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We investigate the dynamical transitions in a network of nonlocally coupled

Stuart-Landau oscillators with a combination of attractive and repulsive couplings. The

competing interaction between the couplings plays a crucial role in many realistic

situations, particularly in neuronal systems. We report that the employed attractive and

repulsive couplings induce imperfect amplitude mediated chimera state which emerges

as an intermediate between the oscillatory dynamics and the oscillation death state.

Each oscillator in the synchronized and desynchronized groups constituting the imperfect

amplitude mediated chimera drifts between both the homogeneous and inhomogeneous

oscillations as a function of time. To distinguish the homogeneous and inhomogeneous

oscillations, we use the finite-time average of each oscillator. The observed distinct

dynamical states are further classified by finding the strength of the inhomogeneous

oscillators in the corresponding dynamical states.We also find that the number of clusters

in the cluster oscillation death states exponentially decays as a function of the coupling

range and obeys a power law relation. Finally, we confirm the robustness of the observed

amplitude mediated chimera state by introducing a Gaussian white noise in the system.

Keywords: nonlinear dynamics, coupled oscillators, dynamical transitions, synchronization, chimera states,

oscillation death

1. INTRODUCTION

During the past couple of decades studies on the emerging collective dynamical behavior of a
given network of complex nonlinear systems has become an active area of research, due to its
capability to mimic various natural phenomena such as clusters, synchronization, chimera, death
states, etc. [1–4]. Among the intriguing collective dynamical behaviors exhibited by networks of
coupled systems, chimera states have been receiving a wide attention in the recent literature both
theoretically and experimentally. In particular, much focus has been paid toward understanding the
onset of various types of chimeras. A flurry of research activities on the chimera states have been
provoked due to the nonintuitive nature of the associated hybrid dynamical state. Chimera state
is characterized by spatially coexisting coherent and incoherent dynamical behaviors arising out of
an ensemble of identical systems. So far, chimera states have been found theoretically in limit cycle
oscillators [5, 6], time discrete maps [7–9], chaotic models [10, 11], neural systems [10, 12, 13],
quantum oscillators [14], population dynamics [15, 16], boolean networks [17] and so on. Chimera
states have also been found experimentally in optical [18], electronic [18, 19], optoelectronic [20],
chemical [21, 22], electrochemical [23, 24] and mechanical systems [25].
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A diverse variety of chimera patterns have been identified
depending on the coupling geometry, the strength of the
interaction and the values of the parameters of the employed
dynamical systems. Specifically, based on the spatial or spatio-
temporal distribution of an ensemble of coupled identical
systems, chimera states have been classified as amplitude chimera
[26–30], globally clustered chimera [31], imperfect traveling
chimera [32], breathing chimera [33, 34], spiral wave chimera
[35], twisted chimera and multicore spiral chimera states [36].
Among the different types of chimeras, investigations on the
onset of the amplitude mediated chimera has received a wide
attention in the recent literature. Amplitude-mediated chimera
was reported in a nonlocally coupled complex Ginzburg-Landau
system in the strong coupling limit which may have potential
applications in understanding spatio-temporal patterns in fluid
flow experiments and in strongly coupled systems [6]. It is also
reported in a system of globally coupled complex Ginzburg-
Landau oscillators [37]. The robustness of amplitude mediated
chimera state has also been examined in a globally coupled system
of active and inactive Ginzburg-Landau oscillators by varying
the fraction of active and inactive oscillators [38]. Interestingly,
the notion of chimera state is not only restricted to oscillatory
dynamics but has also been extended to include so called the
death states which have been reported as chimera death [3].
Domains of inhomogeneous death states are termed as cluster
oscillation death states whereas coexisting domains of coherent
and incoherent death states (of the inhomogeneous death states)
constitute the cluster chimera death state. The number of
clusters in the death states are found to vary as a function of
the coupling range and cluster initial conditions in nonlocally
coupled networks [4, 39].

