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The study of intertemporal decision-making is an interdisciplinary scientific topic of

economics, psychology, and neuroscience. Most of these studies focus on individual

intertemporal decisions, but little is known about the relationship between groups

and individual time preferences. As a result, we intend to assess the role of

group intertemporal decision-making. We experimentally investigate how to aggregate

individual time preferences by clarifying who has the most influence on group decisions

among heterogeneous group members. We formulate two hypotheses. The first is the

multilateral bargaining hypothesis, which is based on the multilateral bargaining model.

If people employ this model to reach agreement, the most patient member in a group

has the greatest impact on group choices. The second is the median voter hypothesis,

which is based on the median voter model. When people employ this model to reach

agreement, the median patient member in a group has the greatest impact on group

choices. Here, we find that the median patient member in a group has a significant impact

on group decisions in an unstructured bargaining situation. This finding suggests that

people use the majority voting rule during group intertemporal decision-making. Thus,

our findings support the median voter hypothesis. Furthermore, the results of a chat

analysis show that this result is partially due to people’s conformity with the majority

opinion.

Keywords: intertemporal choice, impatience, group decision-making, multilateral bargaining, median votermodel,

laboratory experiment, chatting, conformity with majority

INTRODUCTION

Many essential economic decisions are made by groups such as companies and households. For
example, investment plans in companies are decided in meetings with multiple people, and saving
plans in households are decided by partners. Environmental decisions are also intertemporal
choices. For example, we are faced with a decision between consuming ecological resources today
vs. enjoying a rich environment later. These types of decisions are mainly made by the society, such
as local communities, governments, and so on.
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In general, economists describe a group choice as a
summation of individual choices or representative individuals.
Do real-life group decisions over timework in this way? Although
it is important that we understand how intertemporal group
decision are made, there is little empirical evidence on the
relationship between group and individual time preferences.
Very few studies have used experiments to examine groups’
intertemporal choices1. Yang and Carlsson [2] investigated
whether a group consensus related to intertemporal decision-
making was derived from individual time preferences. In their
research, participants were wives and husbands in rural China,
where each couple answered intertemporal questions. They
found that 11% of the consensus decisions made by couples
were more patient than both the wife’s and husband’s individual
choices and that 9% of the consensus decisions were more
impatient than the individuals’ choices. Interestingly, their
result suggested that some proportion of group consensus
decisions were not simply a summation of individuals’ choices.
Nevertheless, they failed to reveal why couples’ consensus
decisions were beyond the individuals’ time preferences.
Furthermore, they focused on family financial decisions made
by spouses. Thus, we cannot apply their findings to groups’
intertemporal choices in general. Yang and Carlsson [2] and
Carlsson et al. [3] also investigated who in the family had the
most influence on group consensus decisions, identifying that
husbands had a greater impact than wives did in joint choices.
However, this result could be culture specific and, thus, might not
be generalizable to other regions or countries.

The purpose of this study is to investigate the mechanism
behind groups’ intertemporal decision-making in heterogeneous
time preferences by clarifying who has a significant impact
on groups’ intertemporal choices. As such, we contribute to
the literature by investigating the difference between group
preferences and individual preferences. Charness and Sutter [4]
indicate that groups make more self-interested decisions than
individuals. He and Villeval [5] show that group decisions reflect
the same level of inequality aversion as individual decisions.
Many studies investigated the difference between group and
individual risk preferences [6–12]. Although an increasing
number of studies are comparing groups’ and individuals’
decision-making, few studies focus on groups’ intertemporal
decision-making [2, 3]. Our study is the first to empirically
examine the mechanism behind how groups reach intertemporal
decisions. Our second contribution to the literature is that we
use anonymous experimental protocols to eliminate various
unobservable effects. In previous studies [2, 3], the participants
are families, who use face-to-face dialogue to make decisions.
Here, we gather unrelated participants, who then communicate
with each other via text messages on a computer. The third
contribution of our study is that our groups contain more than
two members (i.e., three members). This makes it possible to
generalize the results to real-life group settings. Our fourth
contribution is that we analyze the chat messages during group

1Bixter et al. [1] also studied group and individual time preferences. They

investigated whether individual choices after group decisions are affected by group

agreement.

decision-making to establish how the group forms a consensus.
The fifth contribution of our study is to show how individual time
preferences are aggregated in groups. The mechanism behind
time preference aggregation has not been studied previously. In
summary, the goal of this study is to determine the processes
behind group decisions in an intertemporal context.

We formulate two hypotheses. First, group intertemporal
choices are decided based on the multilateral bargaining model;
that is, the most patient member has a significant impact
on group choices (multilateral bargaining hypothesis). Second,
group intertemporal decisions are determined based on the
median voter model; that is, the median patient member
has a substantial impact on group choices (median voter
hypothesis). To test these hypotheses, we conduct laboratory
experiments. Here, participants make intertemporal choices
individually in individual conditions. In addition, participants
make intertemporal choices in a group (three people) through
discussion to reach group decisions in group conditions. We
analyze the individual discount factors elicited in the individual
conditions and the group discount factors elicited in the group
conditions. Groups consist of a most patient member, a median
patient member, and a least patient member2. Here, we examine
whose discount factor is the closest to the group discount factor
and interpret this member as having the greatest impact on
a group decision. Consequently, we check the results using
a regression analysis, post-estimation analysis, and Bayesian
analysis.

Based on the results of the regression and post-estimation
analyses, we reject the multilateral bargaining hypothesis.
However, rejecting the multilateral bargaining hypothesis and
not rejecting the median voter hypothesis does not guarantee
support for the median voter hypothesis [13]. To resolve this
problem, we conduct a Bayesian analysis and calculate the
Bayes factors. The results support the median voter hypothesis.
Finally, we examine the text data generated by the participants’
computer-based chats to investigate why the median voter
hypothesis is supported. Based on this analysis, we find that the
third person to express an opinion (i.e., the last person) tends to
follow the majority opinion. This phenomenon might lead to the
observed result, even though the experimental group setting is a
free discussion and follows the unanimity rule.

The rest of the paper is organized as follows. Section Methods
describes our experimental design and procedures. Section
Hypotheses presents the two hypotheses. Section Results analyzes
the results using regression, post-estimation, Bayesian, and chat
analyses. Section Conclusion concludes the paper.

