-zero constant at the point
x = 0 when t = 0, we may write Equation (221) as:

E− ρcpu0 = ρcp

∫ L

0
u(t, x)dx (223)

By rearranging the above equation, a steady-state solution for the
energy is:

E (t) = ρcpu0 + ρcp
∫ L

0
u(t, x)dx (224)

where ρcpu0 is initially independent of both time and space, and
is neither a function, nor a multiple, of either.

To determine the maximum temperature of the system, we
need a time, t, as close to zero as possible at which the maximum
value of the curve takes place. The scaled characteristic diffusion

time is therefore t = ǫ = L2t∗
γ

, where we see that t∗ = 1
π2

∼= 0.1

s, this latter quantity being the peak-time approximation at this
point. Because there is a rapid convergence of the sine terms
toward the equilibrium value of 37◦C, in Equation (218), around
which it oscillates indefinitely, the leading term for n = 1 of
this sequence is normally sufficient to calculate the resulting
maximum temperature. We therefore note that, by re-scaling this

time-dimension as t = L2

γπ2 and substituting L = 0.176 m and

γ = 1.38 × 10−7 m2/s, we find that t∗ = 6.31 h, which is
roughly the time taken for this system to (ideally) settle down to
equilibrium again. Putting n = 1 and x = L

2 for the maximum
temperature obtained at the “center of the column through the
brain,” Equation (218) yields a value of:

u (t, x) = u0 + 0.47u0 (225)

which returns the rather unlikely value of 54.33◦C. Clearly, this
is too large a value for standard variation in a normally heated
and resting brain, whose equilibrium temperature is 37◦C in the
absence of any other external stimuli. Therefore, we now adopt
Equation (220) to see if it is possible to profile a more realistic
energy and temperature solution.

Substituting Equation (220) into Equation (224), we obtain:

u (t, x) = ρcpu0 +
4ρcpu0L

π2

∫

e−γ (
nπ
L )

2
t sin

(

nπ

L

(

x+
L

2

))

dx

(226)

and, since the characteristic diffusion time is t = L2

γπ2 , we have:

E = ρcpu0+
(

4ρcpu0L

π2

)

e−n2
∫

sin

{

nπ

L

(

x+
L

2

)}

dx (227)

On integration of Equation (227), we have:

E = ρcpu0

{

1−
4L2e−n

nπ3
cos

{

nπ

L

(

x+
L

2

)}}

(228)

Since Equation (228) has been obtained via the Riemann integral,
where the mid-point is x = L

2 for the range 0 ≤ x ≤ L, then,
with n = 1, the solution yields a maximum energy of 1.406 ×
108 J and a temperature of 37.055◦C. This latter figure appears
reasonably consistent with observed temperature fluctuations
for a normal and un-inflicted human brain in its resting state
[19]. The sinusoidal temperature profile of this is illustrated in
Figure 17A.

In Figure 17A, the temperature does not exceed the peak
value, but gradually smooths out from the mid-point onwards as
it “decays” with time, consistent with energy conservation. Given
that the temperature ranges between a minimum of 36.95◦C and
a maximum of 37.054◦C over a normal period of life, it is clear to
see that for n = 1, 2, 3, .. . , k each of these values must oscillate,
as the sinusoidal term suggests, although it is the tendency of the
system to approach the steady state equilibrium temperature of
37◦C. Figures 17B,C illustrate both the sum of all the individual
temperature profiles in Equation (228) for n = 1 to 50, and the
individual temperature distributions, respectively.

It is also of importance tomention, here, that if Equation (218)
is integrated term by term (but leaving the first term, u0, alone), in

the form of
x
∫

a
u
(

t, y
)

dy =
∞
∑

n=1

∞
∫

a
un(t, y)dy [10], whereu (t, x) =

∑∞
1

4u0
nπ e

−γ ( nπL )
2
t sin

{

nπ
L

(

x+ L
2

)}

, then we obtain:

L
∫

0

u (t, x) dx = u0 −
4Lu0

en2π2
cos

{

nπ(L+ 2x)

2L

}

(229)

Substituting in the same values as before for each of the
parameters in Equation (229), with n = 1 and x = L

2 , the first
term returns maximum and minimum peak-values of 37.97◦C
and 36.03◦C, respectively, whilst the sum of all the Fourier terms
up to n = 50 yields 37.8◦C and 35.04◦C. The graphs for each case
can be seen in Figures 17D–F, below.

