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Ansbach, Germany

Dynamical Systems Based Modeling (DSBM) is a method to decompose a multivariate

signal leading to both a dimensionality reduction and parameter estimation describing the

dynamics of the signal. We present this method and its application to EEG data sets of

Petit-Mal epilepsies considering Shilnikov chaos as the underlying dynamic interaction.

We demonstrate the power of this method compared to conventional decomposition

methods like PCA and ICA. Since the fitting quality showed a strong correlation to the ictal

phases of the signal, we performed a cross validation on seizure detection with a resulting

specifity of 84% and sensitivity of 75%. By applying DSBM in a moving window setup we

investigated the comparability of the obtained dynamic models and tested the hypothesis

of Shilnikov chaos in terms of linear stability analysis for each of the investigated windows.

Thereby we could corroborate the Shilnikov hypothesis for approx. 50% of the relevant

windows.

Keywords: dimensionality reduction, optimal parameter search, Shilnikov chaos, epilepsy, stability analysis

1. INTRODUCTION

Dimensionality reduction of time-series data is often obtained by statistical methods, like principal
component analysis (PCA) [1] or independent component analysis (ICA) [2]. As these methods
rely on statistical model assumptions, they are not optimal for settings, were deterministic dynamics
govern the signal.

Dynamical Systems Based Modeling (DSBM) [3] is a method integrating a deterministic
model assumption into the dimensionality reduction process. This approach is very useful in
situations where one has higher-dimensional sensor data than modeling approaches, describing
the underlying system, use. A typical example for this situation is EEG data where one has many
(≥ 25) sensors but typical models only have three to five state variables. Especially during absences
the correlation dimension, an intrinsicmeasure for the dimensionality of the time-series data, drops
to the value of three.

The existence of homoclinic Shilnikov chaos in theoretical models for epileptic EEG data
was shown in van Veen and Liley [4] using bifurcation analysis. Asides the Shilnikov attractor
is O(3)-invariant [5], a property which every EEG-model should posess, as the choice of the
reference electrode is somewhat arbitrary. Former investigations [6, 7] have indicated the existence
of Shilnikov chaos in petit-mal epilepsies, as well.

To rigorously show the existence of homoclinic Shilnikov chaos in EEG data of epileptic
absences, we need on one hand a projection onto a three-dimensional space and estimation
of the parameters of a system of ordinary differential equations (ODEs). This is achieved
using DSBM. On the other hand, one needs to show that the system of ODEs does exhibit
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homoclinic Shilnikov chaos. This is done using linear stability
analysis, based on the Hartman-Grobman and the Shilnikov
theorem.

In this study it is not our primary intention to provide an
algorithm for seizure detection or seizure prediction, which are
often data-driven, like e.g., [8, 9], and in the case of prediction
often fail, see e.g., [10]. Our goal is to project the high-
dimensional signal onto a low-dimensional set of ODEs and to
investigate the quality of the projection in the ictal and interictal
periods and to compare the obtained models. A low-dimensional
description of epileptic seizures yield further insight in the
underlying processes and may help to improve the treatment of
epilepsy patients.

The structure of the paper is as follows. In section 2.1 the
DSBM procedure is presented. Linear stability analysis and
quantification of Shilnikov chaos is recalled in section 2.2. A
description of the data used can be found in section 2.3 and
the evaluation of the results is illustrated in section 3. Finally we
discuss the results in section 4.

2. MATERIALS AND METHODS

2.1. Dynamical Systems Based Modeling
Dynamical Systems Based Modeling is a methodology to
simultaneously estimate the parameters of a system of ordinary
differential equations from data and reduce the dimensionality
of the data. Assume we want to estimate the parameters ai of a
system of ordinary differential equations

ẋi = a⊤i ξi(x1, . . . , xn), i = 1, . . . , n (1)

where ξi is a set of basis functions as model assumption. A
typical ansatz for estimating the parameters ai would be to solve
a normalized least-squares problem

min
ai

n
∑

i= 1

〈(ṡi − a⊤i ξi)
2〉t

〈ṡ2i 〉t
, (2)

where 〈 · 〉t denotes the average over the time sample points t =
1, . . . ,T and ṡi are the derivatives of the samples.

