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The graph Laplacian is a standard tool in data science, machine learning, and image

processing. The corresponding matrix inherits the complex structure of the underlying

network and is in certain applications densely populated. This makes computations,

in particular matrix-vector products, with the graph Laplacian a hard task. A typical

application is the computation of a number of its eigenvalues and eigenvectors. Standard

methods become infeasible as the number of nodes in the graph is too large. We propose

the use of the fast summation based on the nonequispaced fast Fourier transform

(NFFT) to perform the dense matrix-vector product with the graph Laplacian fast without

ever forming the whole matrix. The enormous flexibility of the NFFT algorithm allows

us to embed the accelerated multiplication into Lanczos-based eigenvalues routines

or iterative linear system solvers and even consider other than the standard Gaussian

kernels. We illustrate the feasibility of our approach on a number of test problems

from image segmentation to semi-supervised learning based on graph-based PDEs. In

particular, we compare our approach with the Nyström method. Moreover, we present

and test an enhanced, hybrid version of the Nyström method, which internally uses the

NFFT.

Keywords: Graph Laplacian, Lanczos method, eigenvalues, nonequispaced fast Fourier transform, machine

learning

1. INTRODUCTION

Graphs are a fundamental tool in the modeling of imaging and data science applications [1–
5]. To apply graph-based techniques, individual data points in a data set or pixels of an image
represent the vertex set or nodes V of the graph, and the edges indicate the relationship between
the vertices. In a number of real-world examples, the graph is sparse in the sense that each
vertex is only connected to a small number of other vertices, i.e., the graph affinity matrix is
sparsely populated. In other applications, such as the mentioned data points or image pixels,
the natural choice for the graph would be a fully connected graph, which is then reflected in
dense matrices that represent the graph information. Naturally, if there is no underlying graph the
most natural choice is the fully connected graph. As the eigenvectors of the corresponding graph
Laplacian are crucial in reducing the complexity of the underlying problem or for the extraction of
quantities of interest [2, 6, 7], it is important to compute them accurately and fast. If this matrix
is sparse, numerical analysis has provided efficient tools based on the Lanczos process with sparse
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matrix-vector products that can compute the eigeninformation
efficiently. For complex interactions leading to dense matrices,
these methods suffer from the high cost of the matrix-vector
product.

Our goal is hence to obtain the eigeninformation despite the
fact that the graph is fully connected and without any a priori
reduction of the graph information. For this we rely on a Lanczos
procedure based on Baglama and Reichel [8]. This method needs
to perform the matrix-vector product in a fast way and thus,
evaluating all information, without ever fully assembling the
graph matrices. In a similar fashion the authors in Bertozzi and
Flenner [7] utilize the well-known Nyströmmethod to only work
with partial information from the graph and only approximately
represent the remaining parts. Such methods are well-known
within the fast solution of integral equations and have found
applicability within the data science community [9, 10]. The
technique we present here is known as a fast summation method
[11, 12] and is based on the nonequispaced fast Fourier transform
(NFFT), see [13] and the references therein. We apply this
method in the setting where the weights of the edges between the
vertices are modeled by a Gaussian kernel function of medium
to large scaling parameter, such that the Gaussian is not well-
localized and most vertices interact with each other. For the case
of a smaller scaling parameter and consequently a more localized
Gaussian, we refer to Morariu et al. [14], which is partially based
on a technique presented [15] for Gaussian kernels. Moreover, we
remark that the NFFT-based fast summation method considered
in this paper does not only support Gaussians but can handle
various other rotational invariant functions.

The remaining parts of this paper are structured as follows.
In section 2, we first introduce the graph Laplacian and discuss
the matrix structure. In section 3, we introduce the NFFT-based
fast summation, which allows for computing fast matrix-vector
products with the graph Laplacian. In section 4, we then recall
Krylov subspace methods and in particular the Lanczos method,
which sits at the engine room of the numerical computations
to obtain a small number of eigenvectors. We then show that
the graph Laplacian provides the ideal environment to be used
together with the NFFT-based fast summation, and we obtain
the NFFT-based Lanczos method. In section 5 we briefly discuss
the Nyström method as a direct competitor to our approach.
We improve and accelerate this method, creating a new hybrid
Nyström-Gaussian-NFFT version, which incorporates the NFFT-
based fast summation. In section 6, we present comparisons
between the NFFT-based Lanczos method, the Nyström method
and the hybrid Nyström-Gaussian-NFFT method with the direct
application of the Lanczos method for a dense, large-scale
problem. Additionally, we illustrate on a number of exemplary
applications, such as spectral clustering and semi-supervised
learning, that our approach provides a convenient infrastructure
to be used within many different schemes.

2. THE GRAPH LAPLACIAN AND FULLY
CONNECTED GRAPHS

We consider an undirected graph G = (V ,E) with the vertex set
V =

{

vj
}n

j= 1
and the edge set E, cf. [16] for more information.

An edge e ∈ E is a pair of nodes (vj, vi) with vj 6= vi and vj, vi ∈ V .
For weighted undirected graphs, such as the ones considered in
this paper, we also have a weight function w :V × V → R

with w(vj, vi) = w(vi, vj) for all j, i. We assume further that the
function is positive for existing edges and zero otherwise. The
degree of the vertex vj ∈ V is defined as

d(vj) =
∑

vi∈V

w(vj, vi).

Let W, D ∈ R
n×n be the weight matrix and the diagonal degree

matrix with entries Wji = w(vj, vi) and Djj = d(vj). Since we do
not permit graphs with loops, W is zero on the diagonal. Now
the crucial tool for further investigations is the graph Laplacian L

defined via

L(vj, vi) =

{

d(vj) if vj = vi

−w(vj, vi) otherwise,

i.e., L = D − W. The matrix L is typically known as the
combinatorial graph Laplacian and we refer to von Luxburg
[1] for an excellent discussion of its properties. Typically its
normalized form is employed for segmentation purposes and we
obtain the normalized Laplacian as

Ls = D−1/2LD−1/2 = I−D−1/2WD−1/2, (1)

obviously a symmetric matrix. Another normalized Laplacian of
nonsymmetric form is given by

Lw = D−1L = I−D−1W.

For the purpose of this paper we focus on the symmetric
normalized Laplacian Ls but everything we derive here can
equally be applied to the nonsymmetric version, where we would
then have to resort to nonsymmetric Krylov methods such as
GMRES [17]. It is well-known in the area of data science, data
mining, image processing and so on that the smallest eigenvalues
and its associated eigenvectors possess crucial information about
the structure of the data and/or image [1, 7, 18]. For this we state
an amazing property of the graph Laplacian L for a general vector
u ∈ R

n with n the dimension of L

uTLu =
1

2

n
∑

j,i= 1

Wji(uj − ui)
2,

which, as was illustrated in von Luxburg [1], is equivalent to the
objective function of the graph RatioCut problem. Intuitively,
assuming the vector u to be equal to a constant on one part of
the graph A and a different constant on the remaining vertices
Ā. In this case uTLu only contains terms from the edges with
vertices in both A and Ā. Thus a minimization of uTLu results
in a minimal cut with respect to the edge weights across A and
Ā. Obviously, 0 is an eigenvalue of L and its normalized variants
as L1 = D1 − W1 = 0 by the definitions of D and W with
1 being the vector of all ones. Additionally, spectral clustering
techniques heavily rely on the computation of the smallest k
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eigenvectors [1] and recently semi-supervised learning based on
PDEs on graphs introduced by Bertozzi and Flenner [7] utilizes a
small number of such eigenvectors for a complexity reduction. It
is therefore imperative to obtain efficient techniques to compute
the eigenvalues and eigenvectors fast and accurately. Since we
are interested in the k smallest eigenvalues of the matrix Ls =

I − D−1/2WD−1/2 it is clear that we can compute the k largest
postive eigenvalues of the matrix A := D−1/2WD−1/2. In case
that the graph G = (V ,E) is sparse in the sense that every
vertex is only connected to a small number of other vertices and
thus the matrix W is sparse, we can utilize the whole arsenal of
numerical algorithms for the computations of a small number
of eigenvalues, namely the Lanczos process [19], the Krylov-
Schur method [20], or the Jacobi-Davidson algorithm [21]. In
particular, the ARPACK library [22] in MATLAB via the eigs
function is a recommended choice. So frankly speaking, in the
case of a sparse and symmetric matrixW the eigenvalue problem
is fast and the algorithms are very mature. Hence, we focus on
the case of fully connected graphs meaning that the matrix W is
considered dense.