In this report, we unravel the emergence distinct collective
dynamical behavior in a network of nonlocally coupled Stuart-
Landau oscillators with competing attractive and repulsive
couplings. The trade-off between the attractive and repulsive
couplings in many natural systems has been revealed as
an essential element in determining their functional and
evolutionary processes [39, 40]. We find that the competing
interaction between them facilitates the emergence of imperfect
amplitude mediated chimera, which is characterized by a
continuous drift of the oscillators between the homogeneous and
the inhomogeneous oscillations as a function of time. Finite-
time average of each of the oscillators elucidates the continuous
shift between the homogeneous and the inhomogeneous states
of the imperfect amplitude mediated chimera. Further, the
homogeneous and inhomogeneous states can be distinguished
by estimating the strength of inhomogeneous oscillators in each
dynamical state. We find that the observed amplitude mediated
chimera mediates the transition between the oscillatory and
death states. Further, we will demonstrate the emergence of
distinct cluster oscillation death and chimera death states as a
function of the nonlocal coupling range. We have also found that
the number of clusters in the network exponentially decays as a
function of the coupling range and obeys a power-law relation.

The structure of the paper is organized as follows. In
section 2, we introduce our model of nonlocally coupled Stuart-
Landau oscillators with a combination of attractive and repulsive

couplings. The emergence of imperfect amplitude mediated
chimera state is demonstrated in section 3. The corresponding
dynamical transitions are delineated in section 4 and the global
dynamical behavior of the coupled systems is depicted in the
section 5. Finally, we summarize the obtained results in section 6.

2. THE MODEL

We consider the paradigmatic model of Stuart-Landau limit cycle
oscillators, which can be used to model a variety of weakly
nonlinear systems near Hopf-bifurcation [41]. In addition, the
limit cycle oscillations can be found in many biological and
chemical systems such as heart beats, chemical oscillations,
vibrations in bridges, etc. [42, 43]. Further, to demonstrate the
complex dynamical behaviors in a network of coupled identical
Stuart-Landau oscillators, we have employed the nonlocal
attractive and repulsive couplings, which can be represented as

ẋi = (λ − x2i − y2i )xi − ωyi +
ǫ

2P

i+P∑

k=i−P

(xk − xi),

ẏi = (λ − x2i − y2i )yi + ωxi −
ǫ

2P

i+P∑

k=i−P

(yk − yi), i=1, 2, ...,N,

(1)

where λ is the bifurcation parameter and ω is the natural
frequency of the system. xi and yi are the state variables of
the system. Here, the attractive and repulsive couplings are
established via the state variables xi and yi (i = 1, 2..,N),
respectively, and ǫ is the coupling strength. Throughout the
work, the number of oscillators in the network has been chosen as
N = 100, except for the cases mentioned specifically in the text,
and the values of the parameters are fixed as λ = 1.0, ω = 1.0.
The numerical results are obtained through the Runge-Kutta
fourth order scheme with a time step 0.01 and the initial states of
the oscillators (xi, yi) are chosen such that they are independently
distributed between -1 to +1 randomly.

3. AMPLITUDE MEDIATED CHIMERA

Amplitude chimera is characterized by a partial coherent and
a partial incoherent spatio-temporal pattern with amplitude
variations in their amplitude dynamics [26]. On the other hand
the amplitude mediated chimera state suffers variations in both
phase and frequency. Interestingly, we find that the system
of nonlocally coupled Stuart-Landau oscillators also exhibit
amplitude mediated chimera states, where the synchronized and
desynchronized groups are imperfect over time exhibiting quasi-
periodic oscillations. In particular, the synchronized group gives
rise to inhomogeneous small oscillations populating both the
upper and the lower branches of the inhomogeneous state while
the desynchronized group oscillates with a larger amplitude.
The space-time evolution in Figure 1a clearly illustrates that the
oscillators at the boundaries of the upper (yellow/light gray) and
the lower (blue/dark gray) branches of the inhomogeneous state
exhibit large oscillations. In addition, the oscillators exhibiting
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FIGURE 1 | (a) Spatio-temporal evolution of imperfect amplitude mediated

chimera (after leaving transients of the order 1× 104) and (b) time evolution of

a representative oscillator x72, a constituent of imperfect amplitude mediated

chimera. Parameters: r = 0.4, ω = 1.0, λ = 1.0, ǫ = 0.9 and N = 100.

large oscillations suffer a drift to either one of the inhomogeneous
states with small oscillations and vice versa as a function of
time. Further, to elucidate that the oscillators in the network
reside in the upper/lower branch of the inhomogeneous state
for a finite-time interval and then transits to the homogeneous
state for certain other time interval, we have depicted the time
evolution of a typical oscillator, indicated along the dotted line in
Figures 1a,b. The time evolution of the representative oscillator
x72 elucidates that the corresponding oscillator oscillates in
the upper branch of the inhomogeneous state for a certain
time interval, then it manifests itself as a homogeneous
oscillator. After a further finite time interval, the homogeneous
oscillations with large amplitude transit to the lower branch
of the inhomogeneous state exhibiting small oscillations. The
homogeneous large oscillations re-emerge again after a finite
time from the lower branch and then populate the upper branch
of the inhomogeneous state after a while. These transitions in
the dynamical nature of each oscillator takes place continuously
as a function of time, thereby manifesting as an imperfect
amplitudemediated chimera as a whole. The robust against initial
conditions and system size of imperfect amplitude mediated
chimera is discussed in the following.