Calculation of Induced Temperature
Variation and Energies Within the Brain
Due to an IED-Blast
In the event of an IED-blast, energy is transferred to the human
brain within the vicinity of the explosion and added to the brain’s
existing heat energy, u0, this being likely to make more of a
difference to its temperature variation.

We now consider an additional cylindrical explosive blast
forcing term [18, 20], of EP = 1

2v
2
(

m
C + 1

2

)

, which we
may assume, after this energy has entered the brain, decays

exponentially in the form of q (t, x) = 1
2v

2
(

m
C + 1

2

)

e−γ (
nπ
L )t =

EPe
−kt . It has been assumed, here, that the full amount of IED-

energy, EP, initially enters the brain, whereby it is more likely
that only a fraction of this does so in reality. Much of this
depends on the number of military personnel present, along
with the presence of other physical obstacles (and the nature of
the terrain), greater numbers of which tend to absorb a lower
quantity of energy per person or object in such circumstances
[18]. This means that any energy transfers and temperature
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FIGURE 17 | (A) Variation of Temperature Distribution obtained from Equation

(228) for n = 1. (B) Temperature Variation as a result of adding the series

defined by Equation (228) for n = 1 to 50. (C) Individual Temperature Profiles

for n = 1, 2, 3,..., generated by Equation (228). (D) Variation of Temperature

Distribution obtained from Equation (229) for n = 1. (E) Temperature Variation

as a result of adding the series defined by Equation (229) for n = 1 to 50. (F)

Individual Temperature Profiles for n = 1, 2, 3,..., generated by Equation (229).

increases are more likely to be less pronounced and intense when
factors like these are considered.

Here, the velocity, v, of the blast is normally taken to be a
constant, and where m/C is the ratio of the mass, m, of the
cylindrical metal casing to the mass, C, of the explosive material.
This situation may be quite different for a spherically designed
thermo-nuclear device, for example. Thus, we may attempt to
solve the modified, forced, Heat-Diffusion equation, to test if this
is an appropriate model. The forced equation may therefore be
written as:

ut = γuxx + q̇(t, x) (230)

withu (0, x) = 37, and where q̇(t, x) is the variable energy density
emitted by the IED blast-wave as it impacts the skull. Again, we
substitute u (t, x) =

∑

φn(t) sin nωx, with the energy density
q̇ (t, x) = EP

ρcp
e−kt , into Equation (230), without assuming that

this energy decays according to the same exponential parameters
as elsewhere, although it may well do so. We therefore find that
ut =

∑

φn
′(t) sin nωx and ut = −ω2

∑

φn(t) sin nωx, such that
the Heat-Diffusion equation now becomes:

∑∞

1
φn

′(t) sin nωx = −ω2γ
∑∞

1
φn(t) sin nωx+ αe−kt

(231)
which simplifies to:

∑∞

1

(

dφn

dt
+ ω2γφn(t)

)

sin nωx = αe−kt (232)

where α = EP
ρcp

for convenience, and where EP is taken to be

constant. To solve this problem, we need to find the Fourier sine

series of the term, αe−γ (
nπ
L )

2
t = 1

2v
2
(

m
C + 1

2

)

e−kt , on the right-
hand-side, so, keeping all variables in terms of the temperature,
we have:

αe−kt =
∑∞

1
q̇n(t) sin nωx (233)

We obtain the bn by performing the integral:

bn =
2

L

∫ L

0
f (x) sin

(nπx

L

)

dx (234)

such that:

bn =
2

L

∫ L

0
αe−kt sin

(nπx

L

)

dx (235)

resulting in:

bn =
2αe−kt

nπ

[

− cos
(nπx

L

)]L

0
(236)

or:

bn =
2αe−kt

nπ
[− cos (nπ)+ 1] (237)

bn =
2αe−kt

nπ

[

1− (−1)n
]

(238)
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Now, for even n = 2, 4, 6, . . . .,

bn = 0 (239)

and for odd n = 1, 3, 5, . . . .