The standard scenario for this case is that each node vj ∈ V

corresponds to a data vector vj ∈ R
d and the weight matrix is

constructed as

Wji = w(vj, vi) =

{

exp(−
∥

∥vj − vi
∥

∥

2
/σ 2) if j 6= i,

0 otherwise
(2)

with a scaling parameter σ . For example, approaches with this
kind of graph Laplacian have become increasingly popular in
image processing [23], where the data vectors vj encode color
information of image pixels via their color channels. The data
point dimension may then be d = 1 for grayscale images and
d = 3 for RGB images. Other applications may involve simple
Cartesian coordinates for vj. While Equation (2) is derived from

a Gaussian kernel function K(y) := exp(−
∥

∥y
∥

∥

2
/σ 2), other

applications might call for different kernel functions like the
“Laplacian RBF kernel”K(y) := exp(−

∥

∥y
∥

∥ /σ ), themultiquadric

kernel K(y) := (
∥

∥y
∥

∥

2
+ c2)1/2, or inverse multiquadric kernel

K(y) := (
∥

∥y
∥

∥

2
+c2)−1/2 for a parameter c > 0, e.g., cf. section 6.3.

This means, the weight matrix may be of the form

Wji =

{

K(vj − vi) if j 6= i,

0 otherwise.
(3)

Often certain techniques are used to sparsify the Laplacian or
otherwise reduce its complexity in order to apply the methods
named above. In particular, sparsification has been proposed
for the construction of preconditioners [24] for iterative solvers,
which still require the efficient implementation of the matrix
vector products. In image processing, this can be achieved
by considering only patches or other reduced representations
of the image [18]. However, this might drop crucial nonlocal
information encoded in the full graph Laplacian [23, 25], which is
why we want to avoid it here and focus on fully connected graphs
with dense Laplacians.

3. NFFT-BASED FAST SUMMATION

For eigenvalue computation as well as various other applications
with the graph Laplacian, one needs to perform matrix-vector
multiplications with the matrix W or the matrix A :=

D−1/2WD−1/2. In general, this requires O
(

n2
)

arithmetic
operations. When the matrix W has entries (2), this arithmetic
complexity can be reduced to O(n) using the NFFT-based fast
summation [11, 12]. In general, this methodmay be applied when
the entries of the matrix W can be written in the form Wji =

K(vj−vi), whereK : R
d → C is a rotational invariant and smooth

kernel function. For applying theNFFT-based fast summation for
(3), it would bemore convenient to consider thematrixW to have
entries equal to K(0) on the diagonal and we refer to this matrix
as W̃. Note that it can be written as W̃ = W + K(0) I and thus
W = W̃ − K(0) I. In order to efficiently compute the row sums
ofW, which appear on the diagonal ofD, we use

W1 = W̃1− K(0) I1 = W̃1− K(0) 1.

We now illustrate how to efficiently compute the matrix-
vector product with the matrix W̃ using the NFFT-based fast
summation. For instance, for the Gaussian kernel function, we
have

(

W̃x
)

j
=

n
∑

i=1

xi exp

(

−

∥

∥vj − vi
∥

∥

2

σ 2

)

∀j = 1, . . . , n (4)

with x = [x1, x2, . . . , xn]
T and we rewrite (4) by

(

W̃x
)

j
= f (vj) :=

n
∑

i=1

xi K(vj − vi) (5)

with the kernel function K(y) := exp(−
∥

∥y
∥

∥

2
/σ 2). The key

idea of the efficient computation of (5) is approximating K
by a trigonometric polynomial KRF in order to separate the
computations involving the vertices vj and vi. Assuming we have
such a d-variate trigonometric polynomial

K(y) ≈ KRF(y) :=
∑

l∈IN

b̂l e
2π ily,

IN := {−N/2,−N/2+ 1, . . . ,N/2− 1}d,

(6)

with bandwidth N ∈ 2N and Fourier coefficients b̂l, we replace K
by KRF in (5) and we obtain

(

W̃x
)

j
= f (vj) ≈ fRF(vj)

:=

n
∑

i=1

xi KRF(vj − vi)

=

n
∑

i=1

xi
∑

l∈IN

b̂l e
2π il(vj−vi)

=
∑

l∈IN

b̂l

(

n
∑

i=1

xi e
−2π ilvi

)

e2π ilvj , ∀j = 1, . . . , n.
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Using the NFFT [13], one computes the inner and outer sums
for all j = 1, . . . , n totally in O(md n + Nd logN) arithmetic
operations, wherem ∈ N is an internal window cut-off parameter
which influences the accuracy of the NFFT. Please note that since
KRF and fRF are 1-periodic functions but neither K nor f are,
ones needs to shift and scale the nodes vj such that they are

contained in a subset of the cube [−1/4, 1/4]d ensuring vj − vi ∈

[−1/2, 1/2]d. Depending on the Fourier coefficients b̂l, l ∈ IN ,

of the trigonometric polynomial KRF, where b̂l still have to be
determined, wemay need to scale the nodes vj to a slightly smaller
cube.

We emphasize that we are not restricted to the Gaussian

weight function w(vj, vi) = exp(−
∥

∥vj − vi
∥

∥

2
/σ 2) or a rotational

invariant weight function. In fact, any kernel function K that can
be well approximated by a trigonometric polynomial KRF may be
used.

Next, we describe an approach to obtain suitable Fourier

coefficients b̂l of KRF based on sampling values of K. Especially,
we want to obtain a good approximation of K using a small

number of Fourier coefficients b̂l. Therefore, we regularize K
to obtain a 1-periodic smooth kernel function KR, which is
p − 1 times continuously differentiable (in the periodic setting),
such that its Fourier coefficients decay in a fast way. Then, we
approximate the Fourier coefficients of KR using the trapezoidal

rule and this yields the Fourier coefficients b̂l of KRF.
For a rotational invariant kernel function K(y), which is

sufficiently smooth except at the “boundaries” of the cube

[−1/2, 1/2]d, e.g., K(y) = exp(−
∥

∥y
∥

∥

2
/σ 2), we only need to

regularize near
∥

∥y
∥

∥ = 1/2. We use the ansatz

KR(y) :=











K(y) if
∥

∥y
∥

∥ ≤ 1
2 − εB

TB(
∥

∥y
∥

∥) if 1
2 − εB <

∥

∥y
∥

∥ ≤ 1
2 ,

TB

(

1
2

)

otherwise,

where TB is a suitably chosen univariate polynomial, e.g.,
computed by a two-point Taylor interpolation. The parameter
0 < εB ≪ 1/2 determines the size of the regularization region,
cf. [12, section 2]. For the treatment of a rotational invariant
kernel function which has a singularity at the origin, we also
refer to [12, section 2]. Now we approximate KR by the d-variate
trigonometric polynomial KRF from (6), where we compute the
Fourier coefficients

b̂l :=
1

N

∑

j∈IN

KR

(

j

N

)

e−2π ijl/N ∀l ∈ IN . (7)

Assuming one evaluation of KR takesO(1) arithmetic operations,
the computations in (7) require O(Nd logN) arithmetic
operations in total using the fast Fourier transform.

If all vertices vj and their corresponding data vectors vj ∈ R
d,

j = 1, . . . , n, fulfill the property
∥

∥vj
∥

∥ ≤ 1/4 − εB/2, we have
∥

∥vj − vi
∥

∥ ≤ 1/2− εB and we obtain an approximation of (5) by

(

W̃x
)

j
= f (vj) = fR(vj) :=

n
∑

i=1

xiKR(vj − vi)

≈ fRF(vj) :=

n
∑

i=1

xiKRF(vj − vi).

Otherwise, we compute a correction factor ρ := (1/4 −

εB/2)/maxj= 1,...,n

∥

∥vj
∥

∥, using transformed vertices ṽj := vjρ,
and adjust parameters of the kernel function appropriately. For
instance, in case of the Gaussian kernel function, we replace
the scaling parameter σ by σ̃ := σρ for the regularized kernel
function KR.

