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This study presents a testing approach to examine various models of probability

weighting functions that are considered nonlinear functions of probability in behavioral

decision theory, such as prospect theory. Although there are several empirical

psychometric tests to examine probability weighting functions, there is no concrete

method to examine these functions’ axiomatic properties. We propose axiomatic

properties and a testing method to examine the generalized hyperbolic logarithmic

model, power model, and exponential power model of the probability weighting

functions, and provide an illustrative example of the testing method.
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INTRODUCTION

A probability weighting functionW(p) is a nonlinear function of an objective probability p, where
p is determined primarily from the frequentist view. Recently, they have received substantial
empirical and theoretical attention [1–3]. They are used in many fields, such as behavioral decision
theory, behavioral economics and neuroscience [4].

Several psychometric models have been proposed to represent probability weighting functions
(e.g., [1–3, 5, 6]). Some proposed probability weighting models derive from time discounting
models [2, 3, 7]. Rachin et al. [7] derived the model from the original hyperbolic function.
Takahashi [2] used a q-exponential time discount function [8] to derive Prelec’s [6] probability
weighting function and an exponential power model. Takemura and Murakami [3] used a more
direct assumption of time discounting to derive the hyperbolic logarithmic function model and the
generalized hyperbolic logarithmic model as probability weighting functions.

Takemura and Murakami [3] used a generalized hyperbolic time discounting model that
assumes both Fechner’s [9] psychophysical law of time and a geometric distribution of trials.
From this, they derived hyperbolic logarithmic type models. They were then able to examine the
generalized hyperbolic model in the context of an axiomatic system. They used Gonzalez andWu’s
[10] procedure to estimate the function parameters. To investigate goodness of fit, they computed
both the Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC). The results
indicated that the generalized hyperbolic logarithmic mode originally proposed by Prelec [6] fitted
better than median time discounting models, the one-parameter Prelec model, and the Tversky and
Kahneman model.
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Takemura and Murakami [3] made a key contribution by
supporting, both theoretically and empirically, a possible
psychological interpretation of a probability weighting
function in the context of time discounting. However, the
empirical method used in the study was a psychometric
nonlinear regression study. Although there are several empirical
psychometric tests available to examine probability weighting
functions, there is no concrete method to examine the axiomatic
properties of the probability weighting functions. Prelec [6]
had already proposed the axiomatic properties for some
weighting functions. However, no concrete axiomatic properties
distinguished the individual models he proposed, and no testing
method was suggested. Based on their axiomatic considerations,
we propose axiomatic properties and a testingmethod to examine
the generalized hyperbolic logarithmic model, power model, and
exponential power model of the probability weighting functions,
and provide an illustrative example of the testing method.

AXIOMATIC SYSTEM OF GENERALIZED
HYPERBOLIC LOGARITHMIC MODEL,
EXPONENTIAL POWER MODEL, AND
POWER MODEL FOR PROBABILITY
WEIGHTING FUNCTIONS

Counterexamples, such as the Allais paradox [11] and the
Ellsberg paradox [12], have been identified in earlier studies.
These paradoxes are interpreted as deviations from the
independence axiom. Recently, they have been explained using
theory systems. More specifically, these systems include the
nonlinear utility theory [13–15]—which does not require this
independence axiom—as well as the generalized expected utility
theory [16]. Prospect theory [5, 17] integrates knowledge and
past findings in nonlinear utility theory (or generalized expected
utility theory) and behavioral decision-making theory.

In prospect theory, we assume a non-additive probability
function, where a non-additive probability is a set function
π : 2Ω → [0, 1] from an aggregate of subsets of a nonempty
set Ω to a closed interval [0, 1]. The non-additive probability
function is a set function satisfying both a boundedness condition
(π (φ) = 0, π (Ω) = 1) and a monotonicity condition
[if A ⊆ B, then π (A) ≤ π(B), where A, B are subsets
of Ω]. A non-additive probability does not necessarily satisfy
additivity conditions. Prelec [6] showed psychometric functions
of non-additive probability (probability weighting functions) and
axiomatic properties of the probability weighting functions based
on prospect theory.