METHODS

The experiment took place at Osaka University in Japan. We
conducted six sessions with a total of 105 student participants,
with each session comprising 15 or 18 participants and lasting

2Of course, there are cases where all the members’ individual discount factors

are same or two of the three members’ individual discount factors are same.

We explain how we handled these cases in section Regression Analysis and Post

Estimation (Regression analysis and post estimation).
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for approximately 1 h. All participants gave written informed
consent according to the Declaration of Helsinki and the
guidelines approved by the ethical committee (Institute of Social
and Economic Research Ethical Committee at Osaka University)
prior to the experiment. The experiment was computerized using
z-Tree [14].

Participants expressed their time preferences by making a
series of choices between early and delayed options of different
denominations (i.e., using choice titration [15]). For example,
participants were asked whether they would prefer JPY 1,750
today or JPY 2,000 1 month later. After making the choice,
the amount of the delayed option was changed, which meant
participants faced new options. We explained how to obtain
the amount of the delayed option to which participants were
indifferent between the delayed option and the early option in
a simplified manner. For example, person X was indifferent
between receiving JPY 1,750 today and JPY 2,100 1 month later.
Thus, the amount of the delayed option to which the participant
was indifferent to receiving the early option was JPY 2,100.
We tested what amount of the delayed option was indifferent
to JPY 1,750 by asking the question, “Do you prefer receiving
JPY 1,750 today or JPY 2,000 1 month later?” When person
X chose JPY 1,750 today, we then asked, “Would you prefer
to receive JPY 1,750 today or JPY 2,120 1 month later?” In
this way, we obtained an approximate indifference amount for
the delayed option, relative to the amount of the early option.
We repeated this process four times in order to obtain the
indifference amount of the delayed option. All alternatives are
shown in Figure 1. We calculated the indifference amount of the
delayed option as follows. We used two values: “High up,” which
was the highest amount of the delayed option a participant did
not choose; and “Lowdown,” which was the lowest amount of
the delayed option that a participant did choose. We defined the
mean of “High up” and “Lowdown”

({

Highup+ Lowdown
}

/2
)

as the indifference amount of the delayed option, relative to the
amount of the early option. All indifference values are shown in
the Supplementary Material. For example, when a participant
reached C in Figure 1 and (early date, later date) = (today, 1
month), the indifference amount of the delayed option (1 month)
relative to the amount (JPY 1,750) of the early option (today) was
JPY 2,165. In this case, “High up” was JPY 2,150 and “Lowdown”
was JPY 2,180. The participants were not informed of all the
available alternatives or the titration rule before the task. The
combinations of dates for the early and delayed options were
categorized into two types: (early date, later date) = (today, 1
month) and (1 month, 2 months). The order of the two types of
dates was determined randomly.

After obtaining the indifference amount of the delayed option
relative to the amount of the early option, we calculated the

discount factor. In this study, we referred to the discount factors
as time preferences. We used a linear utility function: u (x) =

x. We assumed the indifference amount of the delayed option
relative to the amount of the early option to be xdelayed, and that

of the early option to be xearly. Later, we calculated the discount

factor δ as xearly = δtxdelayed

(

i.e., δ =
(

xearly/xdelayed
)
1
t

)

, for

year t. Because there were two types of dates for the two options,

(early date, later date) = (today, 1 month) and (1 month,
2 months), the values of t were 1/12 and 1/12, respectively.
We referred to δ as the patience. A high value of δ denoted
patience and a low value denoted impatience. Thus, the most
impatient preference was A, and the most patient preference was
P in Figure 1 because xearly was always 1,750. The impatience
preference ranking was A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P.

There were three choice conditions: an individual condition,
a different condition (“for another”), and a group condition.
All participants were tested for all three conditions. To control
the order effect of the choice conditions, we conducted various
combinations of all three conditions. In other words, we
conducted six sessions. For the individual condition, participants
chose alternatives for themselves; for the “for another” condition,
participants chose alternatives for other members of the same
group on an individual basis. Here, the chosen option was paid
to the other members of their group. The payment mechanism
is described in the next paragraph. We failed to analyze the “for
another” condition here, because it was described in detail by
Truruta et al. [16]3. For the group condition, three participants
per group discussed the options using text messages on a
computer. As a result, participants could not identify the other
group members’ gender, visual aspect, race, and so on. We
did this to eliminate unobservable effects on decision-making
that would result from a face-to-face discussion. Moreover, this
enabled us to analyze the text data for each group discussion: for
example, the extent of discussion, who expresses an opinion first,
and whether persuasion occurs. Subsequently, we investigated
our finding that median voter hypothesis was supported (i.e.,
the median patient member had the greatest impact on group
choices). In the group condition, the amount of the reward shown
was per person: for example, “Each member is going to receive
JPY 1,750 today or JPY 2,000 onemonth later.” Participants, then,
needed to make a group choice through discussion. Hence, the
decision rule was unanimity. No time limits were imposed in any
of the conditions.

The amount of the reward per person was the same in all
three choice conditions. One of the options that the participants
chose was selected randomly by the computer, and the selected
option was paid to participants. The option that was paid was
selected from all group choices a person’s group chose under
the group condition, all individual choices s/he chose under the
individual condition, and all individual choices the other group
members (two persons) chose under the “for another” condition.
The reward was an Amazon gift card, which was e-mailed to the
participant. The advantage of this reward was that we could make
the transaction cost the same between the immediate reward and
the delayed reward. The average reward was approximately JPY
1,890.

After participants arrived at the laboratory, the instructions
were distributed. The instructions4 are included in the
Supplementary Material. Participants sat in cubicles and

3We do not include the “for another” condition in our analysis because we are not

interested in this category in this study. See Tsuruta [16] for a discussion of this

condition. Thus, we analyze only the group and individual conditions.
4The instruction is written in Japanese.
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FIGURE 1 | Tree diagram of alternatives. Participants choose whether to receive a lower amount of money at an early date or a higher amount at a later date. After

choosing an option, the amount of the delayed option is changed, and the participants face new options. After four iterations, the indifference amount for the delayed

option relative to the amount of the early option can be determined. The indifference amount for the delayed option is shown for 16 categories (A, B, …, P). The most

impatient preference is A, and the most patient preference is P. The impatience preference ranking is A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P.

chose the alternatives using a computer. After three choice
conditions, we informed participants about the reward they
were to be paid, and they completed a post-experimental
questionnaire that inquired about their demographic data.

