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This paper discusses two alternative models to the Restricted Three Body Problem

(RTBP) for the motion of a massless particle in the Earth-Moon system. These models

are the Bicircular Problem (BCP) and the Quasi-Bicircular Problem (QBCP). While the

RTBP is autonomous, the BCP and the QBCP are periodically time dependent due to

the inclusion of the Sun’s gravitational potential. Each of the two alternative models is

suitable for certain regions of the phase space. More concretely, we show that the BCP

is more adequate to study the dynamics near the triangular points while the QBCP is

more adequate for the dynamics near the collinear points.

Keywords: Restricted Three Body Problem, Bicircular Problem, Quasi-Bicircular Problem, periodic hamiltonian,

stroboscopic map, invariant manifolds

1. INTRODUCTION

During the last years, the scientific community has increased its interest in the natural motions
occurring in the Earth-Moon system. The list of possible applications is vast, for instance: the study
of the far side of Moon and the relation with the translunar point L2; the aim to exploit the cis-lunar
space and the convenience of using the invariant structures related to L1.

We have mentioned a couple which are specifically related to the Lagrangian points but,
obviously, the list goes on covering a wide range of interests. Efficient mission designs depend
ultimately on the understanding of the natural dynamics. To fulfill this goal, it is advisable to use
simplified models. Simple models allow us to understand the underlying mechanisms that lead
to interesting phenomena. From the dynamical systems point of view, the comprehension of the
invariant structures (and their stability) of simple models has helped to shed light on difficult
problems such as the motion of asteroids through the solar system, station keeping of spacecraft
and taking advantage on the natural dynamics to design spacecraft missions. Perhaps the most
illustrative example for the purpose of this work is the existence of the Trojan asteroids that can
be predicted using the effective stability of the triangular points of the Sun-Jupiter Restricted
Three Body Problem (RTBP). This example is convenient for the purposes of this work because
the existence of objects in the triangular points has a counterpart in the Earth-Moon system: the
Kordylewsky clouds. We shall come back to this example during this work (section 4.3)but, for
the moment being, we want to stress that the existence of these clouds cannot be established by
using the same theoretical mechanisms as the Trojan asteroids [1–3]. In fact, the literature related
to the Kordylewsky clouds has been stumbling around the existence or nonexistence of objects
in the Earth-Moon triangular points, mostly because of the lack of observations. Therefore, it is
convenient to analyze whether a simple model is suitable for the problem we want to study.

The Earth-Moon RTBP is the most used simple model for the motion of a small body in the
Earth-Moon system. There is, however, a remarkable number of works that take into account the
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presence of Sun’s gravitation (see, for instance, [4–8]). Indeed,
the most relevant effect ignored by the Earth-Moon RTBP is
the gravitational attraction of Sun. In this respect, a simple
model to study the dynamics near the Earth-Moon system needs
to take into account Solar gravity. The problem has a natural
non-autonomous periodic time dependence formulation. An
advantage of the periodic models is that they can be handled
by means of a stroboscopic map i.e., the map defined by the
evaluation of the flow at the period of the vectorfield. This is
crucial because, while the complexity of the system increases,
the study of maps (even if they are numerically defined) is,
in some aspects, more comfortable than the study of flow. In
periodic time dependent systems, the simplest invariant objects,
the ones the dynamics is organized from, are the periodic
orbits with the same period as the vectorfield. These periodic
orbits appear as fixed points of the stroboscopic maps and their
robustness is assured by the classical Implicit Function Theorem.
We would like to remark that, in quasi-periodic models the
simplest invariant objects are invariant tori. The computation
and study of these objects is more difficult. The discussion in
this paragraph vindicates a closer look to periodic models for the
Earth-Moon system. We have selected two among the literature,
the Bicircular Problem (BCP) and the Quasi-Bicircular Problem
(QBCP). Both models include Sun’s gravity and can be written as
periodic perturbations of the RTBP.

The BCP is a restricted four body problem [9, 10]. There
are three primaries and a fourth, massless, test particle. In our
case, the three primaries are Earth, Moon and Sun. However, this
model has been utilized in other cases [11]. It is assumed that
Earth and Moon move as in the RTBP, that is, along a circular
orbit around its common center of masses. Let us name CEM

this barycenter. Name CSEM the center of masses of the Sun-
CEM system. As Moon and Earth move, it is assumed that Sun
and CEM move in another circular orbit around CSEM . We refer
to Gómez, et al. [12] for a detailed derivation of the equations
of motion. The BCP is a periodic perturbation of the RTBP
that takes into account the direct gravitational effect of a third
primary (in our case, Sun) on the particle. This model captures
the non-stable character of the triangular points. Henceforth, it
is suitable to use it when studying problems related with these
locations (see, for instance, [13, 14]). A remarkable shortcoming
of the BCP is its lack of coherence i.e., the motion assumed
for the primaries does not verify Newton’s laws. Moreover, the
BCP has no translunar dynamical structure. This justifies the
seek for a more complex model for the study of, at least, the L2
point.

The QBCP is a version of the four body problem. It is
conceived to be a coherent counterpart of the BCP. This model
was introduced by C. Simó, and it has been used in several works,
see [15–17] and, more recently, [18]. A characteristic of the BCP
is the lack of coherence of the bicircular solution assumed for
the primaries. However, there exist solutions of the three body
problem which are close to bicircular [19]. To build the QBCP it
is necessary to compute a quasi-bicircular solution of the three
body problem, in this case, for the Earth-Moon-Sun case. There
are several ways to do such a thing. In Andreu [15], Andreu and
Simó [16], and Andreu [17] the authors build a specific algebraic

manipulator and compute directly the Fourier coefficients of the
quasi-bicircular solution. In Gabern [20], Gabern and Jorba [21],
and Gabern et al. [22] the authors use a continuation scheme to
compute the desired solution starting from a solution of the two
body problem. After that, a Fourier transform is applied to get
the Fourier coefficients of the solution. The QBCP is suitable for
the study of the collinear points, especially L1 and L2.