bn =
4α

nπ
e−kt (240)

Equation (232) can be equated to:

dφn

dt
+ γ

(nπ

L

)2
φn(t) = 0 (241)

for even n = 2, 4, 6, . . . , and:

dφn

dt
+ γ

(nπ

L

)2
φn(t) =

4α

nπ
e−kt (242)

for odd n = 1, 3, 5, . . . .
Equation (241) can be solved to yield the complementary

function:

φn (t) = cne
−γ ( nπL )

2
t (243)

where cn is a series of constants, each yet to be determined.
Now, the solution to Equation (242) is obtained by

using undetermined coefficients, which is perhaps more
straightforward here than using the integrating factor method.

Thus setting φn = Ae−kt , we find that φ
′
n = −Ake−kt . Hence,

Equation (242) can be written:

Aγ
(nπ

L

)2
e−kt − Ake−kt =

4α

nπ
e−kt (244)

where we find:

A =
4αL2

nπ
(

n2π2γ − kL2
) (245)

Substituting this value into φn = Ae−kt , we find one solution:

φn(t) =
4αL2

nπ
(

n2π2γ − kL2
) e−kt (246)

Henceforth, by adding this solution, φn, to Equation (243), we
have the general solution:

φn (t) = cne
−γ ( nπL )

2
t +

4αL2

nπ
(

n2π2γ − kL2
) e−kt (247)

Since the eigen-function for the solution yields u (t, x) =
∑∞

1 φn sin
(

nπx
L

)

, on substituting this into Equation (247), we
have:

u (t, x) =
∑∞

1
cne

−γ ( nπL )
2
t sin

(nπx

L

)

+
∑∞

1

4αL2

nπ
(

n2π2γ − kL2
) e−kt sin

(nπx

L

)

(248)

The Fourier transform of the various cn is obtained by first
computing the Fourier series for the initial condition (att = 0):

un(x) =
2

L

∫ L

0
u0 sin

(nπx

L

)

dx (249)

yielding:

u0 =
4u0

nπ
(250)

hence:

u (x) =
∑∞

1

4u0

nπ
(251)

or, after substituting Equation (251) back into Equation (249), we
obtain:

u (x) =
∑∞

1

4u0

nπ
sin
(nπx

L

)

(252)

Equating this last result with Equation (248) at t = 0, dropping
the summands and canceling common terms, yields:

cn +
4αL2

nπ
(

n2π2γ − kL2
) =

4u0

nπ
(253)

which leads to:

cn =
4u0

(

n2π2γ − kL2
)

− 4αL2

nπ
(

n2π2γ − kL2
) (254)

This means that Equation (248) can now be re-written:

u (t, x) =
∑∞

1

4ρcpu0
(

n2π2γ − kL2
)

− 4EPL
2

ρcpnπ
(

n2π2γ − kL2
) e−γ (

nπ
L )

2
t

sin
(nπx

L

)

+
∑∞

1

4EPL
2

ρcpnπ
(

n2π2γ − kL2
) e−kt

sin
(nπx

L

)

(255)

Before we write down a full thermal solution for u(t, x), it is
important to note that there is a unique thermal equilibrium
solution, as indicated in the section The Heat EquationModeling
the Brain’s Existing Natural Temperature Variation, of u0 > 0:

u (t, x) = v (t, x)+ u∗(t, x) (256)

where:

u (t, x)→ u∗(t, x) (257)

as time increases indefinitely, t → ∞ .
Henceforth, a full temperature solution is:

u (t, x) = u0 +
∑∞

1

4ρcpu0
(

n2π2γ − k
)

− 4EPL
2

ρcpnπ
(

n2π2γ − kL2
) e−γ (

nπ
L )

2
t

sin
(nπx

L

)

+
∑∞

1

4EPL
2

ρcpnπ
(

n2π2γ − kL2
) e−kt

sin
(nπx

L

)

(258)
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Once again, substituting ω = nπ
L , dω = π