HYPOTHESES

We formulate two hypotheses. The first hypothesis is based on
the multilateral bargaining model. According to this hypothesis,
the most patient member in a group has the greatest impact on
group choices (multilateral bargaining hypothesis). The second
hypothesis is based on the median voter model. According to this
hypothesis, the median patient member has the greatest impact
on group choices (median voter hypothesis).

Multilateral Bargaining Hypothesis
This subsection describes the multilateral bargaining hypothesis,
which is based on the multilateral bargaining model. This
hypothesis predicts that themost patient member has the greatest
impact on group choices. Our experimental setting is close to
multilateral bargaining, in that members of a group negotiate
with each other over group choices.

The bilateral bargaining model is well known as a result of
Rubinstein’s pioneering work [17]. The multilateral bargaining
model was developed by Baron and Ferejohn [18] and Banks
and Duggan [19] and had been studied mainly in the fields of
political science and economics. In the popular model setting
of multilateral bargaining [18], a proposer is selected from
all members with some probability, who then proposes the
allocation of the surplus. Then, the members vote on the
proposals (i.e., accept or not accept). Under the majority voting
rule, the proposal is implemented and the game ends when the
majority of the members vote to accept. Otherwise, the procedure
is repeated, including the selection of a proposer [18]. Under the
unanimity voting rule, the proposal is implemented and the game

ends when all members vote to accept. Otherwise, the procedure
is repeated by selecting another proposer [20].

Our experiment differs from these bargaining models,
where members decide how to allocate the resource among
themselves, because members decide on a common group
discount factor (i.e., time preferences) in our experimental
setting. Here, we follow Ambrus et al. [6], who studied how
individual risk preferences were aggregated in groups and also
employed the multilateral bargaining model as a theoretical
background.We do so because we also investigate how individual
preferences are aggregated in groups. Moreover, applying the
multilateral bargaining model is plausible, because people have
heterogeneous opinions and make group decisions through
discussion in our experimental setting.

The main difference between our hypothesis and that of
Ambrus et al. [6] is that we assume heterogeneous individual
discount factors, whereas they assume common discount factors
among members of a group. Our assumption is closer to how
group decisions are made in real-life. Another difference is that
we employ the unanimity rule; that is, group members’ choices
must be the same after the discussion5.

Several theoretical studies based on themultilateral bargaining
model assume heterogeneity of individual discount factors and
employ the unanimity rule [21–23]. According to these studies, a
more patient member receives a higher payoff and has stronger
bargaining power. This is because patient members can reject
unfavorable proposals more easily than impatient members. The
unfavorable option refers to an objective option (i.e., a lower
reward). For example, suppose we have a proposer A, a patient
member B (δB = 0.9), and an impatient member C (δC = 0.2),
when proposer A proposes that A receives 60, B receives 20, and

5In their experimental setting, Ambrus et al. [6] employed the unanimity rule, as

we did. However, they built their hypothesis using both the unanimity rule and the

majority rule.
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C receives 20 at time t, the patient member B compares 20 to δB
(= 0.9)× (the expected allocation of B at t+ 1) to decide whether
or not to accept the proposal. Similarly, the impatient member C
compares 20 to δC (= 0.2) × (the expected allocation of C at t
+ 1) to decide whether or not to accept the proposal. Here, the
impatientmember C’s expected payoff at t+ 1 is likely to be lower
than that of the patient member owing to the difference in the
discount factors. When B and C’s allocations at t + 1 are both 40,
the patient member B rejects the proposal at t (20 < 0.9 × 40),
but the impatient member C accepts the proposal at t (20 > 0.2
× 40).

We apply this logic to our experimental setting. Thus, the
multilateral bargaining hypothesis states that the most patient
member has the greatest impact on group choices.

Median Voter Hypothesis
This subsection describes the median voter hypothesis, which is
based on the median voter model. This hypothesis predicts that
the median patient member has the greatest impact on group
choices in our experiment.

The median voter model is well known and is applied in
various academic fields [24]. Here, the median voter’s choices are
selected as the group choices under majority rule if all voters
have a single peaked preference [25]. We apply this logic to
our experimental setting. Thus, we hypothesize that the median
patient member has a significant impact on group choices.
According to this hypothesis, we predict that group decisions are
conducted under the majority voting rule, not bargaining, even
though they can discuss the options freely.

In our experimental setting, themedian patient member’s final
choices are the same as the final group choices when the group
members employ the majority voting rule. The explanation is as
follows (see Figure 1). First, we consider the situation in which
all the members’ preferences are different. For example, there are
threemembers of the same group, each of whomprefer a different
option (D, E, and F). For the first question (JPY 1,750 at an early
date or JPY 2,000 at a later date), all threemembers select the early
option. For the second question (JPY 1,750 at an early date or
JPY 2,120 at a later date), the person who likes D the best selects
the early option, but the other members select the delayed option.
Consequently, the group chooses the delayed option because they
employ majority voting. For the third question (JPY 1,750 at an
early date or JPY 2,060 at a later date), all three members select
the early option. For the fourth question (JPY 1,750 at an early
date or JPY 2,090 at a later date), the person who likes F the
best selects the delayed option, but the other members select the
early option. In this case, the group chooses the early option
because they employ majority voting. Therefore, the final group
choice is E, which is the same as the median patient member’s
final choice. The results for the other cases are the same. Second,
we consider the situation in which two of the members’ final
choices are the same. Themedian patient member always belongs
to the majority, because there are three group members. For
example, if one member prefers C but the other two prefer D,
then the median patient member is the person who prefers D. If
one member prefers I but two prefer E, then the median patient
member is the person who prefers E. Therefore, the median

TABLE 1 | Discount factors for each rank under each combination of dates.

Rank N Mean Median S.D. Min Max

Today vs. 1 month 1 35 0.777 0.815 0.119 0.184 0.815

2 35 0.695 0.815 0.203 0.109 0.815

3 35 0.448 0.497 0.277 0.061 0.815

Group 35 0.683 0.815 0.196 0.129 0.815

1 month vs. 2 month 1 35 0.770 0.815 0.128 0.184 0.815

2 35 0.701 0.815 0.208 0.092 0.815

3 35 0.586 0.737 0.268 0.061 0.815

Group 35 0.708 0.815 0.186 0.184 0.815

Here, (today vs. 1 month) and (1 month vs. 2 months) refer to the combinations of dates

for the early option and the delayed option. Using (today vs. 1 month) as an example,

participants choose to receive a small reward today or a larger reward one month later.