With this paper, we aim to provide a general insight about
the dynamics of these models for a particle in the Earth-
Moon system. We care about (practical) stable motion near
the triangular points and, to do so, we use the BCP. We
also study invariant manifolds related to the collinear points
in the QBCP. We believe that the value of this work is,
precisely, giving a wide perspective and help the interested
reader to choose a suitable simple model to face a first
exploration related to a problem concerning the Earth-Moon
system.

The paper is organized as follows: section 2 is devoted to
a brief description of the RTBP. We explain how the phase
space near the Lagrangian points is organized referencing some
remarkable works and mentioning the techniques used to study
the problem. In section 3 we give some words on the stroboscopic
maps and periodic time-dependent Hamiltonian systems. We
also explain how to compute high order unstable manifolds
related to fixed points using the parameterization method with
single and parallel shooting. Section 4 describes how the BCP
can be used to study the motion near the triangular points.
The advantage of this model with respect to the RTBP is that it
captures the unstable character of the triangular points in the real
system. The results presented aremainly devoted to stablemotion
in an extended vicinity of the triangular points. In section 5 we
describe results concerning the QBCP. We focus on the unstable
manifolds related to the periodic orbits that replace the collinear
points. Finally, section 6 is devoted to conclusions and section 7
to technical details.

2. RESTRICTED THREE BODY PROBLEM

The (Circular) RTBP is a simplified model for the motion of a
massless particle under the gravitational attraction of twomassive
bodies, the so-called primaries [23]. The primaries are assumed
to revolve along circular orbits around their common center of
masses. It is usual to take units of masses so the sum of the masses
of the primaries is equal to one. The units of length are taken
so the distance between the primaries is equal to one and the
units of time are taken so the period of the revolution of the
primaries is equal to 2π . It is also standard to take a rotating
frame of reference that fixes the primaries at the horizontal axis.
The RTBP is an autonomous Hamiltonian system with three
degrees of freedom. The Hamiltonian function writes as:

HRTBP =
1

2
(p2x + p2y + p2z)− xpy + ypx −

1− µ

rPE
+

µ

rPM
, (1)

where r2PE = (x − µ)2 + y2 + z2 and r2PM = (x − µ +

1)2 + y2 + z2. The parameter µ is called the mass parameter
and it is the mass of the smallest primary. In the case of the
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Earth-Moon system µ ≈ 0.012. It is well known that the RTBP
has five equilibrium points (see Figure 1). Three of them, the
collinear points, are located in the horizontal axis. The other
two, the triangular points, are located at the third vertex of an
equilateral triangle whose other two vertices are the position of
the primaries.

The only integral of motion of the RTBP is its Hamiltonian. In
many texts, this integral of motion is presented under a slightly
different form as the Jacobi integral. Each surface level of this
integral is a five dimensional manifold. If the velocities are set
to zero, this defines the so-called Zero Velocity Surface. These
surfaces separate the configuration space in different regions. The
trajectories of the system cannot cross the boundary between
two of these regions. The shape of these regions change with
the value of the Jacobi integral. As the Lagrangian equilibrium
points are critical points of the Jacobi integral, the topology of
these regions change when the energy value crosses the value
associated to one of the Lagrangian points (for more details, see
[23]).

The three collinear points are of type saddle×center×center.
This means that, under generic conditions, a 4-dimensional
center manifold emerges from each of these points. These
manifolds are tangent to the elliptic eigendirections at the
points. There exist, as well, one dimensional stable and
unstable directions emerging tangentially to the hyperbolic
eigendirections. Moreover:

• By the Lyapunov Center Theorem [24], two families of
periodic orbits, the Lyapunov families, emanate from the
equilibria. One of the families is born tangent to the (z, pz)
plane so it is called vertical family. The other family is
contained in the (x, y, px, py) plane and it is called horizontal
family. One can parametrize each family by the amplitude of
the orbits. The horizontal families related to L1 and L3 can
be continued up to trajectories which collide with Earth. The
horizontal family related to L2 can be followed up to collisions
with Moon. The vertical families end up in bifurcating planar
orbits [12, 25].

• The Lyapunov families can be regarded as the non-linear
continuation of the harmonic oscillator given by each elliptic
direction of the linearization around the equilibria. When the
amplitude tends to zero, the frequency of the family tends to
the normal modes of the equilibria.

• As the frequency varies, the horizontal family undergo a 1:1
resonance and the Halo [12, 26–28] family are originated (by
means of a pitchfork bifurcation). Secondary families of Halo-
type orbits appear by duplication and triplication of the main
family [29, 30].

The center manifold can be computed by means of normal form
techniques [31–33], with the parametrization method [34–37]
and also numerically [29]. The dynamics restricted to the center
manifold can be described by a Hamiltonian with two degrees
of freedom. By fixing a level of energy and taking a Poincaré
section, one can reduce the problem to the study of a family
of area preserving maps. This methodology suffices to observe
the phase space during the bifurcation that give rise to the Halo
families.

2.1. Motion Near the Triangular Points
The Earth-Moon triangular points of the RTBP are linearly
stable [23]. KAM theory can be used to establish the existence
of a dense set of Lagrangian invariant tori close enough to
the equilibria [38]. This has important consequences on the
nonlinear stability of the triangular points. If we restrict ourselves
to the planar case, these KAM tori (of dimension two) act as
barriers for the dynamics in a fixed level of energy. Therefore,
KAM tori enclose stable motion for initial conditions which
are close enough to the triangular points. This argument
based on KAM theory falls apart in the spatial case. Indeed,
Lagrangian tori have, in that case, dimension three and the
phase space, for a fixed level of energy, is five dimensional.
There is, in general, no way to avoid Arnold diffusion [39].
However, using normal form techniques, it is possible to derive
bounds on the diffusion time [40] (these techniques can be
extended to the periodic [41] and the quasi-periodic case [42]).
These, make us think about regions of practical stability i.e.,
regions in which the motion is non-stable but initial conditions
take a long time, maybe longer than the expected age of
the solar system, to escape. These theoretical results are valid
for a small region near the triangular points and numerical
simulations provide evidences of large regions of practical
stability [43].