Now consider that we have signal data sampled in a high-
dimensional space q(t) ∈ R

N , with n ≪ N. Then the approach
(2) is not applicable, since the samples q have dimension N ≫ n.
Hence one has to choose a projection P ∈ R

n×N to project the
sampled signal to a subspace of dimension n. In Uhl et al. [3] it
was shown that the cost function to minimize

D(P, a) =
n

∑

i= 1

〈(ẏi − a⊤i ξi)
2〉t

〈ẏ2i 〉t
, with yi = (Pq)i (3)

actually depends on the projection P onlyD(P, a) = D(P). Hence
it suffices to minimize D(P) on the set of all projections

P = argmin
P∈Rn×N

D(P). (4)

Note that D(P) is bounded by n from above, as can easily be
seen by setting ai = 0 for all i. If the minimal value of D(P, a)

is diveded by n, it represents the relative error of the model
representing the dynamics of the projection.

If the basis functions ξi are polynomials one can show [11]
that the cost function depends on the subspace on which to
project, only. Hence we actually consider a cost function on a
Grassmannian manifold. Recall that a Grassmannian manifold
Gr(n,N) is the set of all n-dimensional linear subspaces of
R
N . There are various possibilities to represent this manifold.

For example one could identify the Grassmannian with a
homogeneous space [12] or with the set of rank n symmetric,
projection operators on R

N [13]. We identify the Grassmannian
with equivalence classes [P] of matrices P ∈ R

N×n of rank
n, where two such matrices P1 and P2 are equivalent if their
coimages are equal coim(P1) = coim(P2). That is, two matrices
P1, P2 ∈ R

N×n are identified if all the principal angles between
subspaces of RN spanned by the column of the matrices are zero.

We want to find a global minimum of the cost function. For
the global optimization we use a MultiStart algorithm, which
generates many starting points, runs local optimization methods
on each starting point and then chooses the optimum of the
found local optima. As local optimization method we use a
Levenberg-Marquardt algorithm [14], which solves the least-
squares problem

min
x∈Rm

‖f (x)‖22 (5)

for a non-linear function f : Rm → R
n with m < n. To show

that one can apply the Levenberg-Marquardt algorithm, we have
to rewrite the cost function as follows. Denote by Qi = 〈ξi ⊗ ξi〉t
the dyadic product of the basis vectors, describing the auto-
correlation of the basis, and by bi = 〈Ṗqiξi〉t the componentwise
product of the time derivative of the projected signal with the
basis functions, describing the correlation between the derivative
of the data with the basis vectors. Then by a variational calculus
argument it can be shown [3] that

D(P) =
n

∑

i= 1

〈(ẏi − Q−1
i biξi)

2〉t
〈ẏi〉t

. (6)

Denote by wi = 1
∑T

t= 1 ẏi(t)
2
. Then

D(P) =
n

∑

i= 1

〈(ẏi − Q−1
i biξi)

2〉t
〈ẏ2i 〉t

=
n

∑

i= 1

1
T

∑T
t= 1(ẏi(t)− Q−1

i biξi(t))
2

1
T

∑T
t= 1 ẏi(t)

2

=
n

∑

i= 1

T
∑

t= 1

wi · (ẏi(t)− Q−1
i biξi(t))

2

=
n

∑

i= 1

T
∑

t= 1

(√
wi(ẏi(t)− Q−1

i biξi(t))
)2
.

(7)

The non-linear function for Levenberg-Marquardt to minimize
is the vector-valued function f : Rn×N → R

n×T with entries√
wi(ẏi(t)−Q−1

i biξi(t)) and argument P. So if we assume T > N,
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which is in all applications of interest the case, the algorithm can
be applied. For numerical stability of the inversion of thematrices
Qi we choose a representative P of the Grassmannian element [P]
with |max(Pq)| = 1.