Each rank refers to the order of the discount factor under the individual condition in the

same group. Rank 1 refers to the most patient member (the highest discount factor) in a

group, rank 2 refers to the median member (the second highest discount factor), and rank

3 refers to the most impatient member (the third highest discount factor, i.e., the lowest

discount factor). Group refers to the discount factor for the group condition.

patient member’s final choice is also the final group choice under
the majority voting rule, because the median patient member
always belongs to the majority. Finally, we consider the situation
in which all the members’ final choices are the same. Evidently,
the median patient member’s final choice is the same as the final
group choice in this situation.

Consequently, the median voter hypothesis states that the
median patientmember has the greatest impact on group choices.

RESULTS

Regression Analysis and Post-estimation
Analysis
We classify group members into three ranks, as follows. Rank
1, rank 2, and rank 3 represent the order of the discount factor
under the individual condition in the same group6. Rank 1 refers
to the most patient member (the highest discount factor) in a
group, rank 2 refers to the median member (the second highest
discount factor), and rank 3 refers to the most impatient member
(the third highest discount factor: i.e., the lowest discount factor).
If twomembers in the same group have the same value, we handle
it as follows. For example, when the value of member A’s discount
factor is 0.8, that of member B’s discount factor is 0.8, and that of
member C’s discount factor is 0.7, we set rank 1 and rank 2 to
0.8 and rank 3 to 0.7. If all members of the group have the same
value, we set all three rank values to the same value.

Table 1 shows the descriptive statistics for each rank and the
group discount factors for each date. Figure 2 shows the mean
discount factors of the (today, 1 month) condition. Figure 3
shows the mean discount factors of the (1 month, 2 months)
condition. In both cases, rank 2 seems to be close to the group
discount factor.

6We explain how to calculate discount factor (i.e., time preferences) in section

Methods.
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FIGURE 2 | Mean discount factors for the group condition and the individual

conditions (Rank 1, Rank 2, and Rank 3). The combination of dates for the

early option and the delayed option is (today vs. 1 month). Participants choose

to receive a smaller reward today or a larger reward one month later. Each

rank refers to the order of the discount factor under the individual condition in

the same group. Rank 1 refers to the most patient member (the highest

discount factor) in a group, rank 2 refers to the median member (the second

highest discount factor), and rank 3 refers to the most impatient member (the

third highest discount factor, i.e., the lowest discount factor). Group refers to

the discount factor for the group condition.

FIGURE 3 | Mean discount factors for the group condition and individual

conditions (Rank 1, Rank 2, and Rank 3). The combination of dates for the

early option and the delayed option is (1 month vs. 2 months). Participants

choose to receive a smaller reward one month later or a larger reward two

months later. Each rank refers to the order of the discount factor under the

individual condition in the same group. Rank 1 refers to the most patient

member (the highest discount factor) in a group, rank 2 refers to the median

member (the second highest discount factor), and rank 3 refers to the most

impatient member (the third highest discount factor. i.e., the lowest discount

factor). Group refers to the discount factor for the group condition.

For a more detailed analysis, we conduct a regression analysis
and a post-estimation analysis. These analyses are partially based
on the work of Ambrus et al. [6], who also analyze how individual
preferences are aggregated at the group level. They investigated

risk preferences using a lottery task and selfishness using a gift
exchange game. We focus on the model in which the group

decision is a linear function of
(

δ
(rank i)
g

)

i=1,2,3
:

δ
group
g = constant + α1δ

(rank1)
g + α2δ

(rank2)
g + α3δ

(rank3)
g + ǫg ,(1)

where δ
group
g denotes group g’s elicited group discount factor,

and δ
(rank i)
g denotes rank i’s elicited individual discount factor in

group g. We use δ
(rank j)
g to refer to the jth highest discount factor

among the individuals in group g (in particular, δ
(rank 1)
g refers to

the highest and δ
(rank 3)
g refers to the lowest discount factors). We

interpret the coefficients (i.e., α1, α2, α3) as the influence of each
rank on the group discount factors.

Next, we conduct a post-estimation analysis using our two
hypotheses (i.e., the multilateral bargaining hypothesis and the
median voter hypothesis): see section Hypotheses. Later, we
conducted post-estimation analyses, as follows. First, we test
whether the most patient member has the greatest impact on
group choices by analyzing whether we can reject α2 = α3 = 0.
Subsequently, we test this more strictly by analyzing whether we
can reject α2 = α3 = 0 and α1 = 1. If these tests are rejected,
we can interpret that the multilateral bargaining hypothesis is
rejected. Second, we test whether the median patient member has
the greatest impact on group choices by analyzing whether we can
rejectα1 = α3 = 0. We also test this more strictly by analyzing
whether we can reject α1 = α3 = 0 and α2 = 1. If these tests
are rejected, we can interpret that the median voter hypothesis is
rejected. Third, we test whether the most impatient member has
an impact on group choices. Here, we test whether we can reject
α1 = α2 = 0, and we test this more strictly by analyzing whether
we can reject α1 = α2 = 0 and α3 = 1. If these tests are rejected,
we can interpret from the results that themost impatient member
does not have the greatest impact on group choices.

Table 2 shows the results of the regression of the group
discount factors on the ordered individual discount factors.
The coefficient of the median member’s discount factor, α2, is
positive and significant for both combinations of dates. Table 3
shows the results of the post-estimation analyses. Here, we
reject that “the most patient member has the greatest impact
on group choices,” “the most patient member strongly has
the greatest impact on group choices,” “the most impatient
member has the greatest impact on group choices,” and “the
most impatient member strongly has the greatest impact on
group choices” for both combinations of dates at the 1% level.
We cannot reject “the median patient member has the greatest
impact on group choices” and “the median patient member
strongly has the greatest impact on group choices” for both
combinations of dates at the 1% level. Therefore, we reject
the multilateral bargaining hypothesis. In addition, the most
impatient member does not have the greatest impact on group
choices.