3.1. Robustness of Imperfect Amplitude
Mediated Chimera for Distinct Initial States
and System Sizes
In order to show the robustness of the imperfect amplitude
mediated chimeras with respect to various initial conditions,
we have plotted the space-time evolution and snapshots of
such dynamical states for the distribution of different initial
states (see Figure 2). The menifestation of amplitude mediated
chimeras is evident from the space-time plots, Figures 2a–c,
which are plotted for random distribution of initial conditions
between 0 to 1, symmetric cluster and asymmetric cluster initial
states, respectively. The corresponding snapshots are shown
in Figures 2d–f. From Figure 2, it is clear that the observed
imperfect amplitude mediated states are robust against random
and cluster initial conditions.

Further, it is also found that the observed imperfect amplitude
mediated chimeras are robust againt system size (see Figure 3).
The space-time plots and snapshots in Figure 3 clearly depict
the persistence of amplitude mediated chimera state even while

increasing the system size to N = 200, N = 500 and N = 1000,
respectively.

The dynamical transitions exhibited by the coupled Stuart-
Landau oscillators will be described in the following as a function
of the coupling strength.

4. DYNAMICAL TRANSITIONS IN
COUPLED STUART-LANDAU
OSCILLATORS

To start with, the dynamical behavior exhibited by the nonlocally
coupled Stuart-Landau oscillators is inspected through the space-
time and snapshot plots of the variables xi, which are shown
in Figure 4, for the coupling range r = 0.4. We find that
a transition takes place from traveling wave (TW) state to
imperfect amplitude mediated chimera (IAMC) state and finally
to death states. In case of death states, the coupled Stuart-Landau
oscillators exhibit multi-chimera death states (MCDs) through
cluster oscillation death (COD) and cluster chimera death (CCD)
states. As noted above, the network exhibits traveling wave
(TW) state as shown in Figures 4a,f for the coupling strength
ǫ = 0.7. It is to be noted that here all the oscillators in the
network oscillate homogeneously about the origin with the same
frequency and constant velocity. The emergence of the imperfect
amplitudemediated chimera (IAMC) state is observed for further
increase in the coupling strength as depicted in Figures 4b,g

for ǫ = 0.9. In this state the oscillators in the network split
into synchronized and desynchronized groups with amplitude
variations. The oscillators hop between the synchronized and
the desynchronized groups as a function of time, which can be
clearly visualized in Figure 1a for sufficiently large time interval,
but it resembles stationary amplitude mediated chimera for a
short time interval (see Figure 4b). The synchronized group
of oscillators oscillates with smaller amplitudes both in the
upper and lower branches of the inhomogeneous state whereas
the desynchronized group oscillates homogeneously about the
origin. On increasing the coupling strength further, the oscillators
with homogeneous oscillations populate either the lower or
the upper branches of the inhomogeneous steady state, while
the oscillators with small inhomogeneous oscillations settle as
steady states in the respective branches resulting in a two cluster
oscillation death (2COD) state. As a result, all the oscillators
in the network occupy either the upper or lower branches of
the inhomogeneous steady states as shown in Figures 4c,h for
ǫ = 1.0. The emergence of multi-chimera death (MCD) state
via two cluster chimera death (2CCD) (see Figures 4d,i for
ǫ = 1.12) is observed upon increasing ǫ further as shown in
Figures 4e,j for ǫ = 1.2. In the 2CCD state, the oscillators in
the cluster edges populate either the upper or the lower branches
of the inhomogeneous state randomly and the MCD state is
characterized by multiple coherent and incoherent domains of
the death states. We may conclude that the imperfect amplitude
mediated chimera mediates the transition from traveling wave
state to death state.