The error of the approximation f (vj) := (W̃x)j ≈ fRF(vj)
depends on the kernel function as well as on the choice of the
regularization smoothness p, the size of the regularization region
εB, the bandwidth N, and the window cut-off parameter m. For
a fixed accuracy, we fix these parameters p, εB, N, and m. Hence,
for small to medium dimensions d, we obtain a fast approximate
algorithm for the matrix-vector multiplication W̃x of complexity
O(n), cf. Algorithm 1. This algorithm is implemented as
applications/fastsum and matlab/fastsum in C and
MATLAB within the NFFT3 software library1, see also [13], and
we use the default Kaiser-Bessel window function. In Figure 1,
we list the relevant control parameters of Algorithm 1 and
regularization approach (7).

Note that every part of Algorithm 1 is deterministic and linear
in the input vector x, i.e., the algorithm constitutes a linear
operator that can be written as W̃ + E with an error matrix E.
For theoretical error estimates on ‖Ex‖∞ = maxj|f (vj)− fRF(vj)|,
we refer to Potts and Steidl [11], Potts et al. [12], and Kunis et al.
[26]. The basic idea is to start with the estimate

|f (vj)− fRF(vj)| ≤ ‖x‖1 ‖KERR‖∞ ,

‖KERR‖∞ := max
y∈Rd ,‖y‖≤1/2−εB

|K(y)− KRF(y)|, (8)

caused by the approximation of the kernel K by a trigonometric
polynomial KRF, and to additionally take the errors caused by the
NFFT into account. In practice, one may guess ‖KERR‖∞ based
on sampling values of K and KRF. For theoretical error estimates
of the NFFT for various window functions, we refer to Keiner et
al. [13] and Nestler [27]. In practice, choosing the window cut-
off parameter of the NFFT m = 8 yields approximately IEEE
double precision for the default Kaiser-Bessel window, see e.g.,
[13, section 5.2].

We again emphasize that Algorithm 1 is not restricted to the
Gaussian kernel function. Any kernel function K that can be well
approximated by a trigonometric polynomial may be used and

1https://www.tu-chemnitz.de/~potts/nfft/
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Algorithm 1 Fast approximate matrix-vector multiplication W̃x using NFFT-based fast summation, (W̃x)j =
∑n

i= 1 xi K(vj − vi),

e.g., (W̃x)j =
∑n

i= 1 xi exp(−
∥

∥vj − vi
∥

∥

2
/σ 2), ∀j = 1, . . . , n.

Input:
(

b̂l

)

l∈IN
Fourier coefficients of trigonometric polynomial KRF which approximates
K(y) for y ∈ R

d,
∥

∥y
∥

∥ ≤ 1/2− εB,
e.g., obtained by (7),

{

vj
}n

j=1
vertex set, vj ∈ R

d,
∥

∥vj
∥

∥ ≤ 1/4− εB/2,

x = [x1, x2, . . . , xn]
T vector ∈ R

n.

1. Apply d-dimensional adjoint NFFT on x and obtain
x̂l≈

∑n
i=1 xi e

−2π ilvi ∀l ∈ IN .

2. Multiply result by Fourier coefficients
(

b̂l

)

l∈IN
and obtain f̂l := b̂l x̂l ∀l ∈ IN .

3. Apply d-dimensional NFFT on
(

f̂l

)

l∈IN
and obtain output

f̃RF(vj)≈
∑

l∈IN
f̂l e

2π ilvj ∀j = 1, . . . , n.

Output:
[

f̃RF(vj)
]

j=1,...,n
f̃RF(vj) ≈ (W̃x)j ∀j = 1, . . . , n.

Complexity: O
(

n
)

for fixed accuracy.

Parameter Description

N ∈ 2N bandwidth (in each dimension) of trigonometric polynomial, such that KRF ≈ K

m ∈ N window cut-off parameter of NFFT
(m = 8 gives approximately IEEE double precision for default Kaiser-Bessel window)

p ∈ N regularization smoothness for KR

(default choice p = m)

εB size of the regularization region, 0 ≤ εB ≪ 1/2
(default choice εB = p/N)

FIGURE 1 | Control parameters for NFFT-based fast summation.

the corresponding Fourier coefficients b̂l, l ∈ IN , are an input
parameter of Algorithm 1.

Moreover, for the Gaussian kernel function, one could also
use the analytic Fourier coefficients b̂l from Kunis et al. [26] for

small values of the scaling parameter σ instead of computing b̂l
by interpolation in (7). In this case, explicit error bounds for
‖KERR‖∞ are available.

3.1. Error Propagation for Normalized
Matrices
As seen in section 2, many applications involving the Graph
Laplacian require matrix vector products with a matrix A

that itself does not follow the form of (3), but results from
normalization of such a matrix W. This normalization can be
written as A = D−1/2WD−1/2, where D = diag(W1). Since
our approach includes replacing all matrix-vector products Wx

by the approximations (W̃+ E)x− K(0) x, this also includes the

computation of the degree matrix D. The error occurring from
this approximation will then propagate to the evaluation error of
Ax.

Algorithm 2 summarizes the usage of Algorithm 1 for this
case. Note that if multiple matrix-vector products are required,
e.g., in an iterative scheme, steps 1–4 can be performed once in a
setup phase. The following lemma gives an estimation of the error
of Algorithm 2 depending on the relative error of Algorithm 1.

Lemma 1. Let W ∈ R
n×n be a matrix with non-negative entries

and at least one positive entry per row. Given an error matrix
E ∈ R

n×n, we defineWE = W+ E and

[d1, . . . , dn]
T
:= W1, D := diag(d1, . . . , dn),

A := D−1/2WD−1/2,

[dE,1, . . . , dE,n]
T
:= WE1, DE := diag(dE,1, . . . , dE,n)

AE := D
−1/2
E WED

−1/2
E .
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Algorithm 2 Fast approximate matrix-vector multiplication Ax using NFFT-based fast summation, with A = D−1/2WD−1/2,W as in
(3) andD = diag(W1)

Input: σ or c, {vj}
n
j=1 Scaling parameter and vertex set, vj ∈ R

d, specifyingW,

x = [x1, . . . , xn]
T vector ∈ R

n.

1. Choose correction factor ρ such that ‖ρvj‖2 ≤ 1/4− εB/2 for all j = 1, . . . , n.
Set vj := ρvj for all j = 1, . . . , n.

2. For Gaussian and Laplacian RBF kernel, adjust scaling parameter σ := ρσ .
For multiquadric and inverse multiquadric kernel, adjust parameter c := c/ρ.

3. For the computation of matrix-vector products with the matrix

W̃E = W̃+ E = K(0) I+W+ E

by Algorithm 1, determine appropriate control parameters for the NFFT-based fast summation, see Figure 1, and obtain Fourier

coefficients b̂l, l ∈ IN , e.g., by (7) or Kunis et al. [26].
4. ComputeDE = diag(W̃E1− K(0) 1) ≈ diag(W1) = D via Algorithm 1

(scale output of Algorithm 1 by ρ for multiquadric kernel and 1/ρ for inverse multiquadric kernel).

5. Compute y = D
−1/2
E

(

W̃E(D
−1/2
E x)− K(0)D

−1/2
E x

)

≈ Ax via Algorithm 1

(scale output of Algorithm 1 by ρ for multiquadric kernel and 1/ρ for inverse multiquadric kernel).

Output: y Approximate result of Ax.

Complexity: O
(

n
)

for fixed accuracy.

Let dmin > 0 denote the minimum diagonal entry of D and
furthermore set

η :=
dmin

‖W‖∞
and ε :=

‖E‖∞

‖W‖∞
.

Then, for ε < η, it holds

‖A− AE‖∞ ≤
ε(1+ η)

η(η − ε)
.

Proof: Due to

|di − dE,i| ≤ ‖W1−WE1‖∞ = ‖E1‖∞ ≤ ‖E‖∞‖1‖∞

= ‖E‖∞ = ε‖W‖∞

and the fact that x 7→ x−1/2 and its first derivative are
monotoneously decreasing, we obtain

‖D−1/2 −D
−1/2
E ‖∞ = max

i

∣

∣d
−1/2
i − d

−1/2
E,i

∣

∣

≤ max
i

max
−‖E‖∞≤δ≤‖E‖∞

∣

∣d
−1/2
i − (di + δ)

−1/2
∣

∣

= max
i

∣

∣d
−1/2
i − (di − ‖E‖∞)−1/2

∣

∣

=
∣

∣d
−1/2
min − (dmin − ‖E‖∞)−1/2

∣

∣

=
∣

∣η−1/2 − (η − ε)−1/2
∣

∣ ‖W‖
−1/2
∞

=
(

(η − ε)−1/2 − η−1/2
)

‖W‖
−1/2
∞ .