It is natural to look for other invariant structures
that play a remarkable role to define the shape of the
(numerically computed) region. In this regard, [43] provides
numerical evidence on the role of the center-unstable and
center-stable manifolds of the collinear point L3. These
manifolds are of dimension five and act as barriers of the
dynamics. Obviously, the motion driven by these manifolds
escape from the vicinity of the triangular points at some
moment, but, again, the required time to do so can be
large.

3. PERIODIC TIME-DEPENDENT
HAMILTONIANS AND STROBOSCOPIC
MAPS

The alternatives to the RTBP presented in this paper, the BCP
and the QBCP are both periodic time dependent Hamiltonian
systems that can be seen as perturbations of the RTBP. Because
of this periodic time-dependence, the Lagrangian points are no
longer equilibria but they are replaced by minimal periodic orbits
i.e., periodic orbits with the same period as the perturbation.
These periodic orbits are known as the dynamical equivalents
of the Lagrangian points. The usual tools to study numerically
the RTBP are the combination of fixing suitable energy levels
and suitable Poincaré sections. We note that, in time dependent
models like the BCP and the QBCP the Hamiltonian is no longer
preserved. A standard tool to deal with these periodic time-
dependent systems is the so called stroboscopic map: Let U ⊂ R

n

be an open set, T the period of the vectorfield and ϕ :[0,T] ×
R× U 7→ R

n, where ϕ(t0, t, x0) stands for the solution which, at
time t0 lies at x0 evaluated at time t, the flow of the differential
equation. We define the stroboscopic map for x ∈ U as f (x) =
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FIGURE 1 | The restricted three body problem.

ϕ(0,T, x). In this work we care about Hamiltonian differential
equations. In this case, the stroboscopic map is symplectic.

3.1. Invariant Structures
The simplest invariant objects of the original system are periodic
orbits with the same period as the vectorfield. These appear
as fixed point of the stroboscopic map. The monodromy
matrix associated to these periodic orbits is the differential
of the stroboscopic map. The eigenvalues of this matrix
determine the linear behavior around the fixed points and, under
generic conditions, give some insight about the local non-lineal
dynamics. In the symplectic case, under generic conditions, each
elliptic direction give rise to a family of invariant curves which
can be parametrized by the frequency ([44]). This frequency
approaches to the normal mode responsible form the birth of
the family at the fixed point. Along the hyperbolic directions,
unstable (stable) manifolds depart (arrive) from the fixed points.
These invariant objects are crucial to understand the dynamics of
the system.

In this paper we focus on the information that can be
extracted from the computation of invariant curves and high
order approximations of unstable invariant manifolds. While
it is quite common, in the literature related astrodynamics, to
find discussions on the computation of invariant tori of maps
[13, 45, 46] it is not so usual for high order approximations of
stable/unstable manifolds.

3.2. High Order Approximation of Unstable
Manifolds Using the Parametrization
Method
Let U ⊂ R

n be an open set and assume that we are given a
map f :U 7→ R

n induced by the evaluation at time T of a flow
of some ordinary differential equation (stroboscopic map). The
following discussion can be done for any Poincaré map as well.

Here we assume that the section is temporal for simplicity of
the exposition and because it is the natural section to chose in a
periodically perturbed autonomous system. Let us suppose also
that x̄ ∈ U is a fixed point i.e., f (x̄) = x̄. Obviously x̄ is an
initial condition for a T-periodic orbit of the original flow. The
linearized normal behavior around the fixed point is given by the
eigenvalues of the differential of the map evaluated at the point.
Assume specDf = {λ, λ2, . . . , λn} with |λ| > 1. Under generic
conditions, we know that there exist a 1-dimensional unstable
invariant manifold related to the fixed point. That is, there exist
an open interval I ⊂ R and a map x : I 7→ U such that x(0) = x̄
and

f (x(s)) = x(λs). (2)

Equation (2) is known as the invariance equation of the invariant
manifold. The parametrizationmethod [47–50] is a powerful tool
to, both, prove the existence of the manifold and compute it.
The idea is to expand the parameterization of the manifold in
Taylor series at s = 0 and solve Equation (2) order by order. This
makes sense in the case when both the map and the manifold
are analytic. This assumption is fulfilled by the applications we
are interested in. Hence, the goal is to compute a semi-analytic
approximation of a parametrization of the invariant manifold.
Let us name

x(s) =
∞
∑

j = 0

ajs
j.

We are interested in numerically compute the coefficients aj for
j = 0, . . . , d for a given degree d. This is achieved by a recurrent
scheme in which we solve Equation (2) order by order:

• Order 0 is given by the coordinates of the fixed point.
• Order 1 is given by the eigenvector related to λ.
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• For k > 0, order k+ 1 is given by the solution of the following
linear system:

(Df (0)− λk+1I)ak+1 = −bk+1.

Here, bk+1 is the k+1-th term of the evaluation of themanifold
up to degree k by the map f , that is:

f≤k+1(x≤k(s)) =
k

∑

j = 0

bjs
j + bk+1s

k+1,

where the subindices (·)≤k+1 denote the truncation of the
power expansion of (·) at order k+ 1.

Notice that it is mandatory to have a method to compose power
expansions of themanifold with themap itself. Sometimes, when,
the map is explicit, one is able to find a suitable recurrence
expression to compute the terms of this composition. If a
recurrence is not available one can compute higher order terms
by automatic differentiation1. In the case we are interested,
the map is not given explicitly but comes from a numerical
integration of a differential equation. Here, the only reasonable
strategy seems to use Jet Transport. This technique is based in the
idea of, instead of integrating a single point, integrate a function
given by its expansion in Taylor series. That is, one transports the
jet, the set of derivatives of the function at a given point, up to a
given order. It is straightforward to construct an integrator of jets
from an integrator of numbers. It is only a matter of replacing the
standard floating arithmetic by a polynomial arithmetic [Farrés
et al., to appear].