L , and dx =
π
nL , assuming convergence and applying the Riemann sum, this
energy-temperature solution (per unit mass in kilograms) can
be written as the Fourier Transforms for both the frequency and
spatial domains:

u (t, x) =



















u0 +
π/L
∫

0

4ρcpu0L(ω2γ−k)−4EPL

ρcpnπ2(ω2γ−k)
e−γω

2t sin (ωL) dω +
π/L
∫

0

4EPL
ρcpnπ2(ω2γ−k)

e−kt sin (ωL) dω

u0 +
L
∫

0

4ρcpu0L(ω2γ−k)−4EPL

ρcpπ2(ω2γ−k)
e−γω

2t sin (ωx) dx+
L
∫

0

4EPL
ρcpπ2(ω2γ−k)

e−kt sin (ωx) dx

(259)

respectively.
The energy profiles are simply expressed as:

E (t, x) =



















ρcpu0 +
π/L
∫

0

4ρcpu0L(ω2γ−k)−4EPL

nπ2(ω2γ−k)
e−γω

2t sin (ωL) dω +
π/L
∫

0

4EPL
nπ2(ω2γ−k)

e−kt sin (ωL) dω

ρcpu0 +
L
∫

0

4ρcpu0L(ω2γ−k)−4EPL

π2(ω2γ−k)
e−γω

2t sin (ωx) dx+
L
∫

0

4EPL
π2(ω2γ−k)

e−kt sin (ωx) dx

(260)

Since we have already defined: EP = 1
2v

2
(

m
C + 1

2

)

and using data
provided by Jacobs [20], and others such as Gerber [21], if we take
v= 1,732, 2,500, 3,162 and 4,000 m/s (as based on the referenced
literature) and m

C = 1.5, then the initial IED-blast energies, for a

value of k = π
L = 125π

22 , are calculated as:

EP =















3.00× 106 Joules
6.25× 106 Joules
1.00× 107 Joules
1.60× 107 Joules

(261)

Integrating Equation (260) with respect to ω on the interval 0 ≤
ω ≤ π

L , and substituting the above (and additional) energies into

the solution, with an initial scaled peak-value oft = L2

γπ2 , yields

several linearly increasing maximum, “peak,” temperatures (at
x = 0.088 m). Some of these are displayed in Table 1. Figure 18
also shows the apparent linear relationship between these energy

TABLE 1 | Table of temperature values vs IED-blast energies.

Energy (J) Temperature (◦C)

30,00,000 56.6806

62,50,000 56.7531

16,250,000 56.8257

26,250,000 56.8982

36,250,000 56.9707

46,250,000 57.0433

56,250,000 57.1158

66,250,000 57.1883

76250000 57.2609

86,250,000 57.3334

96,250,000 57.4118

106,250,000 57.4902

pulses and the possible temperatures resulting from the solution
to Equation (260).

Significantly increasing the size of the initial energy pulse
within this model results in only fractional linear temperature
increases (between 56.68◦C and 57.49◦C) over just less than a

1◦C range. Each of these temperatures corresponds to the range
of pulses between 3× 106 J and 1.0625 × 108 J, although the

difference between them and the steady-state value of 37◦C is
significant at a maximum total temperature increase of 23◦C for
this given energy range.

Additionally, this also means that the maximum peak energy
entering the brain is itself raised from around 1.40452 × 108 J
to as much as 2.3 × 108 J for the energy range illustrated
in Table 1. No matter how much energy is imparted to the
system by a cylindrical blast (which arguably results in a Dirac-
delta spike, whose maximum peak continually increases with
increasing energy input), the temperature will increase only
fractionally beyond what is calculated for the first pulse—
although the theory suggests that one may linearly extrapolate
larger temperatures corresponding to even larger energy-pulses.
However, one should observe that these calculated peak energy
values do not necessarily represent energy-densities, as the latter
refers to the area under each respective curve and, henceforth,
each quantity of energy contained within the brain as a whole for
each energy pulse.

Just how large an energy pulse needs to be to violate this
pattern of linearity remains to be seen; for example, whether an
explosive device is cylindrical or spherical—such as a nuclear
explosion in the latter case—will have differing effects on the

FIGURE 18 | Graph of variation of temperature vs IED-blast energy.
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body and brain. It is possible that some of the energies in Table 1

beyond the 16MJ blast are more indicative of a thermonuclear
energy emission, in which case a different function for the energy-
pulse would need to be adopted and substituted into Equation
(260). As was alluded to above, and to be explained more fully
later, when these Gaussian curves get taller, their widths also
decrease proportionately so that the same area under them—
representing the energy density contained with the brain post-
blast—is also maintained. For such a situation, and others like it,
the temperature—or energy density—is a constant [10].