Analogously we obtain

‖D
−1/2
E ‖∞ ≤ (η − ε)−1/2‖W‖

−1/2
∞ .

Together with ‖D−1/2‖∞ = η−1/2‖W‖
−1/2
∞ and ‖WE‖∞ ≤

(1+ ε)‖W‖∞, this yields

‖A− AE‖∞

=
∥

∥

∥
(D−1/2 −D

−1/2
E )WD−1/2 +D

−1/2
E (W−WE)D

−1/2

+D
−1/2
E WE(D

−1/2 −D
−1/2
E )

∥

∥

∥

∞

≤
(

(η − ε)−1/2 − η−1/2
)

‖W‖
−1/2
∞ ‖W‖∞ η−1/2‖W‖

−1/2
∞

+ (η − ε)−1/2‖W‖
−1/2
∞ ε‖W‖∞ η−1/2‖W‖

−1/2
∞

+ (η − ε)−1/2‖W‖
−1/2
∞ (1+ ε)‖W‖∞

×
(

(η − ε)−1/2 − η−1/2
)

‖W‖
−1/2
∞

=
(

(η − ε)−1/2 − η−1/2
)(

η−1/2 + (1+ ε)(η − ε)−1/2
)

+ (η − ε)−1/2εη−1/2.

Now detach the left underlined part from its paranthesed
expression and combine it with the right underlined part:

=
(

(η − ε)−1/2 − η−1/2
)(

(η − ε)−1/2 + η−1/2
)

+ ε(η − ε)−1/2
(

(η − ε)−1/2 − η−1/2 + η−1/2
)
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Resolve the binomial expression in the first line and simplify the
second line:

= (η − ε)−1 − η−1 + ε(η − ε)−1 =
(1+ ε)η − (η − ε)

η(η − ε)

=
ε(1+ η)

η(η − ε)
.

This concludes the proof for the desired inequality.

The requirement ε < η means that ‖E‖∞ must be smaller
than the smallest diagonal entry in D. This condition cannot be
avoided since otherwise, negative entries inDE could not be ruled

out, leading to imaginary entries inD
−1/2
E and thus inAE. On the

other hand, if ε is well below η, Lemma 1 yields that the absolute
error inA is linear in ε, which is the relative error of Algorithm 1.

Alternatively, by ignoring the error caused by the NFFT, we
obtain error estimations of the form

‖Ex‖∞ . ‖KERR‖∞‖x‖1 ≤ n ‖KERR‖∞‖x‖∞

⇒ ε =
‖E‖∞

‖W‖∞
. n

‖KERR‖∞

‖W‖∞
. (9)

In other words, the perturbation grows linearly in the size of the
dataset. If either ‖W‖∞ or dmin grew less fast, then Lemma 1
would not be applicable for large n because ε would eventually
supersede η. However, if we assume that increasing n means
adding more similarly-distributed data points to the dataset, the
average entry in W does not change and thus all row sums of W
also grow linearly in n, including dmin and the maximum row
sum ‖W‖∞. A mathematical quantification of this observation
is beyond the scope of this article, but in practice, the values
for η and ε can be approximated and monitored to give a-
posteriori error bounds. One way to do this is by using (9) and
approximating ‖KERR‖∞ via (8), where the maximum can be
discretized in a large number of randomly drawn sample points.
The accuracy of this approximation can be validated by explicitly
computing the exact absolute row sum ‖E‖∞ via

‖E‖∞ =

∥

∥

∥

∥

∥

n
∑

i= 1

|Eei|

∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

n
∑

i= 1

∣

∣W̃Eei −Wei − K(0)ei
∣

∣

∥

∥

∥

∥

∥

∞

,

(10)
where | · | is applied elementwise, ei denotes the i-th unit vector,
and matrix-vector products with W̃E = W + K(0)I + E are
evaluated using Algorithm 1. The effort of computing (10) is
O(n2). Equivalently, the true value for ‖A − AE‖∞ can be
computed via

‖A− AE‖∞ =

∥

∥

∥

∥

∥

n
∑

i= 1

|Aei − AEei|

∥

∥

∥

∥

∥

∞

.

4. KRYLOV SUBSPACE METHODS AND
NFFT

The main contribution of this paper is the usage of NFFT-based
fast summation for accelerating Krylov subspace methods, which

are the state-of-the-art schemes for the solution of linear equation
systems, eigenvalue problems, and more [28]. In the case of
large dense matrices, the computational bottleneck is the setup
of and multiplication with the system matrix itself. We will here
exemplarily illustrate this for the Lanczos algorithm [29], which
is the standard method for computation of a few dominating, i.e.,
largest, eigenvalues of a symmetric matrix A [19, 30]. It is based
on looking for an A-invariant subspace in the Krylov space

Kk(A, r) = span
{

r,Ar,A2r,A3r, . . . ,Ak−1r
}

.

This is achieved by iteratively constructing an orthonormal basis
q1, . . . , qk of this space in such a way that the matrix Qk =

[q1, . . . , qk] ∈ R
n×k yields a tridiagonalization of A, i.e.,

QT
kAQk = Tk =













α1 β2

β2 α2
. . .

. . .
. . . βk
βk αk













.

Such a matrix Qk as well as the entries of Tk can be computed by
the iteration

q1 =
r

‖r‖
, qk+1 =

1

βk+1

(

Aqk − αkqk − βkqk−1

)

∀k = 1, 2, . . .

where αk = qT
k
Aqk and βk+1 = ‖Aqk − αkqk − βkqk−1‖. The

remarkable fact that this iteration produces orthonormal vectors
is a consequence of the symmetry of A. We now summarize the
first k steps of the Lanczos process in the relation

AQk = QkTk + βk+1qk+1e
T
k , (11)

where ej denotes the j-th standard basis vector of the appropriate
dimension. The eigenvalues and eigenvectors of the small matrix
Tk are called the Ritz values and vectors, respectively, and can be
computed efficiently. From Tkw = λw we then obtain

AQkw = QkTkw+ βk+1qk+1e
T
kw = λQkw+ βk+1wkqk+1,

where wk is the k-th component of the Ritz vector w. We finally
see via

‖AQkw− λQkw‖ = |βk+1wk| ≤ |βk+1|

that a small value |βk+1| indicates that (λ,Qkw) is a good
approximation to an eigenpair of A and that the Krylov space
is close to containing an A-invariant subspace. There are many
more practical issues that make the implementation of the
Lanczos process more efficient and robust. We do not discuss
these points in detail but refer to Parlett [30] and Lehoucq et al.
[22] for the details.

Additionally, we want to point out that the above procedure
can also be used for the solution of linear systems of equations.
Standard methods based on the Lanczos method are the
conjugate gradients method [31] and the minimal residual
method [32], which are tailored for the solution of linear
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systems of the form Ax = b. Note that such applications
involving the graph Laplacian are commonly found in kernel
based methods [33]. In the nonsymmetric case that comes up
e.g., when considering Lw, we can employ the Arnoldi method
[28], which relies on a similar iteration where Tk is replaced by
an upper Hessenberg matrix.

One main contribution of this paper is the fact that
by evaluating matrix-vector products via the NFFT-based
Algorithms 1 or 2, Krylov subspace methods are still applicable
for dense matrices that are too large to store, let alone apply,
as long as they stem from the kernel structure of (3) or
normalization of such a matrix. In our experiments, this method
will be denoted as NFFT-based Lanczos method.

A detailed discussion of the effect of inexact matrix-vector
products on Krylov-based approximations can be found in
Simoncini and Szyld [34].