Based on the theoretical work of Prelec [6], we show axiomatic
properties of the generalized hyperbolic logarithmic model,
exponential power model, and power model for probability
weighting functions.

For the set A of probability distributions P, Q, . . . on X =

[x−, x+], where x− < 0 < x+, let < be a preference relation.
Prospects are considered distributions with finite support. Then,
we assume the following axioms [6].

W1.Weak ordering: < is complete and transitive.

W2. Strict stochastic dominance: P > Q if both P 6= Q and P
is stochastically dominants over Q.
W3. Certainty equivalent condition: For every P, ∃ x such
that (x) ∼ P.
W4. Continuity in probabilities: If (y, p) > (x) where 0 <

p < 1, then ∃ q, r such that q < p < r, (y, q) > (x), and
(y, r) > (x). If (y, p) < (x) where 0 < p < 1, then ∃ q, r such
that q < p < r, (y, q) < (x) and (y, r) < (x).
W5. Simple continuity: Let the set of all k nonpositive and
(n − k) nonnegative rank-ordered n-tuples from X be S(k, n),
where 0 ≤ k ≤ n. If the preference relation induced
on each set S(k, n) is continuous for any probability vector
(p1, p2, · · · , pn), then there is simple continuity.
W6. Tradeoff consistency: Consider a prospect
(x, pi; x−i, p−i) with outcome c of rank i singled out
and the set R(k, n, p) of all sign-order and rank-order
compatible prospects with a p-chance of a negative outcome.
Assume there are not eight prospects, (x, pi; a−i, p−i),
(y, pi; b−i, p−i), (x′, pi; a−i, p−i), (y′, pi; b−i, p−i),
(x′, qj; c−j, q−j), (y

′, qj; d−j, q−j), (x, qj; c−j, q−j), and
(y, qj; d−j, q−j), such that the first and second groups of four
belong to the same sign-order and rank-order compatible set,
and

(
x, pi; a−i, p−i

)
<

(
y, pi; b−i, p−i

)
,(

x′, pi; a−i, p−i

)
4

(
y′, pi; b−i, p−i

)
,(

x′, qj; c−j, q−j

)
<

(
y′, qj; d−j, q−j

)
,(

x, qj; c−j, q−j

)
<

(
y, qj; d−j, q−j

)
.

Then, tradeoff consistency holds.
The following assumptions are as described by Prelec [6].
Assumption 1: < satisfies axioms W1-W6, which support

a sign-dependent and rank-dependent representation with a
continuous and strictly increasing ratio scale v(x), as well as a
strictly increasing unique w−(p), w+(p) that is continuous on (0,
1), and satisfies w+(0) = w−(0) = 0, w+(1) = w−(1) = 1.

Assumption 2: There is a separable representation of the
restriction of< to simple prospects, with v(x),w−

(
p
)
, andw+(p)

satisfying the Assumption 1 conditions.
Definition 1 Conditional invariance [6]: < has conditional

invariance if the following holds for any outcomes x, y, x′, y′ ∈
X, probabilities q, p, r, s ∈ [0, 1], and conditional probability λ,
0 < λ < 1:

If (x, p) ∼ (y, q) and (x, r) ∼ (y, s), then (x′, λp)∼(y′,λq)
implies (x′, λr)∼ (y′,λs) or (x′, λr)∼(y′,λs).