Bayesian Analysis
In this subsection, we conduct a Bayesian analysis. As mentioned
in the previous subsection, we reject the multilateral bargaining
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hypothesis. However, rejecting this hypothesis and not
rejecting the median voter hypothesis does not guarantee
support for the median voter hypothesis. In other words,
not rejecting a hypothesis is not the same as supporting

TABLE 2 | Ordinary least squares (OLS) regression of group discount factors on

individual discount factors.

(1) (2)

Today vs. 1 month 1 month vs. 2 months

δ(rank 1)
−0.0750 0.110

(0.257) (0.314)

δ(rank 2) 0.581*** 0.688**

(0.175) (0.270)

δ(rank 3) 0.179 0.0124

(0.107) (0.0726)

Constant 0.258 0.134

(0.156) (0.138)

Observations 35 35

R-squared 0.556 0.700

Robust standard errors in parentheses.

*, **, *** denote significance at the 1%, 5%, 10% level.

Here, (today vs. 1 month) and (1 month vs. 2 months) refer to the combinations of dates

for the early option and the delayed option. Using (today vs. 1 month) as an example,

participants choose to receive a small reward today or a larger reward one month later.

Each rank refers to the order of the discount factor under the individual condition in the

same group. Rank 1 refers to the most patient member (the highest discount factor) in a

group, rank 2 refers to the median member (the second highest discount factor), and rank

3 refers to the most impatient member (the third highest discount factor, i.e., the lowest

discount factor). Group refers to the discount factor for the group condition.

TABLE 3 | Results from the post-estimation analysis (p-values).

Today

vs.

1 month

1 month

vs.

2 months

The most patient member has the greatest

impact on group choices

(α2 = α3 = 0)

0.0000*** 0.0033***

The most patient member strongly has the

greatest impact on group choices

(α1 = 1) and (α2 = α3 = 0)

0.0000*** 0.0088***

Median patient member has the greatest

impact on group choices

(α1 = α3 = 0)

0.1954 0.9403

Median patient member strongly has the

greatest impact on group choices

(α2 = 1) and (α1 = α3 = 0)

0.0128** 0.2182

The most impatient member has the greatest

impact on group choices

(α1 = α2 = 0)

0.0010*** 0.0001***

The most impatient member strongly has the

greatest impact on the group choices

(α3 = 1) and (α1 = α2 = 0)

0.0000*** 0.0000***

*, **, *** denote significance at the 1%, 5%, 10% level.

In this table reports the post-estimation analysis results from Table 2. Statistical

significance means that the hypothesis is rejected. For example, the result of first row

and column (0.0000***) means that α2 = α3 = 0 is rejected with a p-value of 0.0000.

the hypothesis [13]. To resolve this problem, we conduct
a Bayesian analysis and calculate the Bayes factors. Then,
we analyze which hypothesis best fits the experimental
data.

We first conduct the following four linear regressions using
Bayesian methods and, then, calculate the Bayes factors to judge
which hypothesis best fits the experimental data.

δ
group
g = constant + b1δ

(rank 1)
g + b2δ

(rank 2)
g + b3δ

(rank 3)
g + ǫg

(2)

δ
group
g = constant + c1δ

(rank 1)
g + ǫg (3)

δ
group
g = constant + c2δ

(rank 2)
g + ǫg (4)

δ
group
g = constant + c3δ

(rank 3)
g + ǫg , (5)

where δ
group
g denotes group g’s elicited group discount factor,

and δ
(rank i)
g denotes rank i’s elicited individual discount factor

in group g. We use δ
(rank j)
g to refer to the jth highest discount

factor among the individuals in group g (in particular, δ
(rank 1)
g

refers to the highest and δ
(rank 3)
g refers to the lowest discount

factors). Model (2) includes all the members’ discount factors
as explanatory variables. Model (3) includes only the most

patient member’s discount factor (i.e., δ
(rank 1)
g ) as an explanatory

variable. Model (4) includes only the median patient member’s

discount factor (i.e., δ
(rank 2)
g ) as an explanatory variable. Model

(5) includes only the most impatient member’s discount factor

(i.e., δ
(rank 3)
g ). If the median voter hypothesis is supported,

Model (4) will fit the experimental data better than Models (3)
and (5).

To fit a Bayesian parametric model, we need to specify
the likelihood function or the distribution of the data and
the prior distributions for all model parameters. In Model
(2), the Bayesian linear model has five parameters: four

regression coefficients (i.e., a constant, δ(rank 1), δ(rank 2), and

δ(rank 3)) and the variance of the data. We assume a normal
distribution for the dependent variable (i.e., δgroup) and start
with a non-informative Jeffreys prior [26] for the parameters.
Under the Jeffreys prior, the joint prior distribution of the
coefficients and the variance is proportional to the inverse of
the variance. In Models (3), (4), and (5), we also assume a
normal distribution for the dependent variable (i.e., δgroup)
and start with a non-informative Jeffreys prior for the three

parameters (i.e., a constant, δ(rank R), and the variance of the
data). Here, R is set to 1 in Model (3), 2 in Model (4), and 3 in
Model (5).

We can write model (2) as follows:

δgroup ∼ N
(

Xβ , σ 2
)

(

β , σ 2
)

∼ 1/σ 2,

where X is design matrix, and β =
(

constant, δ(rank 1), δ(rank 2), δ(rank 3)
)′

, which is a vector
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TABLE 4 | Results of Bayesian linear regression.