There is another obstacle that can appear when dealing with
Poincaré maps: if the orbit is very unstable, the hyperbolic
directionmay lead to a huge error propagation. This problem can
be avoided by using parallel shooting. The idea behind parallel
shooting is to enlarge the dimension of the system in order to

decrease the time of integration. Let us denote by ϕ
tf
t0
(x) the

solution of the differential equation with initial condition (t0, x)
evaluated at time tf . Fix k ∈ N, the number of sections, and set
h = T/k. For i = 0, . . . k, we define τi = ih. Ifm = nk, we define
the function F :V 7→ R

m

F :











x1
x2
...
xk











7→











fk(xk)
f1(x1)

...
fk−1(xk−1)











.

Here V = U
k is an open set of Rm, and, for x ∈ U , fj(x) =

ϕ
τj
τj−1 (x). The differential map DF is given by

DF =













0 . . . . . . Dfk

Df1 . . . . . .
...

... . . . . . .
...

0 . . . Dfk−1 0













.

1In principle, one could also use numerical differentiation but it is a bad approach
in terms of efficiency and accuracy.

For x̄ ∈ U , name y = (x1, . . . , xk) where x1 = x̄ and xj = fj(xj−1)
if 1 < j ≤ k. Then:

1. y is a fixed point of F if and only if x̄ is a fixed point of f .
2. The duple (ζ , v = (v1, . . . , vk)), ζ ∈ C and vk ∈ C

n is a pair
eigenvalue/eigenvector of DF(y) if and only if (ζ k, v1) is a pair
eigenvalue/eigenvector of Df (x̄).

3. The projection to the first coordinate of the invariant manifold
of F related to ζ coincides with the invariant manifold of f
related to ζ k = λ.

4. THE BICIRCULAR PROBLEM AND THE
TRIANGULAR POINTS

The BCP is a perturbation of the RTBP. It is usual to take the
units and the synodic coordinates of the Earth-Moon RTBP
(see Figure 2). The BCP is not coherent, that is, the trajectories
followed by the primaries do not obey Newton’s laws. This is
not an inconvenient since the model has been shown to be
useful to describe the dynamics near the triangular points [51].
As a dynamical system, the BCP is a Hamiltonian system with
three and a half degrees of freedom, i.e., a non-autonomous
periodically time dependent with three degrees of freedom. The
Hamiltonian function, written in the RTBP coordinates and
units, is given by

H =
1

2
(p2x + p2y + p2z)− xpy + ypx −

1− µ

rPE
−

µ

rPM

−
mS

a2S
(y sin θ − x cos θ)−

mS

rPS
. (3)

Here µ, rPE and rPM denote the same quantities as in (1).
Moreover, mS denotes the mass of Sun, aS the averaged semi-
major axis of Sun, θ = ωSt, ωS is the frequency of Sun in this
system of reference, TS = 2π

ωS
is its period and finally, r2PS =

(x−aS cos θ)2+ (y−aS sin θ)2+z2. Notice that this Hamiltonian
can be splitted in two parts:

HBCP = HRTBP(X)+HS(θ ,X).

FIGURE 2 | The bicircular model.
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The time dependent part contains two terms, the Coriolis effect
due to the rotating frame of coordinates and Sun’s gravitational
potential. The Taylor expansion of the potential starts with

1

aS

(

1+
x cos θ − y sin θ

aS

)

.

Therefore, the Hamiltonian, if we truncate the Sun’s potential at
linear order is written as

H<2
BCP = HRTBP −

mS

aS
.

So, the Coriolis term and the truncated Sun’s potential cancel
out and the dynamics is the one of the RTBP. This is to say
that the contribution due to Sun’s potential starts at order two,
that is, the BCP is a periodic time dependent perturbation
with size O(mS

a3S
) ≈ 0.0056. Anyhow, it is large enough to

produce remarkable changes on the dynamics, especially near
the triangular points. In Figures 3 (left), 6 (left) we display
continuations from the RTBP to the BCP. The vertical axis in
these plots represent an artificial parameter ε which multiplies
the mass of Sun. Therefore, when ε = 0 the model corresponds
to the RTBP and, when ε = 1 the model corresponds to the BCP.
We shall comment these figures in detail in the next sections.

FIGURE 3 | Left: Continuation of L4 as a periodic orbit with respect to the mass of Sun. Horizontal axis: x. Vertical axis: ε. The black curve stands for the continuation

to the BCP. The red curve for the truncated version of the BCP. See text for more details. Right: Vertical families of 2D tori for the BCP. The horizontal axis is the pz
coordinate and the vertical axis displays the frequency. See text for more details.

FIGURE 4 | Stroboscopic map near the triangular points: Horizontal axis x. Vertical axis y. See text for more details.
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4.1. Dynamical Equivalents of the
Triangular Points
First of all let us mention that, due to a symmetry, the dynamics
near L4 is the same as the dynamics near L5 (in fact, this
symmetry maps orbits in the region y > 0 to orbits in the
region y < 0). A feature of the BCP to be stressed is that
the region around the geometrically defined triangular points is
unstable. The influence of Sun’s potential is enough to produce
a bifurcation in the periodic orbit that replaces L4 (i.e., L5). It is
well known [51] that each triangular point is replaced by three
periodic orbits with the same period as Sun. One small and
unstable (the actual replacement of L4) and two which are stable.
We have named these orbits PO1, PO2, and PO3. See Figure 3

(left) a continuation diagram from the RTBP to the BCP. The two
additional periodic orbits are produced by an imperfect pitchfork
bifurcation (i.e., a pitchfork bifurcation broken due to a loss of
symmetry).