We further note that the separation of the homogeneous and
inhomogeneous oscillations in the imperfect amplitude mediated
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FIGURE 2 | Space-time evolution of amplitude mediated chimera for the distribution of initial states (a) between 0− 1 randomly, (b) symmetric cluster, and (c)

asymmetric clusters. The corresponding snapshots of (a–c) are shown in (d–f). Parameters are the same as in Figure 1.

FIGURE 3 | Space-time evolution of amplitude mediated chimera as a function of the size of the network for (a) N = 200, (b) N = 500 , and (c) N = 1000. (d–f)

Correspond to the snapshots in (a–c). Other parameters are the same as in Figure 1.

FIGURE 4 | Dynamical behavior of the coupled Stuart-Landau oscillators as a function of coupling strength ǫ for the coupling range r = 0.4. Space-time plots of (a)

Traveling wave (TW) state for ǫ = 0.7, (b) imperfect amplitude mediated chimera (IAMC) for ǫ = 0.9, (c) two cluster oscillation death (2COD) for ǫ = 1.0, (d) two

cluster chimera death (2CCD) for ǫ = 1.12 and (e) multi-chimera death (MCD) state for ǫ = 1.2. The corresponding snapshots are shown in the lower panel (f–j),

respectively. Parameters: r = 0.4, ω = 1.0, λ = 1.0, and N = 100.

chimera state is impossible for a large time interval since these
states swing in time alternately in a random fashion. In order
to overcome this difficulty, we have considered the evolution

of the oscillators constituting the imperfect amplitude mediated
chimera in a short time interval as in Figure 5a, which depicts
the time evolution of distinct oscillators in the time interval 0
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to 500, where the oscillators x20 and x45 are the representative
oscillators from the inhomogeneous group whereas x4 is the
representative oscillator from the homogeneous group. The
phase space dynamics of the representative oscillators are shown
in Figure 5b. It is evident from the figures that the oscillator from
the incoherent group x4 (i = 4) oscillates about the origin quasi-
periodically while the oscillators from the coherent group, x20
(i = 20) and x45 (i = 45), oscillate in the upper and lower
branches of the inhomogeneous state with smaller amplitudes,
respectively. In addition, to distinguish the homogeneous and
inhomogeneous states, we have calculated the finite-time average
of the variable yi by dividing the total time (Ttol) into p bins of

equal size q = Ttol
p (in this case Ttol = 500, which we have

divided into 5 bins of equal size q = 100, see Figure 5a). Then
the center of mass for the finite-time average of the variable

can be estimated by using the formula < yi(av)> =
∫ β2
β1

yi(t)dt
q ,

where β1 = q(p − 1) + 1 and β2 = pq. Here p is the number
of bins and q is the finite-time period of the oscillations. The
average value of the state variable< yi(av)> has been calculated for
the homogeneous and inhomogeneous oscillations in Figure 5,
which takes nonzero value for inhomogeneous oscillations
(denoted by squares in Figure 5b) and nearly null value for
the homogeneous oscillations (represented by a diamond in
Figure 5b).

In addition, the above dynamical transition is also analyzed
by estimating the average number of inhomogeneous oscillators.
In the traveling wave (TW) state, all the oscillators oscillate
homogeneously about the origin whereas some of the oscillators
take nonzero center of mass values in the amplitude mediated
chimera state constituting the inhomogeneous state. Thus the
coherent oscillators in the inhomogeneous state oscillate with
small amplitudes with nonzero value of the finite-time average
whereas the incoherent oscillators in the homogeneous states
oscillate with large amplitudes and null value of the finite-
time average. The nonzero value of the finite-time average of
the (individual) oscillators indicate that all the oscillators are
in the inhomogeneous states, i.e., death states. The strength
of inhomogeneous oscillators among the total population in a

FIGURE 5 | (a) Time series and (b) phase portraits of representative

oscillators from the homogeneous and inhomogeneous states constituting the

imperfect amplitude mediated chimera. The oscillators xi , i = 20, 45 are from

the upper and lower branches of the inhomogeneous state. The oscillator

xi , i = 4, represents the homogeneous oscillations from the desynchronized

group. The corresponding time average of the homogeneous and

inhomogeneous oscillations are denoted by diamond and squares in (b).