Definition 2 Projection invariance [6]: < has projection

invariance if the following holds for any outcomes x, y ∈ X,
probabilities q, p, r, s ∈ [0, 1], and conditional probability λ,
0 < λ < 1:

If (x, p) ∼ (y, q) and
(
x, rp

)
∼

(
y, sq

)
, then (x, r2p) ∼

(y, s2q).
Proposition 1: The generalized hyperbolic logarithmic

model proposition

Let< be a preference relation on R+ where either Assumption
1 or 2 holds, conditional invariance (Definition 1) does not
hold, and projection invariance (Definition 2) holds. Then, the
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probability weighting functionW(p) is a hyperbolic logarithm,

W(p) = (1− k log p)β ,

where p is probability (0<p), and k and β are positive constants,
k, β > 0.

Proof

The proof of Proposition 1 is trivial and derived from a
combination of Propositions 4 and 5 in the original theoretical
work by Prelec [6]. Prelec [6] found that if < is a preference
relation on R+ where either Assumption 1 or 2 holds and
conditional invariance (Definition 1) holds, then the weighting
function (0<p) is either an exponential-power function or a
power function (Proposition 4). Prelec [6] also found that if
< is a preference relation on R+ where either Assumption
1 or 2 holds and projection invariance (Definition 2) holds,
then the weighting function (0<p) is either a hyperbolic
logarithm or a power function (Proposition 5). Therefore, if
< is a preference relation on R+ satisfying Assumption 1 or
2, conditional invariance (Definition 1) does not hold, and
projection invariance (Definition 2) holds, then the probability
weighting functionW(p) is a hyperbolic logarithmic function.

Proposition 2: Proposition of the exponential power model

If < is a preference relation on R+ satisfying Assumption 1
or 2, conditional invariance (Definition 1) holds, and projection
invariance (Definition 2) does not hold, then the probability
weighting function W(p) is an exponential power function such
as

W
(
p
)
= exp

{
−k

(
1− pβ

)}
,

where p is probability (p>0), and k and β are positive constants,
k, β > 0.

Proof

The proof of Proposition 2 is trivial and also derived from a
combination of Propositions 4 and 5 in the original theoretical
work by Prelec [6]. As in the same inference of Proposition
1, if < is a preference relation on R+ satisfying Assumption 1
or 2, conditional invariance (Definition 1) holds and projection
invariance (Definition 2) does not hold, then the probability
weighting function W(p) should be an exponential power
function.

Proposition 3: Proposition of the power model

If < is a preference relation on R+ satisfying Assumption
1 or 2, conditional invariance (Definition 1), and projection
invariance (Definition 2), then the probability weighting function
W(p) is an exponential power

W
(
p
)
= pβ ,

where p is probability, and β is a positive constant, β > 0.
Proof

The proof of for this proposition is trivial and also derived
from a combination of Propositions 4 and 5 in the original
theoretical work by Prelec [6]. As in the same inference of
Proposition 1, if < is a preference relation on R+ satisfying
Assumption 1 or 2, conditional invariance (Definition 1)
holds and projection invariance (Definition 2) holds, then the
probability weighting functionW(p) is a power function.

A TESTING METHOD TO EXAMINE
AXIOMATIC PROPERTIES OF
GENERALIZED HYPERBOLIC
LOGARITHMIC MODEL, EXPONENTIAL
POWER MODEL, AND POWER MODEL
FOR PROBABILITY WEIGHTING

We propose a testing method to examine the generalized
hyperbolic logarithmic model, power model, and exponential
power model of the probability weighting functions, and provide
an illustrative example of the testingmethod. First, we present the
testing method using verification tasks of projection invariance
and conditional invariance. We then give an example verifying
the reliability and axioms and showing the goodness of fit of the
models.

Figure 1 illustrates the testing experimental process,
which had participants choose one option from two
gambles. To assess reliability, projection invariance and
conditional invariance should be examined at least twice.
Additionally, trials are done at least 30 times to stabilize the
responses.

The Projection Invariance Verification
Process
Experimental screens and the task processes in the projection
invariance verification process are shown in Figure 2. The task
presented to the participants was to choose one option from two
gambles as shown in Table 1. The participants were instructed to
choose a preferred option from the experimenter.