One may ask which is the model that displays the perfect
bifurcation and which is the broken symmetry. To address this
question we take a look at the order two of the Taylor expansion
of Sun’s gravitational potential. We have

H2
S (θ , x, y, z) =

1

a3S

(3

2
T(x, y, θ)2 −

1

2
(x2 + y2)

)

.

We have named T(x, y, θ) = −x cos θ + y sin θ . We would like
to stress again that H2

S is the first contributing non-autonomous
term in the model due to the cancellation produced by the
Coriolis acceleration. This term is invariant under the symmetry
(x, y, x, θ) 7→ (x,−y, x,−θ). The order three of the expansion is
given by:

H3
S =

1

aS

((

ρ

aS

)3 5
2T

3 − 3
2T

aSρ

)

.

Here ρ2 = x2 + y2. The polynomial in T is no longer even. This
breaks the symmetry and, hence, the pitchfork bifurcation. The
non-autonomous model that displays the perfect bifurcation is:

H≤2
BCP = HRTBP(X)+H2

S (X, θ).

The perfect (non broken) pitchfork bifurcation in Figure 3 (left,
curve in red) shows the continuation diagram from the RTBP to
this simplified version of the BCP. Due to the symmetry, periodic
orbits PO2 and PO3 only differ on the phase on the orbit.

4.2. Phase Space of the Stroboscopic Map
Near the Triangular Points
The three periodic orbits appear as fixed points of the
stroboscopic map. We recall that their linear normal behavior is
of type saddle×center×center for PO1 and totally elliptic for PO2
and PO3. There are several ways to justify that, from the elliptic
directions of each fixed point, there is a family of invariant curves
whose frequency tends to the normal modes of the fixed points
[44, 52].

Therefore, we have a family of invariant curves for each
elliptic direction, that is, two for PO1 (HF1 in the horizonal
plane and VF1 in the vertical direction), three for PO2 (HF2F1
and HF2F2 are horizontal, and VF2 is vertical) and three for
PO3 (HF3F1 and HF3F2 horizontal, and VF3 vertical). The
remaining eigendirection of PO1 is hyperbolic. There exist stable
and unstable one-dimensional invariant manifolds associated to
these hyperbolic directions. Initial conditions near the triangular
points shadow the unstable manifold which wonder some time
around the periodic orbits PO2 and PO3 and finally abandon the
vicinity of the triangular points. These manifolds are of special
interest if one plans to put or take out objects near L4 and
L5. The stable and unstable manifolds related to PO1 can be
computed up to high order directly on the stroboscopic map
(section 3.2 and [Farrés et al., to appear]). In Figure 4 we observe
a projection of the phase portrait of the map. The three points
displayed with crosses correspond to PO1 (in the middle), PO2
and PO3. It is displayed as well, semianalytical approximations
of the stable and unstable invariant manifolds. We have used an
approximation of order 64. The width curve are the pieces given
by the parameterization. The thin curve correspond to some
iterations of these pieces. It can be observed, also, some invariant
curves growing from PO2 and PO3. These invariant curves are
totally elliptic near the fixed points.

FIGURE 5 | Stability regions with initial conditions on the tori of the VF3 identified by pz = 0.5 and pz = 0.8. Horizontal axis: α. Vertical axis r. See text for more details.
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4.3. Regions of Effective Stability Near the
Triangular Points
As we have observed, the triangular points are replaced by
three periodic orbits, one of them unstable. This is the reason
why the BCP is an interesting model [12]. Indeed, the unstable
manifold of the triangular periodic orbit takes initial conditions
away from the vicinity of the triangular points. However, we can
pursue on the seek for regions of (effective) stability out of the
plane of motion of the primaries. The mechanism that suggest
the existence of regions of effective stability is the stickiness of
normally elliptic low dimensional invariant tori. See [41, 52]. As
we discussed before, there are families of invariant tori emanating
from the periodic orbits PO2 and PO3. These families are elliptic
close enough to the fixed points. This results on two small regions
of effective stability in the plane ofmotion of the primaries related
to the totally elliptic orbits.

We put our attention on the vertical families (one for each
orbit) of invariant tori. In Figure 3, Right, we display how
these families vary when they grow out of the plane of motion
of the primaries. We observe that the three families display a
broken pitchfork symmetry, analogous to the one of the periodic
orbits. The linear normal behavior of the tori is the same as the
periodic orbit near the plane. As a consequence of the pitchfork
bifurcation, at some some distance of the plane, the surviving
family is totally elliptic. Therefore, the tori are sticky and regions
of effective stability are to be expected. We label these families
VF1, VF2 and VF3 after the corresponding periodic orbits. The
families VF1 and VF2 are connected, as it happens with PO1
and PO2. On the other hand VF3 reaches high amplitudes in
the (z, pz) plane. It is known that, skipping resonances, the three
families have the same stability as the corresponding periodic
orbits. Therefore, the tori ofVF1 have hyperbolic directions while
the ones ofVF2 are normally elliptic (except for small intervals of
instability produced by resonances involving internal and normal
frequencies). Recall that both families are connected and the
change of stability takes place at a turning point. The tori of VF3
are normally elliptic up to very high values (again, except for
resonances).

Normally elliptic lower dimensional tori induce regions of
effective stability. Numerical estimations of the shape and the
size of these regions show that, in the case of VF2, the regions
are small and narrow while in the case of VF3 large regions exist
for sufficiently high values of the vertical amplitude. In Figure 5

we show two stability regions out of the horizontal plane. These
regions seem to persist in the real model for time spans of 1,000
years [14, 53]. The effect of Solar Radiation Pressure on the
effective stability regions of the BCP is discussed in Jorba-Cuscó
et al.[54].