5. ALTERNATIVE EIGENVALUE
ALGORITHM: THE NYSTRÖM METHOD

5.1. The Traditional Nyström Extension
The Nyström extension is currently used as a method of choice
to compute eigenvalue approximations of kernel-based matrices
that are too large to allow for direct eigenvalue computation.
See e.g., Garcia-Cardona et al. [35] and Merkurjev et al. [36]
for its applications in different settings. Originally introduced to
the matrix computations context in Williams and Seeger [37],
further improvements have been suggested in Fowlkes et al. [38]
and Drineas and Mahoney [9] and its usage for classification
problems has been proposed in Bertozzi and Flenner [7]. It is
based on dividing the data points into a sample set X of L nodes
and its complement Y . After permutation, the adjacency matrix
W can be split into blocks

W =

[

WXX WXY

WT
XY WYY

]

,

where the blocksWXX ∈ R
L×L andWYY ∈ R

(n−L)×(n−L) are the
adjacency matrices of the canonical subgraphs with node sets X
and Y , respectively, and the blockWXY ∈ R

L×(n−L) contains the
similarities between all combinations of nodes from X and Y .

The basic idea of the Nyström method is to compute only
WXX and WXY explicitly, but not the remaining block WYY . If
L≪ n, the approach significantly decreases the required number
of data point comparisons. Assuming that WXX is regular, the
method approximatesW by

W ≈ WE =

[

WXX

WT
XY

]

W−1
XX

[

WXX WXY

]

=

[

WXX WXY

WT
XY WT

XYW
−1
XXWXY

]

, (12)

which constitutes a rank-L approximation due to the size and
regularity of WXX . This formula is used once in approximating
the degree matrix D by DE = diag(WE1) and once in

approximating the eigenvalues of A via the rank-L eigenvalue
decomposition

AE := D
−1/2
E WED

−1/2
E = VL3LV

∗
L.

This can be computed without having to set up the full matrix,
e.g., by the technique described in Fowlke et al. [38] made
up mainly of two singular value decompositions of (L × L)-
sized matrices, which is technically only applicable if W is
positive definite. Alternatively, we have achieved better results by

computing the QR factorization Q̂R̂ := D
−1/2
E [WXX WXY ]

T and

the eigenvalue decomposition UL3LU
T
L := R̂W−1

XXR̂
T , leading to

the eigenvector matrix VL = Q̂UL. The arithmetic complexity of
this algorithm can be easily confirmed to beO

(

n L2).
The eigenvalue accuracy depends strongly on the quality of the

approximation

WYY ≈ WT
XYW

−1
XXWXY .

Since the sample set X is a randomly chosen subset of the indices
from 1, . . . , n, its size L is the decisive method parameter and
its choice is a nontrivial task. On the one hand, L needs to be
small for the method to be efficient. On the other hand, a too
small choice of L may cause extreme errors, especially because
the approximation error in DE propagates to the eigenvalue
computation. In spite of the positivity of the diagonal of D,
negative entries in DE cannot be ruled out and are observed

in practice. Hence imaginary entries may occur in D
−1/2
E and

thus AE, making the results extremely unreliable. This behavior
follows the same structure as Lemma 1, however, we do not have
a meaningful bound on ‖WYY − WT

XYW
−1
XXWXY‖∞ that would

guarantee favorable error behavior.

5.2. A NFFT-Based Accelerated
Nyström-Gaussian Method
Another important contribution of this paper is the development
of an improved Nyström method, which utilizes the NFFT-based
fast summation from section 3. It is based on a slightly different
algorithm that has been recently introduced as a Nyström
method, cf. [39] and the references therein. Their basic idea is
rewriting the traditional Nyström approximation as

A ≈ (AQ)(QTAQ)−1(AQ)T

where Q ∈ R
n×L is a matrix with orthogonal columns. If Q

holds the first L columns of a permutation matrix, one obtains
the traditional Nyström method from section 5.1. Inspired by
similar randomized linear algebra algorithm such as randomized
singular value decomposition, this choice of Q is replaced in
Martinsson [39] by Q = orth(AG), where G ∈ R

n×L is a
Gaussian matrix with normally distributed random entries and
orth denotes column-wise orthonormalization. Unfortunately,
this setup requires 2L matrix-vector products with the full
matrix A.

We now propose accelerating these matrix-vector products by
computingAQ column-wise via the NFFT-based fast summation
Algorithm 1 in order to avoid full matrix setup or slow direct
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Algorithm 3 NFFT-based accelerated Nyström-Gaussian method (“Nyström-Gaussian-NFFT”) for eigenvalue approximation
Vk3kV

∗
k
≈ A := D−1/2WD−1/2.

Input: σ ,
{

vj
}n

j=1
scaling parameter and vertex set, vj ∈ R

d, specifyingW,

k number of desired eigenvalues ∈ N,
L number of random Gaussian columns ≥ M ≥ k,
M rank of inversion ≥ k.

1. Setup the NFFT-based fast summation parameters for computing matrix-vector products withW using Algorithm 1, cf. section 3.
2. Compute the degree matrixD = diag(W1) using Algorithm 1.
3. Setup a random Gaussian matrix G ∈ R

n×L, compute Y = AG column-wise via Algorithm 1, and Q = orth(Y) ∈ R
n×L by

QR-factorization.
4. Compute B1 = AQ ∈ R

n×L column-wise via Algorithm 1 and B2 = QTB1 ∈ R
L×L.

5. Compute the diagonal matrix6M of theM largest positive eigenvalues ofB2 and thematrixUM ∈ R
L×M holding the corresponding

orthonormal eigenvectors as columns.
6. Compute the QR-factorization Q̂R̂ = B1UM , Q̂ ∈ R

n×M , R̂ ∈ R
M×M .

7. Compute the eigenvalue decomposition ÛM3MÛT
M = R̂6−1

M R̂T and set VM = Q̂ÛM .
8. Put the k largest eigenvalues from3M into the diagonal matrix3k and corresponding eigenvectors from VM into Vk.

Output: 3k ∈ R
k×k diagonal matrix of approximated largest eigenvalues of A,

Vk ∈ R
n×k corresponding orthonormal eigenvector matrix.

Complexity: O
(

nL2
)

matrix-vector products. In addition, we propose replacing the
inverse (QTAQ)−1 by a low-rank approximation based only
on the M ∈ N largest eigenvalues of QTAQ. This way, a
rank-M approximation of A is produced, where M may be the
actual number of required eigenvalues or larger. The resulting
method “Nyström-Gaussian-NFFT” is presented in Algorithm 3.
Its arithmetic complexity is O

(

n L2
)

. On the first glance, this
arithmetic complexity seems to be identical to the one of
the traditional Nyström method from section 5.1. However,
as we observe in the numerical tests in section 6.1, we may
choose the parameter L distinctly smaller for Algorithm 3,
i.e., L ∼ k, where k is the number of eigenvalues and
eigenvectors. Then, the resulting arithmetic complexity is
O
(

n k2
)

.

6. NUMERICAL RESULTS

All our experiments are performed using MATLAB

implementations based on the NFFT3 library and MATLAB’s
eigs function. A short example code can be found on the
homepage of the authors2.

6.1. Accuracy and Runtime of Eigenvalue
Computations
Weuse the functiongenerateSpiralDataWithLabels.m3

to generate varying sets of three-dimensional data. The data
points are in the form of a spiral and we can specify the
number of classes as well as the number of points per class.