Parameters are the same as in Figure 1.

dynamical state can be found from the following relation,

K = 1−
∑N

i=1Hyi

N
, Hyi = 2(δ− < yi(av) >), (2)

where δ is a predefined threshold value and 2(.) is the Heaviside
step function. The strength of inhomogeneous oscillators (K)
shows null value for the traveling wave state and unity for the
death state. The value of K lying between 0 < K < 1 corresponds
to the amplitude mediated chimera state. To understand the
transition among the observed dynamical states, we have plotted
the strength of inhomogeneous oscillators (K) in the network as
a function of the coupling strength ǫ for two distinct coupling
ranges r = 0.2 and r = 0.4 ( which have been earlier
traced along the lines L1 and L2 in Figure 7) in Figures 6A,B,
respectively. It is evident from the figures that the transition
takes place from traveling wave to cluster oscillation death via
amplitude mediated chimera state. Shaded region corresponds to
the imperfect amplitude mediated chimera which constitutes the
intermediate state between the traveling wave and the coherent
death states.

FIGURE 6 | Strength of inhomogeneous oscillators in a network as a function

of the coupling strength ǫ for coupling ranges (A) r = 0.2 and (B) r = 0.4

which have been traced along the lines L1 and L2 in Figure 7. TW, IAMC,

COD/CCD are the traveling wave, imperfect amplitude mediated chimera,

cluster oscillation death or cluster chimera death states, respectively.

Parameters: ω = 1.0, λ = 1.0, and N = 100.

FIGURE 7 | Two parameter plot in (r, ǫ) space. DS, TW, and IAMC represent

the desynchronized state, traveling wave state and imperfect amplitude

mediated chimera state, respectively. COD, CCD, and MCD denote the cluster

oscillation death, cluster chimera death and multi-chimera death states,

respectively. Parameters are the same as in Figure 6.
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5. GLOBAL DYNAMICAL BEHAVIOR IN
COUPLED STUART-LANDAU
OSCILLATORS

The global dynamical behavior of the nonlocally coupled Stuart-
Landau oscillators is shown as a two-parameter phase diagram
(see Figure 7) in the (r, ǫ) space. For smaller values of the
coupling range, there is a transition from desynchronized state
to death state via the imperfect amplitude mediated chimera
as a function of the coupling strength. On the other hand, for
larger values of the coupling range r, the coupled system exhibits
transition from the traveling wave state to the death states via
imperfect amplitude mediated chimera as a function of the
coupling strength. For larger values of the coupling strength, the
number of oscillators exhibiting homogeneous large oscillations
(constituting incoherent domain of the imperfect amplitude
mediated chimera) decreases and finally settles among one of
the branches of the inhomogeneous steady state resulting in the
coherent oscillation death state in almost the entire coupling
range of r. The coherent oscillation death states manifest as a
cluster chimera death state and then as a stable multi-chimera
death state for further larger values of the coupling strength in
the entire coupling range r. We also note here that the structure
of the two parameter plot is similar for any other set of initial
conditions and that the coexistence of distinct dynamics takes
place only near the boundaries due to multistabilities among the
dynamical states.

The oscillators in the network segregate into different
numbers of clusters as a function of the coupling range r,
as shown in Figure 8. The system of coupled Stuart-Landau
oscillators exhibit more number of clusters for smaller coupling
range than that of larger coupling range. Eleven cluster states are
observed for coupling range r = 0.06 as depicted in Figure 8a.
Upon increasing the coupling range to r = 0.14 and r = 0.26,
it is observed that the number of clusters decreases to five and
three, respectively, as illustrated in Figures 8b,c. The number
of clusters become two for the coupling range r = 0.4 (see
Figure 8d). It is also evident from the figures that the size of the
clusters increases while the number of clusters decreases. It is
also found that the number of clusters in the amplitude mediated
chimera, cluster oscillation death and cluster chimera death states
exponentially decreases with increase in the coupling range r. The
number of clusters (n0) as a function of the coupling range r
is depicted in Figure 9, which clearly indicates the exponential

decrease of the number of clusters. It is also evident from the
inset of Figure 9 that the system obeys a power law relation
n0 = ra as a function of the nonlocal coupling range r with best
fit a = −0.505. The open circles in the inset denote numerical
data, while the corresponding best fit is shown by solid line (red).
It is also noticed that the system exhibits symmetric clusters in
the oscillation death state as a function of coupling range.