Let us explain how Figure 5 is obtained. Each of the vertical
family of invariant tori can be identified by the value of the
coordinate pz when z = 0 and pz > 0. Denote by a(pz) ∈ R

6

the coordinates of the point that identifies a torus. We have to
select a set of initial conditions near a(pz) and integrate them for
a long time span. Let us be more precise on how to select the
initial conditions.We use a two dimensional grid, the coordinates
z, px, py and pz will be fixed by the corresponding values of a(pz).
To adapt to the shape of the regions, we use a polar-like grid,
centered at Earth:

{

xij = ri cosαj + µ, ri = 1+ ihr ,

yij = ri sinαj, αj = 2π jhα ,

where hr and hα are used to control the density of the grid.
The computation goes as follows. Take a point of the grid
and integrate the vector field 15000 Moon revolutions. At each
integration step, we test if there is a collision with Earth or Moon.
If there is a collision, or the coordinate y becomes negative, we
stop the integration (Recall that we are interested in the points
that remain close to L4). We have used hr = 0.001 and hα =

0.0002. The difference on the sizes of these small quantities is
aimed to produce a nearly squared grid.

4.4. A Weakness of the BCP
The translunar point is one of the most interesting locations at
the Earth-Moon system. The reason is that L2 seems suitable
to observe the far side at Moon. Taking into account that, a

FIGURE 6 | Left: Continuation of L2 as a periodic orbit with respect to the mass of the Sun. Horizontal axis: x. Vertical axis: ε. See text for more details. Right:

Periodic orbit near L2 in the BCP. Horizontal axis: x. Vertical axis: y.
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natural criticism to the BCP is that it does not have a dynamical
replacement of L2. In Figure 6 (left) it is displayed a continuation
of L2 as a periodic orbit from the RTBP to the BCP. The
periodic orbits are identified by their coordinates as fixed points
of the Stroboscopic map. These orbits have been computed by
means of the parallel shooting method. Again, the vertical axis
is an additional parameter, ε, multiplying the mass of Sun. The
point L2 is the middle crossing of the characteristic curve with
the homotopy level corresponding to the RTBP, at the bottom.
The other two points of the RTBP correspond to the same 1:2
resonant planar Lyapunov orbit but with different initial times.
We observe that the continuation of L2 reaches a turning point
and it never reaches the homotopy level of the BCP. The result
is that the translunar dynamical structure is lost in the BCP. This
suggest that a more complex model needs to be used to analyze
the natural behavior near the translunar point. The resonant
Lyapunov orbit can be continued to the BCP. The result is a large
orbit that remains away from the translunar point, see Figure 6
(right).

5. THE QUASI-BICIRCULAR PROBLEM
AND THE COLLINEAR POINTS

The quasi-bicircular solution of the Earth-Moon-Sun system is
planar i.e., the three bodies move in the same plane. After the
quasi-bicircular solution is computed one can write the equations
of motion of the test particle, prescribing the quasi-bicircular
solution as motion for the primaries. It is usual to compute
the quasi-bicircular solution in the Jacobi frame, however, if
one has the purpose of describing the dynamics in the Earth-
Moon vicinity, it is suitable to use the frame of coordinates
corresponding to the Earth-Moon RTBP. To do so, one has to
perform three different transformations. First, one has to use
a translation to move the origin from the global barycenter to

Earth’s and Moon’s center of masses. Second, one has to use a
rotating (synodic) frame to keep Earth and Moon fixed on the
horizontal axis. Third, the unit of length is scaled so the distance
between Earth and Moon is equal to one. The units of mass and
time which are usually selected in the Earth-Moon RTBP can
be imposed already in the Jacobi formulation of the Three Body
Problem.

The resulting model is a Hamiltonian system with three and a
half degrees of freedom. TheHamiltonian function can be written
as

H =
1

2
α1(p

2
x + p2y + p2z)+ α2(pxx+ pyy+ pzz)+ α3(pxy− pyx)

+α4x+ α5y− α6

(

1− µ

rpe
+

µ

rpm
+

mS

rps

)

, (4)

TABLE 2 | Continuation of the low order resonant orbits from the RTBP to the

QBCP.

RTBP RES BIF QBCP

012 1 : 2 2 12, 13

014 1 : 1 4 14, 15, 16, 17

018 1 : 1 4 18, 19, 1A, 1B

01C 1 : 3 2 1C, 1D

01E 1 : 3 2 1E, 1F

022 1 : 2 4 22, 23, 24, 25

026 1 : 6 4 26, 27, 28, 29

02A 1 : 2 4 2A, 2B, 2C, 2D

02E 1 : 3 2 2E, 2F

026 1 : 4 2 2G, 2H

The first column contains the label of the orbits corresponding to the RTBP. The second
column contains the order of the resonance. The third columns contains number of
bifurcating orbits. The fourth column contains the label of the orbits corresponding to
the QBCP. See [15] for more details. See text for the color code.

FIGURE 7 | Dynamical equivalents of the collinear points. Left: L1. Center: L2. Right: L3. Horizontal axis: x. Vertical axis: y. See text for more details.

TABLE 1 | Eigenvalues of the three dynamical equivalents of L1, L2 and L3.

L1 (real) (imag) L2 (real) (imag) L3 (real) (imag)

1 460182151.57 0 2397196.84 0 3.370855 0

2 −0.987151 0.159784 0.995818 0.0913562 0.863840 −0.503764

3 −0.963639 0.267205 0.917527 0.3976716 0.841148 0.5408042

We only put three for each orbit. The rest are given by their inverses due to the symplectic character of the stroboscopic map.
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where, r2pe = (x − µ)2 + y2 + z2, r2pm = (x − µ + 1)2 + y2 + z2,

r2ps = (x− α7)2 + (y− α8)2 + z2, and for i = 1, . . . , 8 αi :T 7→ R

are periodic functions. That is,

αi(θ) = ai0 +
∑

k≥0

aik cos kθ +
∑

k≥0

bik sin kθ . (5)

Here, θ = ωSt andωS is the frequency of Sun.Moreover, αi is odd
for i = 1, 3, 4, 6, 7 and even for i = 2, 5, 8. Obviously one can only
have a numerical approximation of these functions. In this case,
we take advantage on the computations done in [15] and take the
same values for the Fourier coefficients of the periodic functions
αi’s. To end, and taking into account the properties of the
functions αi’s, it is easy to see that the Hamiltonian function (4)
has the symmetry (θ , x, y, z, ẋ, ẏ, ż) 7→ (−θ , x,−y, z,−ẋ, ẏ,−ż),
ẋ = px + y, ẏ = py − x, ż = pz .