The verification process of projection invariance is presented
in Table 1. In the verification of projection invariance in Table 1,
y = 10,000 yen, p = 100%, q = 50%, and s = 50% are given. In
addition, Table 1 presents values of the responses by participants
shown in bold typeface.

FIGURE 1 | Experimental process for testing axiomatic properties.
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FIGURE 2 | Experimental screens and task process.

TABLE 1 | Verification process of projection invariance.

Alternative A Alternative B

Outcome Probability Outcome Probability

Step 1 x p ∼ y q

5,000 yen 100% 10,000 yen 50%

Step 2 x rp ∼ y sq

5,000 yen 50% 10,000 yen 25%

Step 3 x r2p ∼ ŷ s2q

5,000 yen 25% 10,000 yen 12.5%

The values given in responses by the participants are shown in bold typeface.

y = 10,000 yen, p = 100%, q = 50%, s = 50%.

The verification projection invariance tasks comprise three
steps. To explain the verification process using the example
presented in Table 1, in Step 1, x in the alternative A equivalent
to the alternative B (to obtain 10,000 yen with 50%) is estimated
from a pair comparison of the alternative A and alternative B
in Figure 2. Next, in Step 2, r in the alternative A equivalent to
the alternative B (to obtain 10,000 yen with 25%) is estimated.
For x of the alternative A in Step 2, the x obtained in Step 1 is
used. Finally, in Step 3, using x and r obtained in Step 1 and
Step 2, the alternative A (to get 5,000 yen with 25%) is made.
Then ŷ is estimated (to obtain ŷ yen with 12.5%). Here, when ŷ
obtained in Step 3 is 10,000 yen, which is the same as y, projection
invariance is regarded as satisfied. Additionally, because y =

10,000 yen is given in Step 3, to estimate ŷ, 20,000 yen and 0 yen,
respectively, the maximum value and the minimum value of ŷ
were presented to the participants. Then they were asked to do
the pair comparison, as shown in Figure 2.

Steps 1, 2, and 3 respectively comprise 9 trials, 9 trials, and
12 trials. The stimulation sequences used to verify projection
invariance are shown in Table 2. Nine sequences of stimulation
were prepared. Furthermore, because y is fixed at 10,000 yen in
Step 3, when a participant gives a response to satisfy the axioms,
the participant might continue to give the same response and is
likely to change a response due to fluctuation of the psychological
process. Therefore, with three sequences of dummy stimulation
added to the nine sequences, Step 3 has 12 trials in all.

TABLE 2 | Stimulation sequences of projection invariance.

Sequence number y (yen) p (%) q (%) s (%)

1 10,000 100 10 50

2 10,000 100 20 50

3 10,000 100 30 50

4 10,000 100 40 50

5 10,000 100 50 50

6 10,000 100 60 50

7 10,000 100 70 50

8 10,000 100 80 50

9 10,000 100 90 50

Verification Process of Conditional
Invariance
Experimental screens and task processes were prepared in an
identical form to that used for projection invariance in the
verification process of conditional invariance. The participants
were also instructed to choose a preferred option from two
gambles, as shown in Table 3. The verification process of
conditional invariance is presented in Table 3. For verification
of the conditional invariance in Table 3, y = 20,000 yen, y′ =
10,000 yen, p= 100%, q= 50%, s= 10%, and λ = 50% are given.
Additionally, the values given in responses by the participants are
shown in bold typeface in Table 3.

The verification tasks of conditional invariance comprise four
steps. To explain the verification process using the example in
Table 3, in Step 1, x of alternative A equivalent to alternative B (to
get 20,000 yen with 50%) is estimated through a pair comparison
between alternatives A and B as shown in Figure 2. Next, in Step
2, r of the alternative A equivalent to the alternative B (to get
20,000 yen with 10%) is estimated. For x of alternative A in Step
2, the x obtained in Step 1 is used. In Step 3, x′ of the alternative
A (to obtain x′ yen with 50%) equivalent to the alternative B (to
get 10,000 yen with 25%) is estimated. In Step 4, using r and
x′ obtained in Step 2 and Step 3, respectively, alternative A (to
get 5,000 yen with 10%) is made. Then, ŷ′ of alternative B (to
get ŷ′ yen with 5%) is estimated. Here, when ŷ′ obtained in Step
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TABLE 3 | Verification process of conditional invariance.