For a measure of the efficiency of the representation of the
signal by the calculated model we define a pseudoinverse P+ ∈
R
N×n of the projection P. This pseudoinverse is given as the

matrix, which minimizes the quadratic error with respect to the
signal representation

P+ = argmin
P+∈RN×n

〈‖q− P+Pq‖22〉t
〈‖q‖22〉t

. (8)

This optimization problem can be solved analytically using
variation with respect to the matrix P+. Denote by M = 〈Pq ⊗
Pq〉t the n × n time-averaged autocorrelation matrix of the
projected signal and by B = 〈Pq ⊗ q〉t the n × N time-averaged
correlation matrix of the projected with the original signal. Then
the pseudoinverse P+ is given by

P+ = M−1B. (9)

As model assumption for the DSBM procedure a non-linear
third-order ODEs with polynomial non-linearities up to the
order of three is chosen, leading to the following basis functions

ξ1 = (x2)

ξ2 = (x3)

ξ3 = (1, x1, x2, x3, x
2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3, x

3
1, x

2
1x2, x

2
1x3,

x1x
2
2, x1x2x3, x1x

2
3, x

3
2, x

2
2x3, x2x

2
3, x

3
3).

(10)

As we propose the usage of DSBM instead of PCA [1] and
ICA [2] for the dimensionality reduction of signals with
strong deterministic parts, we present the projected trajectories
of DSBM [with model assumption (10)], PCA and ICA as
trajectories in phase space.

To quantify the validness of the assumption of the model (10)
for ictal periods, the sensitivity and specifity of the cost
function (6) with respect to the appearance of spike-waves was
calculated on data windows of 1 s length using leave-on-out
cross-validation on the data sets. Here the threshold value for
the value of the cost function was optimized for specifity and
sensitivity on one data set. Using this threshold the specifity and
sensitivity on the remaining data sets was computed and finally
the mean of these values was calculated.

2.2. Linear Stability Analysis: Analytic
Quantification of Shilnikov Chaos
Linear stability analysis is a methodology to describe the behavior
of a system of differential equations ẋ = F(x) near its
equilibrium (fixed) points. Hutt et al. presented in [15] an
approach to estimate fixed points without the knowledge of
the underlying dynamical system. In our investigation we can
anlytically calculate the equilibrium points: model (10) leads to
up to three different equilibrium points with x2 = x3 = 0
and a third-order equation in x1, depending on the estimated
parameters.

TABLE 1 | Behavior of 3D-systems near hyperbolic equilibrium points with Jacobi

matrix having either three real eigenvalues λi or two complex eigenvalues

λ2/3 = ρ ± iω and a real eigenvalue λ1 = γ .

λ1 λ2 λ3 Type γ ρ Type

− − − stable node − − stable focus-node

+ + + unstable node + + unstable

focus-node

+ − ± saddle ± ∓ saddle-focus

Recall that an equilibrium point is called hyperbolic if all
eigenvalues of the Jacobi matrix of F(x) have non-vanishing real
parts. The Hartman-Grobman theorem [16] shows that for a
hyperbolic equilibrium point p there exists a small neighborhood
U(p) of p, such that solutions of ẋ = F(x) can be mapped
homeomorphically to solutions of the linear system ẏ = Jy, where
J is the Jacobi matrix of F(x) at p. For 3-dimensional systems
the behavior near a hyperbolic equilibrium point depending
on the eigenvalues λi of the Jacobi matrix is summarized in
Table 1. Figure 1 illustrates the the two types of spiral behavior in
the neighbourhood of a saddle focus. The homoclinic Shilnikov
theorem ([17], [18]), now states that a system of ordinary
differential equations exhibits homoclinic Shilnikov chaos if there
exists (A) a saddle focus (eigenvalues λ1 = γ , λ2/3 = ρ ± iω)
with |γ | > |ρ| > 0, and (B) a homoclinic orbit based at the
equilibrium point. We refer to the first condition as Shilnikov
condition. The second condition, the existence of a homoclinic
orbit, is hard to show. We do not integrate the obtained the
model, since in most cases the parameters do not lead to robust
solutions with respect to intial conditions. We also observe a
sensitive dependence of the parameters describing the dynamics,
leading to periodic and chaotic solutions in a small vicinity of the
obtained parameters. This is in accordance to the investigation of
parameter space in van Veen and Liley[4]. Hence, the existence
of a homoclinic orbit for the appearance of Shilnikov chaos is
investigated by visual (subjective) inspection of the projected
trajectory.