For any set of initial conditions, including random, symmetric
or asymmetric cluster conditions, the system exhibits only
symmetric clusters in the death states which are clearly
demonstrated through the transient behavior in Figure 10. The
emergence of symmetric clusters in the oscillation death states
from the random distribution of (xi, yi) between −1 to +1 and 0
to 1 are depicted in Figures 10a,b, respectively. The symmetric
initial state distribution ((xj, yj) = (+1,−1) for j = 1, 2.., N2
and (xj, yj) = (−1,+1) for j = N

2 + 1, ..,N) induced symmetric
cluster death states is evident from Figure 10c. Analogously, the
asymmetric distribution of initial states also exhibits symmetric
cluster death states which is shown in Figure 10d.

6. EFFECT OF NOISE INTENSITY ON
AMPLITUDE MEDIATED CHIMERA

The robustness of the imperfect amplitude mediated chimera
state is further analyzed in the system (1) by introducing a
Gaussian white noise. The system equation with the addition of

FIGURE 9 | Exponential decay of the number of clusters at ǫ = 1.0 in the

inhomogeneous states of cluster oscillation death as a function of the nonlocal

coupling range(r). The corresponding power law fit is shown in the inset. The

unfilled circles in the inset denote the numerical data and corresponding power

law fit is shown by solid line.

FIGURE 8 | Decreasing number of clusters with increasing value of the coupling range r for the coupling strength ǫ = 1.0: (a) 11 clusters for r = 0.06, (b) 5 clusters

for r = 0.14, (c) 3 clusters for r = 0.26 (d) 2 clusters for r = 0.4. Other parameters λ = 1.0, ω = 1.0, and N = 100.
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FIGURE 10 | Transient plots for the emergence of symmetric cluster ocillation death states from distict initial states at r = 0.4 and ǫ = 1.0. The initial states (xi , yi ) are

distributed (a) randomly between -1 to +1, (b) randomly between 0 to 1, (c) in symmetric cluster, and (d) asymmetric cluster conditions. Other parameters are same

as in Figure 8.

FIGURE 11 | Region of imperfect amplitude mediated chimera (IMAC) states

for noise intensities D = 0.0 (solid line), D = 0.1 (dot-dashed line), and D = 0.5

(dotted line).

Gaussian white noise can be expressed as,

ẋi = (λ − x2i − y2i )xi − ωyi +
ǫ

2P

i+P∑

k=i−P

(xk − xi)+
√
2Dζi(t),

ẏi = (λ − x2i − y2i )yi + ωxi−
ǫ

2P

i+P∑

k=i−P

(yk − yi), i= 1, 2, ...,N,

(3)

where ζi(t) ∈ R is the Gaussian white noise and D is the intensity
of noise. Here 〈ζi(t)〉 = 0, ∀i, and 〈ζi(t)ζi(t′)〉 = δijδ(t − t′),
∀i, j, where δij and δ(t − t′) are the Kronecker-delta and delta
distribution, respectively. Figure 11 is plotted for the regions of
imperfect amplitude mediated chimera state in the (r, ǫ) space
for three different noise intensities, namelyD = 0.0,D = 0.1 and
D = 0.5 which are denoted by solid, dot-dashed and dotted lines,
respectively. It is evident from the figures that the emergence
imperfect amplitude mediated chimera even for increasing larger
values of noise intensity which confirms their robustness against
noise.

7. CONCLUSION

We have investigated the dynamical transitions in a network
of nonlocally coupled Stuart-Landau oscillators with combined
attractive and repulsive couplings. We found that the competing

attractive and repulsive interactions induce imperfect amplitude
mediated chimera states. These states are characterized by the
oscillators constituting the synchronized and desynchronized
groups, which drift randomly between the homogeneous and
inhomogeneous states as a function of time. Hence it becomes
impossible to determine homogeneous and inhomogeneous
groups of oscillators. To overcome this difficulty, we have
estimated the finite-time average of each oscillators to distinguish
each group. Further, we have distinguished each dynamical state
by calculating the strength of the inhomogeneous oscillators in
a total population of a network. We found that the observed
imperfect amplitude mediated chimera mediates the transition
between the oscillatory and oscillation death states and turns out
to be the transition route for the cluster oscillation death state.
We have also calculated the number of clusters in the oscillation
death states as a function of the coupling range. We found
that the number of clusters decays exponentially as a function
of the coupling range and obeys a power law relation with
the nonlocal coupling range.The obtained imperfect amplitude
mediated chimera state is robust against various initial states and
different sizes of the network. Finally, we also found that the
observed imperfect amplitude mediated chimera state is robust
against noise by introducing a Gaussian white noise.
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