Today vs. 1 month 1 month vs. 2 months

Model Mean Std. Dev. [95% Cred. Interval] Mean Std. Dev. [95% Cred. Interval]

(2) δ(rank 1)
−0.064 0.277 −0.644 0.449 0.086 0.206 −0.361 0.465

δ(rank 2) 0.570 0.185 0.203 0.940 0.692 0.168 0.384 1.022

δ(rank 3) 0.180 0.105 −0.038 0.380 0.013 0.109 −0.193 0.225

Constant 0.255 0.164 −0.049 0.603 0.148 0.118 −0.068 0.396

(3) δ(rank 1) 0.718 0.271 0.172 1.227 0.883 0.214 0.475 1.308

Constant 0.125 0.212 −0.278 0.550 0.028 0.167 −0.308 0.351

(4) δ(rank 2) 0.699 0.118 0.471 0.935 0.755 0.088 0.582 0.931

Constant 0.198 0.086 0.024 0.367 0.178 0.064 0.053 0.305

(5) δ(rank 3) 0.405 0.108 0.193 0.611 0.431 0.096 0.239 0.615

Constant 0.503 0.055 0.398 0.609 0.455 0.061 0.338 0.576

Here, (today vs. 1 month) and (1 month vs. 2 months) refer to the combinations of dates for the early option and the delayed option. Using (today vs. 1 month) as an example, participants

choose to receive a small reward today or a larger reward one month later. Each rank refers to the order of the discount factor under the individual condition in the same group. Rank

1 refers to the most patient member (the highest discount factor) in a group, rank 2 refers to the median member (the second highest discount factor), and rank 3 refers to the most

impatient member (the third highest discount factor, i.e., the lowest discount factor). Group refers to the discount factor for the group condition. Mean reports the estimates of the

posterior means. Std. Dev. reports the estimates of the posterior standard deviations. The credible interval reports the 95% probability that the coefficient is in the described range.

of coefficients. In Models (3), (4), and (5), the vector of

coefficients is β =

(

constant, δ(rank R)
)′

, where R is 1 in Model

(3), 2 in Model (4), and 3 in Model (5). Next, we calculate
the Bayes factors. The Bayes factors compute the relative
probabilities of how well each model fits the data, as compared
with the base model. We report the log Bayesian factors. If
a log Bayesian factor is larger than zero, the reference model
fits the data better than the base model and vice versa. We
calculate two cases, namely, where the base model is Model
(2) and the base model is Model (4). We use the Metropolis-
Hastings method. All statistical analyses are performed using
STATA 14.0.

Table 4 shows the results of Bayesian linear regression.
The mean reports the estimates of posterior means, which
are the means of the marginal posterior distributions of the
parameters. Std. Dev. reports the estimates of the posterior
standard deviations, which are the standard deviations of the
marginal posterior distributions. The credible interval reports
the 95% probability that the coefficient is in the described
range. In the case of Model (2), only rank 2 has a lower
bound of the 95% credible interval that is positive for both
combinations of dates for the early option and the delayed option.
Therefore, we surmise that rank 2 has a strong influence on
group choices. Table 5 shows the log Bayes factors. The first
and third columns report the log Bayes factors using Model
(2) as a base model. As shown, the value of the log Bayes
factor is positive when the reference model is Model (4) for
both combinations of dates. Thus, Model (4) fits the data better
than Model (2). In other words, the model that includes only
the constant and rank 2 is better than the model that includes
all of the coefficients. The second and fourth columns report
the log Bayes factors using Model (4) as a base model. As
shown, the value of the log Bayes factor is negative when the
reference model is Model (3) for both combinations of dates.
Thus, Model (4) fits the data better than Model (3). In other

TABLE 5 | Log Bayes factors.

Today vs. 1 month 1 month vs. 2 months

Base model

Model (2) Model (4) Model (2) Model (4)

Reference model Model (2) −0.015 −1.830

Model (3) −7.608 −7.623 −10.008 −11.838

Model (4) 0.015 1.830

Model (5) −5.292 −5.307 −10.035 −11.865

Here, (today vs. 1 month) and (1 month vs. 2 months) refer to the combinations of dates

for the early option and the delayed option. Using (today vs. 1 month) as an example,

participants choose to receive a small reward today or a larger reward one month later.

Models (2), (3), (4), and (5) are described in the Bayes analysis subsection. If a log Bayesian

factor is larger than zero, the reference model fits the data better than the base model and

vice versa.

words, the model that includes the constant and rank 2 is better
than the model that includes the constant and rank 1. From
these results, we conclude that the median voter hypothesis is
supported.

Chat Analysis
We reject the multilateral bargaining model using a regression
analysis and a post-estimation analysis in section Regression
Analysis and Post-estimation Analysis. In addition, we discover
that the median voter hypothesis is supported using a Bayesian
analysis in section Bayesian Analysis. In this subsection, we
investigate why the median voter hypothesis is supported by
analyzing the text data from the group chats.

Why does the median patient member have a strong impact
on group choices, even though the experimental setting uses
the unanimity rule? Here, we focus on the order of preference
expression, which we label as follows. The person who expresses
an opinion first is 1st, the person who expresses an opinion
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second is 2nd, and the person who expresses an opinion third
is 3rd.

When people express an opinion, this opinion is considered
to be closest to their own preferences7. They can discuss whether
their opinions differ from those of the other group members.
Here, we refer to the choices in the individual condition as
a member’s own preferences. However, the proportion (the
number expressing the opinion closest to own preference)÷ (the
number of all expressions) is only 80%8. In other words, 20%
of those expressing an opinion fail to express their individual
conditions. Are the proportions of each order of preference
expression the same? Table 6 shows the results9. The data in
Table 6 show the sum of the two combinations of dates (i.e.,
{Early date, later date} = {today, 1 month} and {1 month,
2 months}). The proportion of expressions closer to the own
preferences declines from 1st to 3rd (i.e., 84.05% in 1st, 79.77% in
2nd, 73.93% in 3rd). The proportions in each order of preference
expressions are statistically different [χ2

(2)
= 8.0602, p = 0.018].

Multiple comparisons show that the proportion between 1st and
3rd is significantly different (p = 0.014, Bonferroni test), and
the proportion between 2nd and 3rd is not significantly different
(p = 0.306, Bonferroni test). Thus, those who express their own
opinion third fail to express own preferences less often than those
who do so first.

Why do people who express 3rd fail to express their own
preferences? There are two situations in which “3rd” express their
own opinion. First, the first person and the second person express
the same opinion. Second, the first person and the second person
express different opinions10. If the first person and the second
person express the same opinion, the third person’s preference
differs from theirs, but the third person follows the first two.
We call this “dishonesty due to conformity with majority.” For
example, 1st chooses the early option and 2nd chooses the
early option. Consequently, although 3rd prefers the delayed
option, s/he chooses the early option. We call this “conformity
with majority.” In the chat data, the total number of dishonest
choices by 3rd is 67, as shown in Table 6. Out of these, the
number of “dishonesty due to conformity with the majority” is
63. Therefore, there might be a tendency for people to follow the
majority, even though they have their own opinions.