Alternative A Alternative B

Outcome Probability Outcome Probability

Step1 x p ∼ y q

10,000 yen 100% 20,000 yen 50%

Step2 x r ∼ y s

10,000 yen 20% 20,000 yen 10%

Step3 x′ λp ∼ y′ λq

5,000 yen 50% 10,000 yen 25%

Step 4 x′ λr ∼ ŷ′ λs

5,000 yen 10% 10,000 yen 5%

The values given in responses by the participants are shown in bold typeface.

y = 20,000 yen, y′ = 10,000 yen, p = 100%, q = 50%, s = 10%, λ = 50%.

TABLE 4 | Stimulus sequences of conditional invariance (%).

Sequence number y (yen) y′ (yen) p (%) q (%) s (%) λ (%)

1 20,000 10,000 100 10 2 50

2 20,000 10,000 100 20 4 50

3 20,000 10,000 100 30 6 50

4 20,000 10,000 100 40 8 50

5 20,000 10,000 100 50 10 50

6 20,000 10,000 100 60 12 50

7 20,000 10,000 100 70 14 50

8 20,000 10,000 100 80 16 50

9 20,000 10,000 100 90 18 50

4 is 10,000 yen, which is the same value as y′, the conditional
invariance is regarded as satisfied.

Steps 1, 2, and 3 are composed respectively of 9 trials, 9 trials,
and 12 trials. The stimulus sequences used for verification of
conditional invariance are presented in Table 4. Nine sequences
of stimuli were prepared. In Step 4, although three dummy
stimulus sequences were also prepared for the same reason as
those for projection invariance, three stimuli from the sequences
were randomly provided twice because of the experimental
program’s errors. As a result, Step 4 had 9 sequences plus 3 trials,
i.e., 12 trials in total.

AN EXAMPLE OF THE TESTING METHOD

Participants
The participants were 14 undergraduate students (eleven female
and three male) studying psychology at Waseda University aged
between 21 and 25 years old. They were paid 1500 Japanese
yen (about 15 dollars) to participate in a 1.5-h test. This
study has ethical approval from the Academic Research Ethical
Review Committee, Waseda University concerning Guidelines
Regarding Academic Research Ethics, Waseda University.
Participants provided written informed consent.

Materials and Procedure
We asked the participants to select their preferred option
from two alternatives while watching the screen shown

TABLE 5 | Reliability of projection invariance and conditional invariance (final step).

Reliability

Participant number Projection invariance Conditional invariance

1 0.043 −0.243

2 0.871 0.668

3 −0.324 0.264

4 −0.277 −0.181

5 0.776 −0.148

6 0.200 0.327

7 0.429 0.637

8 0.273 −0.114

9 0.432 −0.282

10 0.188 −0.204

11 0.198 0.225

12 0.231 −0.384

13 −0.154 −0.295

14 0.856 0.300

Intraclass coefficients that are 0.6 or greater presented in bold typeface.

in Figure 2. The verification procedure of projection
invariance and conditional invariance were as described
above.

Examination of Reliability
A participant was asked to work on the tasks twice in a
row to assess the reliability. Intraclass correlation coefficients
of projection invariance and conditional invariance by the
participant was calculated. The intraclass correlation coefficients
calculated from the first and second answers in the final step
are shown in Table 5. Those calculated in all steps are shown
in Table 6, with intraclass correlation coefficients that are 0.6
or greater presented in bold typeface. The medians of intraclass
correlation coefficients calculated in the final step were 0.216
(maximum value, 0.871; minimum value, −0.324) in projection
invariance and −0.131 (maximum value, 0.668; minimum value,
−0.384) in conditional invariance. However, the medians of
intraclass correlation coefficients calculated in all steps was 0.897
(maximum value, 0.992; minimum value, 0.401) in projection
invariance and 0.765 (maximum value, 0.968; minimum value,
0.476) in conditional invariance.