Using the same energy values in Equation (261), again, if
we vary the constant k, and set it equal to ω2, such that k =
(

π
L

)2 =
(

125π
22

)2
, we find that the maximum energy values are

only hundredths of a degree lower, and change very little overall.
Also, it appears that by considering many Fourier terms

in either the integrated Fourier series or Equation (260), the
square of the original value of angular-frequency of the initial
energy pulse, after entering the brain, makes very little further
difference to any temperature increases within the brain due to
the increasingly vanishing nature of the exponential term in the
second integrand.

Within this model, it appears that the parameters and
structure of the human brain, such as the diffusivity constant,
γ = 1.38 × 10−7m2/s, as well as the nature of IED-
blast energy emissions and transfer, are implicit in the Heat-
Diffusion equation within this context. Many of the other, as-yet,
unconsidered parameters of the brainmay influence the diffusion
of thermal energy and temperature variations, resulting from an
IED-blast, which this model predicts. It may be the case that the
energy contained within the brain, post-blast, is more effective
in its harm in other ways, if not by simply increasing the brain’s
temperature alone.

During their analysis of the effects of Joule heating on the
“Bio-heat transfer model of deep brain stimulation-induced
temperature changes,” Elwassif et al. [12], and others [13–15],
pointed out that even slight temperature fluctuations significantly
affect brain function. They also indicate that temperature
increases occurring between 37◦C and 37.5◦C cause “changes in
cell excitability”; between 37.5◦C and 38◦C, there are “changes
in network function/blood-brain barrier (BBB) breakdown”; a
“sustained increase” from 38◦C to 39◦C “can have profound
effects on brain function,” with “severe effects on tissue function
likely”; and “cell damage/tissue ablation is observed at sustained
temperatures over 40◦C. The authors further assert that many
reasons for such adverse brain functionality are due to changes in
voltage, conductivity, resistance and capacitance, thus affecting
neuronal and synaptic firing, given that temperatures affect
each of these factors very significantly, as is known within the

Electronic and Electrical Engineering industries. Such evidence
has implications for those subject to IED-blast phenomena, in
which brain temperature increases could exceed 1, 2, or even 3◦C,
which may be discussed in later publications.

CONCLUSION

Within the body of this second paper, an in-depth, rigorous
approach has been adopted to model resulting dynamic pressures
following the initial transitory shock-wave. By adopting more
complicated boundary conditions, a set of particular-solutions
for both Burgers’ and the Transport equations have been
determined for the respective temporally-evolving pressures,
accompanied by respective graphical plots, the latter closely
resembling the Friedlander curve [1–4]. These graphical plots
illustrate, not only the enormous over-pressures that result but,
the under-pressures experimentally observed, sometimes prior
to the maximum pressure occurring, sometimes afterwards,
depending on the model chosen and the other physical factors
affecting laboratory experiments.

In short, the models show that the experimental data can
often be modeled using a combination of both exponential and
sinusoidal models and, to this effect, the nature of IED shock-
wave propagation through the brain is ultimately that of damped
sinusoidal motion. Also, using other advanced mathematical
techniques, such as the Hopf-Cole Transformation, application
of the Dirac-delta function and the Heat-Diffusion equation,
equations and expressions have further been determined to
model and predict the associated energies within this paper and
in any future publications. To this end, the latter part of this
paper has also commenced on-going work on these neurological
thermal energies and temperatures, along with the relevant
numerical energy values and temperature increases within the
brain associated with the severity of any shock-wave impact.

In conclusion, there are likely to be brain temperature
increases of more than 1◦C and higher, with such factors almost
inevitably resulting in mental illness, due to neurological trauma,
following the resulting traumatic brain injury sustained after
an IED-blast impact. The resulting temperature increases from
37◦C to at least 41◦C, predicted by the mathematical methods
within this publication, appear to verify the contents of existing
literature. It is hoped that the methods used to obtain the results
here are accurate and precise.
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