7For example, the person who prefers D in Figure 1 is considered to choose the

early option for the first question (JPY 1,750 at an early date or JPY 2,000 at a later

date).
8We check whether people’s opinions are the same as those of the individual

conditions.We do not count opinions that change during the discussion and count

only the first expression in each question. There is one expression per person in

each question. As mentioned in the Method section, there are four expressions for

one combination of dates for the early option and the delayed option, there are two

combinations of dates (i.e., {today, 1 month} and {1 month, 2 months}), and there

are 105 participants. Therefore, the number of all first expressions is 840 (4 × 2

× 105 = 840). Out of these, the number of first expressions not close to the own

preferences is 168. Therefore, (the number choosing an option NOT closer to own

preference)÷ (the number of all expressions)= 168/840= 0.2.
9We exclude cases where no chat occurred or where the order of preference

expression is ambiguous in Table 6. Therefore, the final sample is 771.
10As mentioned in the Method section, participants always face a choice between

two options.

TABLE 6 | Table of whether the first expressions in the group chats are dishonest.

The order

of

preference expression

Honest Dishonest Total

1st N 216 41 257

(%) (84.05) (15.95) (100)

2nd N 205 52 257

(%) (79.77) (20.23) (100)

3rd N 190 67 257

(%) (73.93) (26.07) (100)

Total N 611 160 771

(%) (79.25) (20.75) (100)

The values show the sums of the two combinations of dates (i.e., {Early date, later

date} = {today, 1 month} and {1 month, 2 months}). The order of preference expression

is as follows. The person who expresses an opinion first is 1st, the person who expresses

an opinion second is 2nd, and the person who expresses an opinion third is 3rd. Honest

means that the first expression in the group chat is the same as that of the individual

condition. Dishonest means that the first expression in the group chat is not the same

as that of the individual condition. We exclude cases where no group chat occurred and

where the order of preference expression is ambiguous.

We guess that this tendency affected our main findings that
the median patient member has the greatest impact on group
choices. The “dishonesty due to conformity with majority” works
to the median member’s advantage, as follows. For example,
suppose we have two options, A and B, and three members (x,
y, z) who have single-peaked preferences; in this situation, there
are four patterns of members’ preferences (i.e., {x, y, z} = {A,
A, A}, {A, A, B}, {A, B, B}, {B, B, B}). Taking {x, y, z} = {A,
A, B} as an example, the number of combinations of the order
of preference expressions and own opinions is six (i.e., {1st,
2nd, 3rd} = {Ax, Ay, Bz}, {Ay, Ax, Bz}, {Bz, Ax, Ay}, {Bz, Ay,
Ax}, {Ax, Bz, Ay}, and {Ay, Bz, Ax}). Here, Ax indicates that
person x chooses option A. It is possible that “dishonesty due to
conformity with themajority” occurs when {1st, 2nd, 3rd}= {Ax,
Ay, Bz} and {Ay, Ax, Bz}. When the third person z fails to
express his/her own opinion B, but instead expresses A to follow
the majority, “dishonesty due to conformity with the majority”
occurs. Consequently, all three members choose option A. Thus,
alternative A (i.e., median person y’s preference) is selected as the
group choice. We reach the same conclusion for {x, y, z} = {A,
B, B}. These cases might increase the significance of the median
patient member’s effect on group choices.

As discussed above, we guess that themedian patientmembers
have a significant impact on group choices, partially because
there are many cases of “dishonesty due to conformity with the
majority.” Naturally, there might be other reasons why median
patient members have an effect on group choices. This is left for
future research.

CONCLUSION

This study investigates how individual intertemporal preferences
are aggregated in groups through deliberation, by clarifying
who has a significant effect on group choices. We formulated
two hypotheses. First, the multilateral bargaining hypothesis
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is based on the multilateral bargaining model, which predicts
that the most patient member in a group has the greatest
impact on group choices. Second, the median voter hypothesis
is based on the median voter model, which predicts that the
median patient member in a group has the greatest impact
on group choices. We found that the median patient member
has a substantial impact on group choices; that is, the median
voter hypothesis is supported. Moreover, we examined the text
data from the group chats to investigate why the median voter
hypothesis is supported. According to the chat analysis, people
who express their own opinion third (i.e., last) tend to follow the
majority opinion. This may be one reason for our result (i.e., the
median member has the greatest impact on group choices), even
though the experimental setting is a free discussion and uses the
unanimity rule.

Our results indicate that a median patient member in a group
has the greatest impact on group intertemporal choices, even
while using a free discussion and the unanimity rule. When
workers make investment decisions under these conditions in
a meeting, the median patient opinion might be accepted. This
finding is surprising because many economists assume that the
most patient member has the strongest bargaining power in
group choices.

In our experiment, the groups are small and contain an odd
number of members (i.e., three). Thus, we cannot generalize our
results for an even number of members or for large groups. For
an even number of members, we cannot determine whether the
more patient median member or the less patient median member
has a greater impact. Furthermore, median patient’s power may
decrease in large groups when compared with small groups.
Median member becomes a pivotal member in group decision
less often in a large group than in a small group. Thus, the
answer to how much impact which median member has in a
large group is unknown. Resolving these issues is left to future
research.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

AUTHOR CONTRIBUTIONS

MT developed the study concept and the experimental paradigm
and conducted the experiment. MT performed the data analysis
and interpretation under the supervision of KI. MT and
KI drafted the manuscript. Both authors contributed to the
discussion section of the manuscript and approved the work for
publication.

FUNDING

This work was supported by the Japan Society for the Promotion
of Science Grant-in-Aid for Scientific Research JP17H04780 JP
15K13007 for KI and 15H05728 for Yoshiyasu Ono, the Top-
Setting Program toAdvance Cutting-EdgeHumanities and Social
Sciences Research, and the Joint Usage/Research Center at ISER,
Osaka University.

ACKNOWLEDGMENTS

We thank the faculty and staff of the Center for Behavioral
Economics at ISER, Osaka University, who kindly allowed us to
use their laboratory resources.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2018.00043/full#supplementary-material

REFERENCES

1. Bixter MT, Trimber EM, Luhmann CC. Are intertemporal preferences

contagious? Evidence from collaborative decision making.Mem Cogn. (2017)

45:837. doi: 10.3758/s13421-017-0698-z

2. Yang X, Carlsson F. Influence and choice shifts in households: an experimental

investigation. J Econ Psychol. (2016) 53:54–66. doi: 10.1016/j.joep.2015.