As Table 6 shows, the intraclass correlation coefficients are
all 0.4 or greater for projection invariance and conditional
invariance.

Verified Results of Projection Invariance
and Conditional Invariance
Table 7 presents the numbers of sequences in which participants
satisfied the axioms of projection invariance and conditional
invariance. Because nine sequences were used to verify the
axioms, when participants judge in accordance with the axioms
in five sequences or more, the numbers are presented in bold
typeface.
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TABLE 6 | Reliability of projection invariance and conditional invariance (all steps).

Reliability

Participant number Projection invariance Conditional invariance

1 0.963 0.814

2 0.969 0.968

3 0.906 0.861

4 0.440 0.747

5 0.888 0.774

6 0.753 0.709

7 0.596 0.816

8 0.812 0.547

9 0.919 0.801

10 0.992 0.964

11 0.947 0.756

12 0.415 0.476

13 0.401 0.591

14 0.936 0.514

Intraclass coefficients that are 0.6 or greater presented in bold typeface.

TABLE 7 | Number of sequences satisfying the axiom (out of 9 sequences).

Participant number Projection invariance Conditional invariance

1 6 2

2 0 0

3 1 5

4 0 2

5 0 0

6 1 0

7 1 0

8 4 1

9 2 1

10 3 3

11 3 0

12 0 0

13 1 0

14 1 0

Participants judged in accordance with the axioms in five sequences or more, the numbers

are presented in bold typeface.

Examination of Goodness of Fit of the
Model
Free parameters, such as β and k, of the probability weighting
function by the participant were estimated by the same
experiment as in Gonzalez andWu [10]. Table 8 presents a list of
examined models. In addition, Table 9 shows models which are
the fittest according to AIC. Twelve participants had the best fit
with the hyperbolic logarithmic model. One participant had the
best fit with the exponential power function. One participant had
the best fit with the power function.

Relation Between Axioms and Goodness
of Fit of Models
The correspondence between axioms and models is presented
in Table 10. Relations between satisfied axioms and models

TABLE 8 | List of models.

MODELS

Power function W (p) = pβ , β > 0

Exponential power function W (p) = exp
{
−k(1− pβ )

}
, k, β > 0

Hyperbolic logarithmic W (p) = (1− klog p)β , k, β > 0

TABLE 9 | Models’ AICs and the model with the smallest AIC by participant.

Participant

number

Power

function

Exponential

power

function

Hyperbolic

logarithmic

Model with

smallest AIC

1 0.147 −6.153 –30.273 Hyperbolic logarithmic

2 −20.817 –39.206 −35.191 Exponential power

3 −2.209 −6.616 –15.394 Hyperbolic logarithmic

4 0.839 −5.544 –35.373 Hyperbolic logarithmic

5 0.588 −2.453 –20.864 Hyperbolic logarithmic

6 −2.630 −7.651 –31.070 Hyperbolic logarithmic

7 −4.812 −16.459 –33.081 Hyperbolic logarithmic

8 −10.913 −17.567 –21.558 Hyperbolic logarithmic

9 −3.066 −7.844 –20.826 Hyperbolic logarithmic

10 –35.174 −34.653 −23.266 Power

11 −17.430 −23.191 –28.357 Hyperbolic logarithmic

12 −11.956 −15.919 –20.930 Hyperbolic logarithmic

13 −11.437 −20.500 –41.932 Hyperbolic logarithmic

14 −15.813 −23.401 –24.774 Hyperbolic logarithmic

The smallest AIC by participant presented in bold typeface.