2https://www.tu-chemnitz.de/mathematik/wire/people/files_alfke/NFFT-

Lanczos-Example-v1.tar.gz
3https://sites.google.com/site/kittipat/matlabtechniques

We generate data sets with 5 classes and equal numbers
of points per class, which have a total number of data
points n ∈ {2000, 5000, 10000, 20000, 50000, 100000}. For
the generation, we use the default parameters h = 10 and
r = 2 in generateSpiralDataWithLabels.m. For
each n, we generate 5 random spiral data sets. In Figure 2A,
we visualize an example data set with n = 2, 000 total points.
For the adjacency matrix W, we set the scaling parameter
σ = 3.5. Using the NFFT-based Lanczos method from section 4,
we compute the 10 largest eigenvalues and the corresponding
eigenvectors of the matrix A := D−1/2WD−1/2 for each data
set. We consider three different parameter setups for the NFFT
in Algorithm 1, achieving different accuracies. We set the
bandwidth N = 16 and the window cut-off parameter m = 2
in setup #1, N = 32 and m = 4 in setup #2, as well as N = 64
and m = 7 in setup #3. For all three setups, we use εB = 0. For
comparison, we also apply the Nyströmmethod from section 5.1,
where we perform 10 repetitions for each data set, since the
method uses random sub-sampling in order to obtain a rank-L
approximation of the adjacency matrix W. We consider two
different Nyström setups with rank L ∈ {n/10, n/4}. Moreover,
we use the hybrid Nyström-Gaussian-NFFT method from
Algorithm 3 in section 5.2 with L ∈ {20, 50} Gaussian columns,
parameter M = 10 as well as fast summation parameters
corresponding to setup #2, where we perform 10 repetitions for
each data set. Additionally, we compute the eigenvalues and
eigenvectors by a direct method, which applies the Lanczos
method using full matrix-vector products with the adjacency
matrix W. For the Nyström method from section 5.1 and the
direct computation method, we only run tests for a total number
of data points n ∈ {2000, 5000, 10000, 20000} due to long
runtimes.
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FIGURE 2 | Illustration of spiral and crescent-fullmoon data sets. (A) Spiral example with n = 2,000 points. (B) Crescent-fullmoon example with n = 100,000 points.

In Figure 3, we visualize the results of the test runs. We
show the minimum, average and maximum of the maximum
eigenvalue errors in Figure 3A. For this, we first determine the
maximum eigenvalue errors

max
j=1,...,10

∣

∣

∣
λj − λ

(direct)
j

∣

∣

∣
(13)

for each test run, where λj denotes the j-th eigenvalue computed

by the method under consideration and λ
(direct)
j the one

computed by a direct method using full matrix-vector products
with the matrix A. Then, for fixed total number of data
points n and fixed parameter setup, we compute the minimum,
average and maximum of (13), where the minimum, average
and maximum are computed using 5 instances of (13) for the
NFFT-based Lanczos method and 5 · 10 instances of (13) for
the Nyström-based methods. We observe that the averages of
the maximum eigenvalue errors (13) are above 10−2 for the
two considered parameter choices of the Nyström method from
section 5.1, even when the rank L is chosen as a quarter of
the matrix size n. Moreover, the minima and maxima of (13)
differ distinctly from the averages. In particular, the accuracies
may vary strongly across different Nyström runs on an identical
data set. For the NFFT-based Lanczos method, each minimum,
average and maximum of the maximum eigenvalue errors (13)
only differs slightly from one another. The maximum eigenvalue
errors (13) are around 10−4 to 10−3 for parameter setup #1,
around 10−10 to 10−9 for setup #2, and below 10−14 for setup
#3. For the hybrid Nyström-Gaussian-NFFT method, which
internally uses 2L many NFFT-based fast summations with
parameter setup #2, the maximum eigenvalue errors (13) are
around 10−3 to 10−2 for parameter L = 20 and around 10−5

to 10−4 for L = 50. This means that the observed maximum
eigenvalue errors (13) are distinctly smaller compared to the ones
of the traditional Nyström method, and the errors for parameter
L = 50 are slightly smaller than the ones of the NFFT-based
Lanczos method with parameter setup #1.

In Figure 3B, we depict the minimum, average and maximum
of the maximum residual norms (14) for each total number of
data points n. We compute these numbers by first determining
the maximum residual norms

max
j=1,...,10

∥

∥Avj − λjvj
∥

∥

2
(14)

for each test run, where λj denotes the j-th eigenvalue of A

and vj the corresponding eigenvector. Then, for fixed n and
fixed parameter setup, we compute the minimum, average and
maximum of (14). We observe that the averages of the maximum
residual norms (14) are above 10−1 for the considered parameter
choices of the Nyström method, even when the rank L is chosen
as a quarter of the matrix size n. Moreover, the minima and
maxima of the maximum residual norms (14) differ distinctly
from the averages. Especially, the accuracies may vary strongly
across different Nyström runs on an identical data set. For
the NFFT-based Lanczos method, each minimum, average and
maximum of (14) only differs slightly from one another. The
maximum residual norms (14) are around 10−4 to 10−3 for
parameter setup #1, around 10−8 for setup #2, and around 10−15

to 10−13 for setup #3. For the hybrid Nyström-Gaussian-NFFT
method, maximum residual norms (14) are around 10−2 for
parameter L = 20 and around 10−4 to 10−3 for L = 50. In
the latter case, the errors are slightly larger than the ones of the
NFFT-based Lanczos method with parameter setup #1 for n ∈

{2, 000, 5, 000, 10, 000, 20, 000} data points and slightly smaller
for n ∈ {50, 000, 100, 000}.

Additionally, in Figure 3C, we investigate the average and
maximum of the maximum residual norms (14) for each fixed
eigenvalue λj for n = 20, 000 data points. For Nyström
L = n/10, we observe that the residual norms belonging
to the first eigenvalue are distinctly larger than for the
remaining eigenvalues. In general, the observedmaximal residual
norms (14) vary similarly for each eigenvalue. For the NFFT-
based Lanczos method with parameter setup #2 and #3, the
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FIGURE 3 | Comparison of accuracies and runtimes for spiral data sets. (A) Comparison of eigenvalue accuracies. (B) Comparison of eigenvector accuracies. (C)
Residuals for n = 20,000. (D) Comparison of runtimes.

maximum residual norms (14) of the tail eigenvalues are slightly
smaller than of the leading eigenvalues, which is not the case for
the parameter setup #1 as well as for the results of the hybrid
Nyström-Gaussian-NFFT method.

In Figure 3D, we show the average and maximum runtimes
of the different methods and parameter choices in dependence of
the total number of data points n. The runtimes were determined
on a computer with Intel Core i7 CPU 970 (3.20 GHz) using
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FIGURE 4 | First 10 eigenvalues of A using Gaussian weights and scaling parameter σ = 90 for Figure 5A.

one thread. We remark that the NFFT supports OpenMP, cf.
[40], but we restricted all time measurements to 1 thread
for better comparison. We observe that the runtimes of the
traditional Nyström method grow approximately like ∼ n3,
and the runtimes of the direct computation method for the
eigenvalues grow approximately like ∼ n2. Moreover, the slopes
of the runtime graphs of the NFFT-based Lanczos method are
distinctly smaller and the runtimes grow approximately like
∼ n. Depending on the parameter choices, the NFFT-based
Lanczos method is faster than the Nyström method once the
total number of data points n is above 2,000–10,000. The hybrid
Nyström-Gaussian-NFFT method with parameter L = 20
is slightly slower than the NFFT-based Lanczos method with
setup #2. For the parameter L = 50 the method is slower by
a factor of approximately 2.5. In both cases, the runtimes grow
approximately like ∼ n. The runtimes of the direct method were
the highest ones in most cases. For the tests, we precomputed
the diagonal entries of the matrix D−1/2 but we computed the
entries of the weight matrix W again for each matrix-vector
multiplication with the matrix A. Alternatively, one could store
the whole matrix A ∈ R

n×n for small problem sizes n and this
would have reduced the runtimes of the direct method to 1/20.
However, then we would have to store at least n(n− 1)/2 values,
which would already require about 10 GB RAM for n = 50, 000
and double precision.

For comparison, we also applied the FIGTree method
from Morariu et al. [14] to our testcases, and we denote the
obtained results by “FIGTree-Lanczos” in Figure 3. The FIGTree
accuracy parameter ǫ was chosen ∈ {5 · 10−3, 2 · 10−6, 10−10}

such that the resulting residual norms (14) in Figure 3B

approximately match those of the NFFT-based Lanczos method
for setup #1,#2,#3. We observe that the obtained eigenvalue
accuracies in Figure 3A are similar for ǫ = 5 · 10−3 and 10−10

to the ones of the NFFT-based Lanczos method for setup #1 and
#3, respectively. For n ≥ 5, 000 data points and FIGTree accuracy
parameter ǫ = 2 · 10−6, we observe for our testcase that the

obtained eigenvalue accuracies are lower by about two order of
magnitudes compared to the NFFT-based Lanczos method with
setup #2.When looking at the obtained runtimes, we observe that
“FIGTree-Lanczos” requires approximately 4 times to 7 times the
runtime of the corresponding NFFT-based Lanczos method with
comparable eigenvector accuracy in most cases.