2.3. Data
The investigated data consists of ten EEG data sets of epileptic
patients suffering from petit mal (absence) seizures. To avoid
a biased investigation two different sources of data sets were
investigated.

The first source contains eight different EEG data sets from
two different patients kindly provided by the Epilepsy Centre at
the Department of Neurology Erlangen. The data was sampled
from 25 electrodes using the modified 10/20 system with 10%
electrode positions and modified combinatorial nomenclature.
The length of the data sets vary between 5 and 10 min each
sampled with a sample rate of 256 Hz. Each data set contains at
least one absence seizure with a length of about 4 up to 16 s.

The second source is the Temple University Hospital EEG
Data Corpus [19] again sampled using the 10/20 system in this
case with a sample rate of 250 Hz, length of datasets 24 and 20
min, each with absence seizures of between 19 and 144 s.
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FIGURE 1 | Two types of saddle-foci: On the left the two-dimensional eigenmanifold is unstable and the one-dimensional eigenmanifold is stable, while on the right it

is vice versa.

FIGURE 2 | Minmal values of the cost function of DSBM (7) on a

two-second-windowed data set. In the background the signal of the F4

electrode is shown.

As preprocessing step we applied a zerophase bandpass
filter with cut-off frequencies 0.5 and 30 Hz. From the above
mentioned data sets we investigated 10 signals of 20–40 s
length and partitioned the data into parts of 2 s length with an
rectangular window, as we want the time-domain of the signal to
be preserved. This resulted in a total of 129 investigated windows
of EEG signal.

3. RESULTS

To illustrate the application of DSBM, Figure 2 presents the
obtained minimal values of the cost function (7) applied
to a two-second-windowed data set. The backround plot

FIGURE 3 | Histogram of the signal representation during ictal periods.

represents the signal of the F4 electrode. The sequence
of the minimal values show that the model assumption
Equation (10) fits well to describe the time evolution during a
petit mal seizure. As is shown in Figure 3 in most cases the
representation of the ictal dynamics using Equation (10) is above
90%.

To evaluate the significance of the minimal D(P)-value
drop during seizures, thresholds based on leave-one-out cross-
validation are trained to separate ictal from interictal phases. This
validation yields a specifity of 84% and a sensitivity of 75% with
respect to the appearance of spike-waves averaged over all 129
windowed data.

As described in section 2 the minimum of D(P) corresponds
to an optimal projection P with respect to the underlying
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FIGURE 4 | Phase portraits of amplitudes obtained by PCA (first three dominant amplitudes), ICA (three amplitudes with best structured phase portrait) and DSBM.

FIGURE 5 | Potential field maps representing the vectors of the calculated pseudoinverse.

model dynamics. Applying the projection P onto the 25-
dimensional signal q(t) three amplitudes xi(t) are obtained:
(Pq)i = xi(t), i = 1, 2, 3. Thereby the 25-dimensional
original phase space trajectory is now projected onto a
three-dimensional phase portrait given by the amplitudes
x1(t), x2(t), and x3(t). Figure 4 shows on the right-hand
side a typical trajectory. For the same time window a
decomposition via PCA and ICA were performed and the
corresponding phase portraits are shown on the left and
the middle. In the case of PCA the first three vectors
representing most of the signal are utilized for the projection.
For ICA three projection vectors are chosen leading to
the best structured phase portrait. The advantage of DSBM
compared to PCA or ICA is obvious. A clear structure can
only be detected in the case of the trajectories obtained by
DSBM.