The meaning of these periodic functions is the following:

1. (α7,α8, 0) is the position of Sun in the plane of motion of the
primaries.

2. α1, α2, α3 and α6 capture the fact that the distance between
Earth and Moon is not constant.

3. α4 and α5 take into account the Coriolis effect due to the
rotating frame of reference.

5.1. Dynamical Equivalents of the Collinear
Points
In this section we give some words about the minimal
periodic orbits that replace the collinear points in the QBCP.
In Figure 7 we display the dynamical equivalents, from left
to right, of L1, L2 and L3. We observe that the orbits
replacing L1 and L2 are small, their maximal distance to the
corresponding equilibrium point is of order O(10−6). As the
original equilibrium points, the linear normal behavior of these
orbits is of type saddle×center×center. In Table 1 we display the
eigenvalues of each orbit. We notice that the unstable direction
of L1 (of order 108) and the unstable direction of L2 (of order
106) are large and this implies huge propagation of error near
these orbits. On the other hand, the dynamical equivalent of

FIGURE 8 | Approximation of order 64 of the stable (dashed) unstable (solid) manifolds of L1, L2 and L3. Horizontal axis x. Vertical y.

FIGURE 9 | Left: Resonant orbit 2G. Right: Approximation of order 64 of the stable (dashed) unstable (solid) manifolds of the ressonant orbit 2G. Horizontal axis y.
Vertical z.

TABLE 3 | Values of the parametres used in this paper.

µ aS mS ωS

0.012150581623433623 388.81114302335106 328900.54999999906 0.92519598551829646
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L3 has a very weak unstable direction, at least compared to the
other two.

5.2. Resonant Orbits of Low Order
As the QBCP is a TS-periodic system, the simplest invariant
objects are TS-periodic orbits. We already have mentioned that
the equilibrium points are replaced by these periodic orbits of
minimal period. Periodic orbits of the RTBP whose frequency
is resonant with the one of Sun also persist as TS-periodic
orbits in the QBCP. The Lyapunov and Halo families of periodic
orbits related to the equilibrium points L1 and L2, are a source
for these kind of resonant orbits. In contrast with the families
related with L3, the families of the two first libration points
are nourished with low order resonant orbits. A relation of low
order resonant periodic orbits of the RTBP can be found in
[15]. In [29] the authors show the ranges for the admissible
periods for each family. The families related to L3 are of relatively
large period and there are not many periodic orbits whose
frequency are in low order rational relation with the frequency
of Sun. There is, however, a 1:1 resonant periodic orbit near the
end of the vertical family. This orbit is enormous in size and
cannot be considered in the vicinity of L3. In Table 2 details
of the continuations of low order resonant orbits from the
RTBP to the QBCP are given: The first column corresponds
to resonant periodic orbits of the RTBP. The label in this
first column consist in three numbers that encode each orbit.
The first is a zero and indicates that the orbit belongs to the
RTBP (this is intended to distinguish them from the orbits

in the last column corresponding to the QBCP). The second
number refers to the libration point related to each orbit (all
of them belong to Lyapunov and Halo families related to L1
and L2). The third number is just an enumeration. The second
column indicates the order of the resonance. We stress that
the influence of Sun is relevant enough to produce bifurcating
orbits in each of the continuations. The third column shows
how many orbits bifurcate from the original ones when they
are continued to the QBCP. Finally the last column contains
the labels of the resulting orbits in the QBCP. Table 2 can
be found originally in Andreu [15]. We have added the order
of the resonance and the color code to indicate the linear
normal behavior of each orbit. Labels in blue stand for orbits
of type saddle×center×center. Labels in green denote linear
character of the kind saddle×saddle×center. Names in cyan
denote totally hyperbolic orbits. The color yellow denotes totally
elliptic orbits. The continuation for the orbits in red do not
reach the homotopy level of the QBCP and, therefore, are not
considered.

5.3. High Order Approximation of the
Unstable Manifolds of the Collinear
Periodic Orbits
This section is devoted to the results of implementing the
algorithm explained in section 3.2 to the dynamical equivalents
of the collinear points. Figure 8 shows pieces of the stable
(dashed) and unstable (solid) manifolds related to the three

TABLE 4 | Coefficients of the functions αj , j = 1, . . . , 8, in (5).

α1 α2 α3 α4
k ak k ak k bk k ak
0 1.001841608924835e+00 0 0.e0 0 9.999999999999983e-01 0 −9.755242327484885e-04

1 5.767517726198399e-04 1 −2.644376028499938e-04 1 5.634125997553694e-04 1 2.154764362707107e+00

2 1.438777025507630e-02 2 −1.328686903400173e-02 2 1.889687440172882e-02 2 3.657484468968697e-04

3 −2.630362974972015e-06 3 9.386093208089751e-06 3 −9.911758802567132e-06 3 3.295673376166588e-03

4 1.176278356118933e-04 4 −1.218509057517414e-04 4 1.568708136031134e-04 4 3.301031400812427e-07

5 −38.068581391005552e-08 5 1.522127598557008e-07 5 −1.707762576173484e-07 5 1.278840687376320e-05

6 9.843249766501285e-07 6 −1.072102664277996e-06 6 1.319613679707437e-06 6 −2.623797952127926e-09

7 −1.172054394418197e-09 7 1.889371261374048e-09 7 −2.136550041985646e-09 7 6.533805514561511e-08