6.2. Applications
In the following, we will showcase the effect of the improved
accuracy on popular data science methods that utilize the graph
Laplacian matrix. We will compare how the methods perform
if the eigenvectors are computed with the NFFT-based Lanczos
method or the traditional Nyström extension.

6.2.1. Spectral Clustering
Spectral clustering is an increasingly popular technique [1] and
we briefly illustrate the method proposed in Ng et al. [41].
The basis of their algorithm is a truncated eigenapproximation
VkDkV

T
k
with Vk ∈ R

n×k, which is an approximation based on
the smallest eigenvalues and eigenvectors of the graph Laplacian.
Now the rows of Vk are normalized to obtain a matrix Yk. The
normalized rows are then divided into a fixed number of disjoint
clusters by a standard k-means algorithm.

Here, we apply spectral clustering to an image segmentation
problem. The original image of size 533 × 800 is depicted in
Figure 5A. We construct a graph Laplacian where each pixel
corresponds to a node in the graph and the distance measure is
the distance between the values in all three color channels, such
that each vertex vj ∈ {0, 1, . . . , 255}3. Correspondingly, the graph
Laplacian would be a dense matrix of size 426,400× 426,400. We
set the scaling parameter σ = 90. Figure 4 shows the first ten
eigenvalues of the matrix A.

For obtaining reference results, we use the Matlab function
eigs on the full matrix A computing 4 eigenvectors and this
required more than 31 h using up to 32 threads on a computer
with Intel Xeon E7-4880 CPUs (2.50 GHz), using more than 500
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FIGURE 5 | Results of image segmentation (533× 800 = 426, 400 pixels) via spectral clustering and k-means using the NFFT-based Lanczos method from section 4

and the Nyström method from section 5.1. “Failed run” in (E) means segmentation differences of more than 20% compared to the results obtained when applying

eigs on the full matrix A. (A) Original image (Image source: TU Chemnitz/Wolfgang Thieme); (B) k = 2 classes, NFFT-Lanczos; (C) k = 4 classes, NFFT-Lanczos; (D) k
= 4 classes, Nyström; (E) k = 4 classes, Nyström (“failed” run); (F) differences between (C) and (E).

CPU hours in total. Next, we applied the NFFT-based Lanczos
method from section 4 with parameters N = 16, m = 2,
p = 2, and εB = 1/8 for the eigenvector computations. We
show the results in Figures 5B,C for k = 2 and k = 4 classes,
respectively. The segmented images look satisfactory. The main

features of the image are preserved and large areas of similar
color are correctly assigned to the same cluster, while there are
only small “noisy” areas. Compared to the segmented image from
the direct computations, we have approximately 0.1 % differences
(467 out of 426,400) in the class assignments in the case of k = 4
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classes. For the runtimes, we measure approximately 25 s for the
NFFT-based Lanczos method and 18 seconds for the k-means
algorithm on a computer with Intel Core i7 CPU 970 (3.20 GHz)
using one thread.

Additionally, we ran the Nyström method 100 times with
parameter L = 250. Here the runtimes were approximately
60 s on average without the runtime for the clustering. We
applied the k-means algorithm for k = 4 classes, which required
approximately 22 s on average. We observed that in 79 of the
100 test runs of Nyström followed by k-means, the images appear
to be very close to the ones obtained when applying eigs on
the full matrix A, i.e., the differences are <2%. In Figure 5D, we
visualize the results of a corresponding test run. However, in 13
of the 100 test runs, the Nyström method returned eigenvectors
which caused segmentation differences of more than 20% with
such “noisy” images that we consider these as “failed” runs. See
Figure 5E for one example with approximately 25% differences.
The differences between Figures 5C,E are shown as a black and
white picture in Figure 5F.

Moreover, we tested increasing the parameter L to 500. Then,
the run times increased to approximately 152 s on average. When
applying the k-means algorithm to the obtained eigenvectors,
the results improved. The differences compared to the reference
image segmentation are<2% in 85 of the 100 test runs and larger
than 20% in 9 test runs.

6.2.2. Semi-Supervised Learning by a Phase Field

Method
We here want to state an exemplary method that relies heavily on
a number of eigenvectors of the graph Laplacian. It was proposed
by Bertozzi and Flenner [7] and corresponds to a semi-supervised
learning (SSL) problem. Suppose we have a graph-based dataset
as before where each vertex is assigned to one of C classes. A
training set of s random sample vertices from each class is set up.
For the case of C = 2 classes, a training vector f ∈ R

n is set up
with entries −1 for training nodes from one class, 1 for training
nodes from the other class, and 0 for nodes that do not belong to
the training data. The task of SSL is to use f to find a classification
vector u ∈ R

n. The sign of its entries is then used to predict each
node’s assigned class.

One successful approach computes u as the end point of the
trajectory described by the Allen–Cahn equation

u :[0,∞) → R
n, ut = −εLsu−

1

ε
ψ ′(u)+�(f−u), u(0) = f

(see [42, 43] for details). Hereψ(u) = (u2−1)2 is the double-well
potential, which we understand to be applied component-wise,
and � denotes a diagonal matrix with entries �ii = ω0 > 0
if vertex i belongs to the training data and �ii = 0 otherwise.
To discretize this ODE we will not introduce an index for the
temporal discretization but rather assume that all values u are
evaluated at the new time-point whereas ū indicates the previous
time-point. We then obtain

u− ū

τ
+ εLsu+ cu = −

1

ε
ψ ′(ū)+ cū+�(f− ū),

where u is a vector defined on the graph on which we base the
final classification decision. Here, c > 0 is a positive parameter
for the convexity splitting technique [7]. For a more detailed
discussion of how to set these parameters we refer to Bertozzi and
Flenner [7] and Bosch et al. [44]. We now use the k computed
eigenvalues and eigenvectors (λj, vj) of Ls such that we can write

u =
∑k

j= 1 ujvj and from this we get

uj − ūj

τ
+ ελjuj + cuj = −

1

ε
vTj ψ

′(ū)+ cūj + vTj �(f− ū).

This equation can be solved to obtain the new coefficients uj from
the old coefficients ūj. After a sufficient number of time steps, u
will converge against a stable solution.

We apply this method to the same spiral data set as seen in
section 6.1, again with σ = 3.5 but this time only with n =

100,000. The data points have been generated by a multivariate
normal distribution around five center points, and the true label
of each vertex has been set to the center point that is closest to it.
We computed the eigenvectors to the k = 5 smallest eigenvalues
of the Laplacian; once by the NFFT-based Lanczos method with
n = 32, m = 4, and εB = 0, and once with the traditional
Nyström method with L = 1,000 where only 5 columns of VL

are used. We then applied the described method with τ = 0.1,
ε = 10, ω0 = 10,000, and c = 2

ε
+ ω0. The iteration terminated

if the squared relative change in u was less than 1e-10. We repeat
this process for 50 instances of the spiral dataset and sample sizes
s ∈ {1, 2, 3, 4, 5, 7, 10}.

Figure 6 depicts the average accuracy results. We conclude
that in this example, the increased eigenvector quality achieved
by the NFFT-based method yields an average accuracy boost of
approximately 0.5–1.5% points, as well as the worst result being
significantly less bad. On a computer with Intel Core i7 CPU 4770
(3.40 GHz), the runtimes were approximately 8 s for the NFFT-
based Lanczos method, 27 s for the Nyström method, and less
than a second for the solution of the Allen–Cahn equation, which
almost always converged after only three time steps.