Figure 5 shows the vectors of the pseudoinverse P+ caculated
from eq. (8). By this projection method the original signal q(t) is
filtered to qf (t) = P+Pq(t).

Figure 6 shows the original signal of one electrode of an
exemplary absence signal and the corresponding approximation.
The main structure of the signal is captured. I.e., we are
dealing with a projection fulfilling our model equations (10) and
representing the signal to a considerable amount.

The final step of our investigation aimed at characterizing and
comparing the projected signal dynamics of the windowed EEG
data epochs representing a good fit of the model, i.e., possessing
a low minimal cost function value D(P) = 0.3, i.e., dynamics
representation of above 90%.

FIGURE 6 | Original signal of F4-electrode compared to reconstructed signal

after embedding with the pseudoinverse.

To achieve this, for each optimal projection the set of obtained
differential equations was investigated with respect to occuring
equilibrium points and linear stabilty analysis. For 70% of all
investigated data epochs, the Shilnikov condition was fulfilled.

In addition, visual inspections of the phase portraits were
performed to quantify the occurrence of a Shilnikov type of
homoclinic orbit. Figure 7 shows two examples of the projected
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signals. The phase portrait on the left hand side seems to
represent a homoclinic orbit near the equilibrium point, whereas
the trajectory on the right hand side resembles more a circle and
not a homoclinic orbit based at the equilibrium point.

Accounting these visual inspections, we obtained the fourfold
table presented in Table 2.

4. DISCUSSION

If one is interested in representing a high-dimensional
multivariate signal as a trajectory in a low-dimensional
phase space, DSBM is an adequate tool. This is illustrated
in our investigation of EEG data of epileptic seizure by
Figure 4 showing a clearly better structure of the trajectory
compared to signal decomposition techniques like PCA,
ICA, and all other techniques we investigated. This is due
to the different approaches: PCA, ICA, and other techniques
(see, e.g., [20]) are based on stochastic model assumptions,
whereas DSBM intends to represent the signal in terms
of the underlying dynamic interactions. These dynamic
interactions are incorporated in DSBM by a model of a set of
differential equations with its parameters being approximated
simultaneously with the parameters of the best fitting
projections.

We showed that the assumption of a special set of differential
equations (10) fits well to the occurrence of seizures by a dramatic
drop of the optimized cost function. Although not intending

TABLE 2 | Four-fold table evalutating Shilnikov condition and homoclinic orbit in

data epochs well-described by the assumed model.

Shilnikov condition

Fulfilled Not fulfilled

Homoclinic orbit Observed 53% 26%

Not observed 16% 5%

to develop an algorithm for seizure detection we calculated
the specifity and sensitivity of DSBM with respect to ictal and
interictal phases of the signal and could confirm the correlation
of cost function drop with the occurence of absence seizures to
an extent of 80%.

The obtained trajectories in phase space resemble the chaotic
behavior of Shilnikov dynamics. The investigation in a moving
window setup showed that the approximated dynamics fulfil
the Shilnikov condition in 69% of all ictal signal windows.
However not all of these dynamics show a homoclinic orbit
by visual inspection. This is in accordance to the microscopic
model investigated in van Veen and Liley [4], where both chaotic
bahavior due to the Shilnikov setting and periodic solutions are
observed.

Limitations of our approach are (i) possible non-stationarities
of the signal, (ii) a not optimal choice of set of ODEs as
the underlying model, (iii) sensitivity of the non-linear ODEs
with respect to occuring fixed points and therefore instabilities
by comparing the parameter space of the ODEs and/or (iv)
instabilities in the global optimization procedure of the cost
function.

Even though the stability analysis did not completely confirm
the appearance of Shilnikov chaos in EEG data, it was shown
that the mathematical theorems are applicaple in data-driven
situations. The study reveals that one can validate Shilnikov chaos
in EEG signals on a data-driven basis and one is not ought to
tweak a set of differential equations by hand to do so.

Further work will focus on the development of projection
algorithms independent of choosing a set of ODEs obtained by
solving a generalized eigenvalue problem as presented in Seifert
et al. [21].
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