TABLE 10 | Correspondence between axioms and models.

Name of models Projection invariance Conditional invariance

Power function Yes Yes

Exponential power function No Yes

Hyperbolic logarithmic Yes No

with goodness of fit are shown in Table 11. Because nine
sequences were used to verify axioms, if axioms were satisfied
in five and more sequences, then they are regarded as
satisfied. The first participant satisfied projection invariance
alone. The third participant satisfied conditional invariance. The
other participants satisfied neither projection invariance nor
conditional invariance. Results show that there is not a certain
correspondence with normal quantitative psychometric methods
that used the nonlinear regression method and the model fitting
examination by AIC indicator.

CONCLUSION AND DISCUSSIONS

This study aimed to present a testing approach used to examine
the generalized hyperbolic logarithmic model, power model,
and exponential power model of the probability weighting
functions that are considered nonlinear functions of probability
in behavioral decision theory, for example, in prospect theory
[5, 6]. Although many empirical psychometric tests are used to
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TABLE 11 | Relations between satisfied axioms and models with goodness of fit.

Participant number Satisfied axioms Model with smallest AIC

1 Projection invariance Hyperbolic Logarithmic

2 – Exponential Power

3 Conditional invariance Hyperbolic Logarithmic

4 – Hyperbolic Logarithmic

5 – Hyperbolic Logarithmic

6 – Hyperbolic Logarithmic

7 – Hyperbolic Logarithmic

8 – Hyperbolic Logarithmic

9 – Hyperbolic Logarithmic

10 – Power

11 – Hyperbolic Logarithmic

12 – Hyperbolic Logarithmic

13 – Hyperbolic Logarithmic

14 – Hyperbolic Logarithmic

examine the probability weighting functions, there is no concrete
method to examine the axiomatic properties of the probability
weighting functions. Therefore, we propose axiomatic properties
based on Prelec’s [6] theory and a testing method to examine
the generalized hyperbolic logarithmic model, power model, and
exponential power model of the probability weighting functions,
and provide an illustrative example of the testing method.

According to this result of the example experiment, the
axiomatic properties of the probability weighting functions did
not correspond to the psychometric fitting result of probability
weighting functions. A similar result occurs in the additive
conjoint systems in judgment and decision making. For example,
empirical evaluations of double cancelation for the conjunctive
measurement rejected the double cancelation axiom [18, 19].
However, psychometric studies have also indicated that the linear
additive model fitted better [20]. There are some contradictions
between psychometric studies and axiomatic studies. This case
is the same as previous research. Further research is needed to
identify why the discrepancies occur.

Luce and Steingrimsson [21] examined the Thomsen
condition and the conjoint commutativity axiom, which they
showed were equivalent. They also found that brightness
and binaural loudness were supporting factors of conjoint
commutativity. We must consider the reason for the unclear

correspondence between the axiomatic testing and psychometric
testing. One possibility is that the assumptions of the prospect
theory did not hold in this experiment. Another is that
the essential conditions, such as conditional invariance and
projection invariance, did not hold in the experiment. Further
research could investigate these possibilities.

In our study, the number of participants was limited and the
participants were all trained psychology students. However, our
sample sizematches those in previous studies [5, 10], so we do not
consider this to invalidate the results. Nevertheless, larger sample
sizes in future experiments would be beneficial in examining the
psychometric model of probability weighting functions.

Although we proposed an axiomatic testing method of
Prelec’s [6] probability weighting function, there other ways to
interpret probability weighting, such as from the perspective
of rational dynamic asset pricing theory. Rachev et al. [22]
explained the main concepts of prospect theory and probability
weighting functions within the framework of rational dynamic
asset pricing theory. They derived a modified Prelec weighting
function and introduced a new parametric class for weighting
probability functions.We did not examine the theoretical notions
proposed by Rachev et al. [22]. Further theoretical examinations
are needed to seek an adequate probability weighting
function.
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