6.2.3. Semi-Supervised Learning by a Kernel Method
In addition to the phase field method, we employ a second semi-
supervised learning technique used in Zhou et al. [45] and Hein
et al. [46] for SSL problems with only two classes. Based on a
training vector f holding 1,−1, or 0 just as in the previous section,
a similar u is obtained by minimizing the function

argmin
u∈Rn

1

2
‖u− f‖22 +

β

2
uTLsu, (15)

where β can be understood as a regularization parameter. For the
solution of this minimization problem, we only have to solve the
equation

(I+ βLs)u = f, (16)

where I is the identity matrix. Similar systems arise naturally
in scattered data interpolation [47]. We run numerical tests
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FIGURE 6 | Comparison of average classification rates with the phase field method on relabeled spiral data sets.
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FIGURE 7 | Misclassification rate solving (16) using the CG algorithm and Algorithm 1 for the crescentfullmoon.m data set with n = 100, 000 data points.

using the crescentfullmoon.m4 data set with n = 100, 000
data points and parameters r1=5, r2=5, r3=8. As illustrated
in Figure 2B, the set is divided into two classes of points in
the full moon and the crescent, distributed in a 1-to-3 ratio.
We generate 5 random instances of the data set, and for each
instance we run 10 repetitions with randomly chosen training
data, where we consider s ∈ {1, 2, 5, 10, 25} known samples per
class. For the adjacency matrix W, we set the scaling parameter
σ = 0.1. The tests are run with regularization parameter
β ∈ {103, 3 · 103, 104, 3 · 104, 105}. We solve each system (16)

4https://www.mathworks.com/matlabcentral/fileexchange/41459-6-functions-

for-generating-artificial-datasets

using the CG algorithm with tolerance parameter 10−4 and a
maximum number of 1,000 iterations. For the fast matrix-vector
multiplications with the matrix Ls, we use the NFFT-based fast
summation in Algorithm 1 with parameters N = 512, m = 3,
εB = 0.

In Figure 7, we visualize the average and maximum
misclassification rate of the 5 · 10 test runs for each fixed
s and β . In the left plot, we show the misclassification rate
in dependence of the number of samples s per class for the
different regularization parameters β . We observe in general
that the misclassification rates decrease for increasing s. The
lowest rate is achieved for s = 25 samples per class and β =

104, where the average and maximum misclassification rate are
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FIGURE 8 | Misclassification rate solving (16) using the CG algorithm and Algorithm 1 for the crescentfullmoon.m data set with n = 100, 000 data points and

Laplacian RBF kernel (17).

0.0012 and 0.0036, respectively. In the right plot, we depict
the misclassification rate in dependence of the regularization
parameter β for fixed number of samples s per class. For s ∈

{1, 2, 5}, the average misclassification rates decline for increasing
β until β = 3 · 104 and grow again for β = 105. For s ∈ {10, 25},
the average misclassification rates decline for increasing β until
β = 104 and grow again afterwards. We remark that in all test
runs, the maximum number of CG iterations was 536 and the
maximum runtime for solving (16) was approximately 151 s on
a computer with Intel Core i7 CPU 970 (3.20 GHz) using one
thread.

Additionally, we used the NFFT-based Lanczos method from
section 4 in order to approximate the matrixA := D−1/2WD−1/2

by a truncated eigenapproximation VkDkV
T
k
with Vk ∈ R

n,k

and this allows for computing the matrix-vector products in
(16) in a fast way for fixed small k. Using k = 10 eigenvalues
and eigenvectors, we achieve similar results as those shown in
Figure 7. The computation of the eigenapproximation required
up to 6min on a computer with Intel Core i7 CPU 970 (3.20 GHz)
using one thread. The maximum runtime for solving (16) was
approximately 0.15 s.

Alternatively, we applied the Nyström method from
section 5.1 with parameter L = 5,000 to obtain a truncated
eigenapproximation, where the corresponding computation
required more than 3 h for each eigenapproximation. However,
the eigenvalues were not computed correctly in our tests.
This was due to the matrix block WXX in Equation (12) being
ill-conditioned. Consequently the CGmethod aborted in the first
iteration and the output could not be used for classification.

In order to illustrate the flexibility of the NFFT-based fast
summation, we also apply Algorithm 1 to a non-Gaussian
weight function w in (2). Here, we consider the “Laplacian RBF

kernel” K(y) := exp(−
∥

∥y
∥

∥ /σ ), such that the weight matrix is
constructed as

Wji = w(vj, vi) =

{

exp(−
∥

∥vj − vi
∥

∥ /σ ) if j 6= i,

0 otherwise.
(17)

In our numerical tests, we set the shape parameter σ = 0.05
and we visualize the test results in Figure 8. We observe that
the obtained misclassification rates are similar to the ones
in Figure 7, where the Gaussian kernel was used. For some
parameter settings, the misclassification rates are slightly better,
for other ones slightly worse.

6.3. Kernel Ridge Regression
In this section we show that our approach can be applied to the
problem of kernel ridge regression, which has a similar flavor to
the problem from the previous section. We here illustrate that
our method is very flexible since other than just Gaussian kernels
can be used for the fast evaluation of matrix-vector products.
The starting point is a simple linear regression problem via the
minimization of

argmin
u∈Rd

1

2
‖f− Xu‖22 +

β

2
‖u‖22 , (18)

where X ∈ R
n×d is a design matrix holding training feature

vectors xj ∈ R
d in its rows, i.e., XT = [x1, . . . , xn], and f ∈ R

n is
a given response vector. The solution u to this problem can then
be used in a linear model to predict a response for any new point
x ∈ R

d as F(x) = uTx.
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FIGURE 9 | Results of kernel ridge regression applied using an inverse multiquadric kernel (A) and a Gaussian kernel (B). The blue line indicates the decision

boundary for the classification of new points.

The well-known solution formula can be rearranged using the
Sherman–Morrison–Woodbury formula to obtain

u =
(

XTX+ βId

)−1
XTf

=

(

β−1Id − β
−2XT

(

In + β
−1XXT

)−1
X

)

XTf

= XT

(

β−1In − β
−1
(

βIn + XXT
)−1

XXT

)

f

= XT
(

βIn + XXT
)−1 (

β−1
(

βIn + XXT
)

− β−1XXT
)

f

= XT
(

XXT + βIn

)−1
f.

Using this formula, we can introduce the dual variable α =
(

XXT + βI
)−1

f and rewrite the predicted response of a new
point x as

F(x) = uTx =
(

XT
α

)T
x =

n
∑

i=1

αix
T
i x.

An idea for increasing the flexibility of this method is replacing
expressions xTi xj with K(xi, xj) where K :R

d × R
d → R is an

arbitrary kernel function [48]. This leads to replacing XXT with
the Gram matrix K with entries

Kij = K(xi, xj) ∀ i, j = 1, . . . , n.

Consequently, the dual variable becomes α = (K+ βIn)
−1 f and

we obtain the kernel-based prediction function

F(x) =

n
∑

i=1

αiK(xi, x).

For more details we refer to Robert [48]. It is easily seen that
the main effort of this algorithm goes into the computation
of the coefficient vector α = (K+ βIn)

−1 f. Note that this is
were we again use the NFFT-based matrix vector products in
combination with the preconditioned CG method as the matrix
K + βIn is positive definite and amenable to being treated using
the NFFT for a variety of different kernel functions. In Figure 9

we illustrate the results when kernel ridge regression is used
with two different kernels, namely the Gaussian and the inverse
multiquadric kernel.

7. CONCLUSION

In this work, we have successfully applied the computational
power of NFFT-based fast summation to core tools of data
science. This was possible due to the nature of the fully connected
graph Laplacian and the fact that many algorithms—most
notably the Lanczos method for eigenvalue computation—only
require matrix-vector products with the Laplacian matrix. By
using Fourier coefficients to approximate the Gaussian kernel,
we use Algorithm 1 to compute strong approximations of the
matrix-vector product in O(n) complexity without storing or
setting up the full matrix, as opposed to the full matrix’s O(n2)
storage, setup, and application complexity.
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For eigenvalue and eigenvector computations, we have
discussed the current alternative method of choice in the
Nyström extension and developed a hybrid method that allows
the basic Nyström idea to benefit from NFFT-based fast matrix-
vector products. In our numerical experiments, we found that
the Nyström-Gaussian-NFFT method achieved much better
eigenvalue accuracy than the traditional Nyström extension
even for a significantly smaller parameter L, but was in turn
outperformed by the NFFT-based Lanczos method.

In strongly eigenvector-dependent applications like in
section 6.2.2, the higher accuracy of the NFFT-based Lanczos
method directly leads to better classification results. In some
other applications, however, it is hard to predict if better

eigenvector accuracy distinctly improves the results. For
instance in section 6.2.1, the traditional Nyström extension
still achieved good image clusterings on average with small
parameter L despite its rather inaccurate eigenvectors. Here,
the NFFT-based Lanczos method still has very good selling
points in its greatly improved runtime as well as its consistency,
while the traditional Nyström tends to “fail” in some test
runs.
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