11.002

3. Carlsson F, He H, Martinsson P, Qin P, Sutter M. Household decision making

in rural china: Using experiments to estimate the influences of spouses. J Econ

Behav Organ. (2012) 84:525–36. doi: 10.1016/j.jebo.2012.08.010

4. Charness G, Sutter M. Groups make better self-interested decisions. J Econ

Perspect. (2012) 26:157–76. doi: 10.1257/jep.26.3.157

5. He H, Villeval MC. Are group members less inequality averse than

individual decision makers? J Econ Behav Organ. (2017) 138:111–24.

doi: 10.1016/j.jebo.2017.04.004

6. Ambrus A, Greiner B, Pathak P. How individual preferences are aggregated

in groups: an experimental study. J Public Econ. (2015) 129:1–13.

doi: 10.1016/j.jpubeco.2015.05.008

7. Shupp RS, Williams AW. Risk preference differentials of small groups and

individuals. Econ J. (2008) 18:258–83. doi: 10.1111/j.1468-0297.2007.02112.x

8. Harrison GW, Lau MI, Rutström EE, Tarazona-Gómez M. Preferences over

social risk. Oxford Econ Pap. (2013) 65:25–46. doi: 10.1093/oep/gps021

9. Baker RJ II, Laury SK, Williams AW. Comparing small-group and individual

behavior in lottery-choice experiments. South Econ J. (2008) 75:367–382.

10. Bone J, Hey J, Suckling J. Are groups more (or less) consistent than

individuals? J Risk Uncertain. (1999) 18:63–81. doi: 10.1023/A:1007764411446

11. Masclet D, Colombier N, Denant-Boemont L, Lohéac Y. Group and

individual risk preferences: a lottery-choice experiment with self-

employed and salaried workers. J Econ Behav Organ. (2009) 70:470–84.

doi: 10.1016/j.jebo.2007.11.002

12. Bateman I, Munro A. An experiment on risky choice amongst households.

Econ J. (2005) 115:C176–89. doi: 10.1111/j.0013-0133.2005.00986.x

13. Gallistel CR. The importance of proving the null. Psychol Rev. (2009) 116:439–

453. doi: 10.1037/a0015251

14. Fischbacher U. z-Tree: Zurich toolbox for ready-made economic experiments.

Exp Econ. (2007) 10:171. doi: 10.1007/s10683-006-9159-4

15. Read D. Is time-discounting hyperbolic or subadditive? J Risk Uncertain.

(2001) 23:5. doi: 10.1023/A:1011198414683

16. Truruta M. Group and individual Time Preferences in Laboratory

Experiments. In: Discussion Papers in Economics and Business (Osaka

University) (2016) 16:11.

17. Rubinstein A. Perfect Equilibrium in a Bargaining Model. Econometrica

(1982) 50:1. doi: 10.2307/1912531

18. Baron D, Ferejohn J. Bargaining in legislatures. Am Polit Sci Rev. (1989)

83:1181. doi: 10.2307/1961664

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 October 2018 | Volume 4 | Article 43

https://www.frontiersin.org/articles/10.3389/fams.2018.00043/full#supplementary-material
https://doi.org/10.3758/s13421-017-0698-z
https://doi.org/10.1016/j.joep.2015.11.002
https://doi.org/10.1016/j.jebo.2012.08.010
https://doi.org/10.1257/jep.26.3.157
https://doi.org/10.1016/j.jebo.2017.04.004
https://doi.org/10.1016/j.jpubeco.2015.05.008
https://doi.org/10.1111/j.1468-0297.2007.02112.x
https://doi.org/10.1093/oep/gps021
https://doi.org/10.1023/A:1007764411446
https://doi.org/10.1016/j.jebo.2007.11.002
https://doi.org/10.1111/j.0013-0133.2005.00986.x
https://doi.org/10.1037/a0015251
https://doi.org/10.1007/s10683-006-9159-4
https://doi.org/10.1023/A:1011198414683
https://doi.org/10.2307/1912531
https://doi.org/10.2307/1961664
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Tsuruta and Inukai Group and Individual Time Preferences

19. Banks J, Duggan J. A bargaining model of collective choice. Am Polit Sci Rev.

(2000) 94:73–88. doi: 10.2307/2586381

20. Merlo A, Wilson C. Efficient delays in a stochastic model of bargaining. Econ

Theory (1998) 11:39. doi: 10.1007/s001990050177

21. Cardona D, Rubí-Barceló A. Time-preference heterogeneity and

multiplicity of Equilibria in two-group bargaining. Games (2016) 7:2.

doi: 10.3390/g7020012

22. Kawamori T. Players’ Patience and EquilibriumPayoffs in the Baron–Ferejohn

Model. Econ Bull. (2005) 3:1–5.

23. Yildirim H. Proposal power and majority rule in multilateral

bargaining with costly recognition. J Econ Theory (2007) 136:167–96.

doi: 10.1016/j.jet.2006.07.008

24. Congleton RD. the median voter model. In: Rowley CK, Schneider F, editors.

The Encyclopedia of Public Choice. Boston, MA: Springer (2004), p. 707–12.

doi: 10.1007/978-0-306-47828-4_142

25. Black D. On the rationale of group decision-making. J Polit Econ. (1948)

56:23–34. doi: 10.1086/256633

26. Jeffreys H. An invariant form for the prior probability in estimation problems.

Proc R Soc Lond. (1946) 186:453–61. doi: 10.1098/rspa.1946.0056

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Tsuruta and Inukai. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 October 2018 | Volume 4 | Article 43

https://doi.org/10.2307/2586381
https://doi.org/10.1007/s001990050177
https://doi.org/10.3390/g7020012
https://doi.org/10.1016/j.jet.2006.07.008
https://doi.org/10.1007/978-0-306-47828-4_142
https://doi.org/10.1086/256633
https://doi.org/10.1098/rspa.1946.0056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	How Are Individual Time Preferences Aggregated in Groups? A Laboratory Experiment on Intertemporal Group Decision-Making
	Introduction
	Methods
	Hypotheses
	Multilateral Bargaining Hypothesis
	Median Voter Hypothesis

	Results
	Regression Analysis and Post-estimation Analysis
	Bayesian Analysis
	Chat Analysis

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