8 8.311905970879588e-09 8 −9.324985038927486e-09 8 1.117168916673893e-08 8 −3.891720707783511e-11

9 −1.408584238695393e-11 9 2.114490981280258e-11 9 −2.387253631031108e-11 9 3.812275838944432e-10

10 7.050713786466840e-11 10 −8.071111743144353e-11 10 9.490879622095902e-11 10 −3.907906049834876e-13

11 −1.494259634910463e-13 11 2.218118050420168e-13 11 −2.462732581558427e-13 11 2.407471187576443e-12

12 5.982418979451232e-13 12 −7.036155161882012e-13 12 8.101067708009743e-13

α5 α6 α7 α8
k bk k ak k ak k bk
0 0.e0 0 1.000907457708158e+00 0 −6.314069568006227e-02 0 0.e0

1 −2.192570751040067e+00 1 2.870921750053134e-04 1 3.885638623098048e+02 1 −3.897437256237654e+02

2 −3.337210485472868e-04 2 7.187177998612875e-03 2 1.736910203345558e-01 2 −1.734279166322518e-01

3 −3.295001430200974e-03 3 −2.351183147213254e-06 3 3.382908071669699e+00 3 −3.385696486642120e+00

4 −3.100635053052634e-07 4 4.585758971122060e-05 4 1.574837565380491e-04 4 −1.555886632413398e-04

5 −1.277777336854128e-05 5 −3.848683620107037e-08 5 2.936360489004438e-02 5 −2.937582671967532e-02

6 2.652806405498111e-09 6 3.270677504935666e-07 6 −1.224434550116014e-05 6 1.225851213107933e-05

7 −6.528479245085066e-08 7 −4.406966481041876e-10 7 2.538935434262443e-04 7 −2.539596887692642e-04

8 3.891720707783511e-11 8 2.452600662570259e-09 8 −2.278929040007574e-07 8 2.280029220202363e-07

9 −3.812275838944432e-10 9 −4.542938800673444e-12 9 2.190432706181655e-06 9 −2.190834624429040e-06

10 3.907906049834876e-13 10 1.892348855112616e-11 10 −3.033311961234353e-09 10 3.036109035120856e-09

11 −2.407471187576443e-12 11 −4.178420101480123e-14 11 1.886971545290216e-08 11 −1.887457647579322e-08

12 1.480048946961583e-13 12 −3.432375106898453e-11 12 3.432375106898453e-11

13 1.611513703999101e-10 13 −1.631723641506449e-10

Due to the symmetries of the model, each αj only contains either sin or cos terms, so we only list either the ak or bk coefficients.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 July 2018 | Volume 4 | Article 32

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Jorba-Cuscó et al. Two Periodic Models for the Earth-Moon System

collinear periodic orbits (the other branches can be obtained
by symmetry). From left to right: the one related to L1, the
one related to L2 and the one related to L3. We would like
to remark that these pieces are obtained directly from the
evaluation of the approximation (of order 64) of the manifolds.
The error is controlled by checking that the contribution of
the last term of the approximating polynomial is small. It
is also checked that all the points in the pieces verify the
invariance equation with high accuracy. We can observe that
these approximations already give large excursions far away
from the collinear points. Especially in the case of L3, where
the piece of the manifold passes very close to the triangular
points. The axes of Figure 8 show the x and y values. These
pieces can be mapped through the stroboscopic map to obtain
larger pieces of the manifolds if it is necessary. The point of
giving high order approximations of the manifold is that, just
a fewer number of iterates are necessary. For the computation
of the manifold related to L3, a simple shooting method has
been used. Indeed, the instability associated to this libration orbit
is very weak. For the computation of the manifold related to
L2, multiple shooting is required. We have used two sections.
For the computation of the manifold related to L1, the most
unstable one, we have used a single shooting strategy but
with an extended precision arithmetic of 128 bits. This last
approach makes the program far slower but very simple to
code. In Figure 9 (left) we show the resonant orbit 2G of
Table 2. We display also (right) the stable (dashed) and unstable
(manifolds).

6. CONCLUSIONS

We have presented two alternatives to the RTBP for the study
of the motion of a test particle in the Earth-Moon system. Both
models, the BCP and the QBCP, depend periodically on the time.
We use the so-called stroboscopic map to study the minimal
periodic orbits of the systems and the invariant manifolds related
to them.

The BCP is as useful model for the study of the triangular
points. The simplicity of the vectorfield is a strong point,
especially in problems related to effective stability where massive
integrations are mandatory. We have also stressed its weakness:
it is not suitable to understand the dynamics around the collinear
points. The BCP is useless to describe the vicinity of the
translunar point.

We have used the parametrization method to obtain high
order approximations of the unstable manifolds related to the
minimal periodic orbits that replace the collinear points in the
QBCP. This is helpful to design long excursions between the two
primaries and the collinear points. The main novelty is that we
have computed the manifolds directly on the stroboscopic map.
The QBCP is a complicated model with a numerically computed
vectorfield. This makes it a bad candidate (in front of the BCP)
to be the model used to face the problems involving massive
simulations related to the triangular points.

We would like to stress that the BCP should be used to
face problems related to the triangular points. Especially if this
problems involve large time integrations to seek for regions of
practical stability. The QBCP should be used when dealing with
problems involving the collinear points.

7. TECHNICAL DETAILS

All the computations appearing in the Figures of this paper, also
the ones which appear in the literature, have been performed
by the authors. The integrations for the RTBP, the BCP and
the QBCP have used a Taylor method with variable order
and stepsize. The demanded accuracy for the standard double
precision has been 10−16. The computations in multiple accuracy
have been done using the library mpfr. The LAPACK library has
also been used for some computations related to linear algebra.
The rest of the programs have been written by the authors in
C and C++ languages from the scratch. Table 3 and Table 4

contains the values of the parametres used for the computations.
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