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A tree-based method for regression is proposed. In a high dimensional feature space, the

method has the ability to adapt to the lower intrinsic dimension of data if the data possess

such a property so that reliable statistical estimates can be performed without being

hindered by the “curse of dimensionality.” The method is also capable of producing a

smoother estimate for a regression function than those from standard tree methods in the

region where the function is smooth and also beingmore sensitive to discontinuities of the

function than smoothing splines or other kernel methods. The estimation process in this

method consists of three components: a random projection procedure that generates

partitions of the feature space, a wavelet-like orthogonal system defined on a tree that

allows for a thresholding estimation of the regression function based on that tree and,

finally, an averaging process that averages a number of estimates from independently

generated random projection trees.

Keywords: regression, non-linear, high dimension data, treemethods, multiscale (MS) modeling, manifold learning

1. INTRODUCTION

We consider the problem of estimating the unknown function in the model:

Y = f (X)+ ε,X ∈ R
p,Y ∈ R (1)

with a sample (xi, yi), i = 1, ..., n, where ε is a random variable with E(ε) = 0 and Var(ε) = σ 2.
We are mainly interested in the case where the dimension p of the feature variable X is large, either
relative to the sample size n of data or in itself, although the method of this paper also applies
well to lower dimensional cases. When p is large, we assume that the domain of the function f is
actually restricted to a much lower dimensional but unknown sub-manifold of Rp. We refer to the
dimension of this sub-manifold as the intrinsic dimension of the regression problem.

An important question to ask in this regression setting is that without having to learn the
sub-manifold first, can one find an estimator for f that automatically adapts to the intrinsic low
dimensional structure of data in the sense that it can still provide efficient and reliable estimates,
without being hindered by the “curse of dimensionality” [1, 2] due to the large p? Bickel and Li [3]
provide an affirmative answer to this question by showing that local polynomial regressions can
achieve such a property under regularity conditions so that the decay of the prediction error in
sample size depends only on the intrinsic dimension rather than p.

It turns out that the local polynomial regression is not the only approach that is capable of
being adaptive to the intrinsic dimension of data. This is a more general phenomenon. Tree-based
methods are useful and efficient alternatives and can be computationally more efficient. A work
of Binev et al. [4, 5] provides arguments implying that certain tree-based approximations are
adaptive. Later, Dasgupta and Freund [6] and Kpotufe and Dasgupta [7] demonstrate explicitly
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such adaptability for their random projection trees when the
intrinsic dimension is defined to be the so-called doubling
dimension. A tree-based regression [7–11] is to partition
recursively the feature space Rp into finer and finer subsets and
then estimate f locally within each finest subset. Such a process
has a naturally hierarchical tree structure. The corresponding tree
is called a partitioning tree. An extension of the tree methods is
the random-forest approach [8]. In this approach, an average of
individual tree estimates based on bootstrap samples is used. In
addition to the adaptive property, Dasgupta et al. [6] and Kpotufe
andDasgupta [7] argue that tree methods can be computationally
more efficient than kernel smoothing methods, including the
local polynomial regressions, or k-nearest neighbor methods,
because while it takes onlyO(log n) steps, the height of a balanced
tree, for a tree method to reach to a prediction, it takes�(n) for a
kernel-typemethod and�(n1/2) for a k-nearest neighbormethod
to obtain a prediction.

We note that most of the tree-based regression methods
depend exclusively on the means of yi’s over the partitioning
subsets in constructing their partitioning trees, and use the
means of the tree leaves for final estimates. While such estimates
can be MLEs of the corresponding sampling distributions,
they need not be optimal in terms of minimax theory
[12]. Better nonparametric estimates can often be obtained
through shrinkage and thresholding of the mean values. Some
recent developments provide a framework for a wavelet-
like representation and analysis for tree-structure data. These
methods adapt naturally to the shrinkage and thresholding
processes in estimation. The unbalanced Haar orthogonal
systems (also called the Haar-type wavelet orthogonal systems)
on a given tree were constructed by several authors [13–15]. We
note that the unbalanced Haar wavelets were first constructed in
Mitrea [16] for dyadic cubes in R

p and were later generalized in
Girardi and Sweldens [15] to more general trees.

With the background above, we propose in this paper to
integrate the wavelet-like analysis on trees with some efficient
tree partitioning method so that an estimator for f that has the
ability of adapting to the intrinsic low dimension of data can
be obtained. However, our numerical experiments show that a
simple combination of those ideas does not work well. Note
that the ideas and results discussed above are mostly theoretical.
There is little discussion in the literature on the actual numerical
performance of those approaches. For example, the partition
methods discussed in Binev et al. [4, 5], while possessing very
nice analytical properties (the rates of convergence), would have
a computational complexity that grows exponentially in p. Our
numerical experiments also indicate that, when compared to the
standard methods like random-forest, support vector machines,
or even classical CART, the random projection tree regression of
Dasgupta et al. [6] and Kpotufe and Dasgupta [7] or a wavelet
soft-thresholding method based on trees generated through
various partitioning procedures, including CART and random
projection, do not show much, if any, significant improvements
in terms of prediction error. A better approach is needed in order
to fulfill the theoretical potential of these ideas. We propose a
regression estimator in this paper that mitigates the difficulties.
Our focus in this paper is mainly the methodology.

We only consider binary trees in this paper. The same ideas
can be easily applied to more general trees. The tree-based
estimator proposed here consists of three components. The
first component is a partitioning algorithm. In principle any
reasonable binary classifier, supervised or un-supervised, can be
a candidate. The random projection algorithm of Dasgupta et al.
[6] and Kpotufe and Dasgupta [7] or uniform partition of Binev
et al. [4, 5] are un-supervised. For the kind of data we have,
we however prefer supervised classifiers so that the information
from yi’s can be utilized. We propose one such classifier below.
The second component is a wavelet-like tree-based estimation
process that incorporates thresholding and shrinkage operations.
It turns out that this can be done in a statistically rather intuitive
manner. The final component, a necessary and crucial one, is
an averaging process, taking the average of the estimates across
several independently generated partitioning trees on the same
training data. This averaging process is different from that of
a random-forest. In random-forest, the average is taken over
bootstrapped samples, and our experiments indicate that it does
not work well in some problems. We will call our method
“averaging random tree regression.”

While proposed as a computationally feasible algorithm for
regression with low intrinsic dimensional data, our method
also possesses other good properties. This estimator is to be
compared through numerical experiments to some standard
non-parametric estimators using higher dimensional data. We
will also compare it in a low dimensional setting to a smoothing
spline and random-forest. In low dimensional experiments, we
observe that the proposed estimator is capable producing visually
smoother estimates than CART-based estimators and, at the
same time, being much more sensitive than a smoothing spline
estimator to discontinuities of f , as it would be expected.

This paper is organized as follows. Section 2 gives a detailed
description of the regression method and demonstrates some
interesting features of the method. Section 3 gives some examples
of our method. Section 4 provides a formulation of the method
in terms of wavelet-like multilevel analysis on a tree. It includes
a formal description of decomposition and reconstruction
algorithms for the soft-thresholding estimation and an analytical
study that establishes properties necessary for the thresholding
method to work.

2. THE AVERAGING RANDOM TREE
REGRESSION

Suppose a dataset {(xi, yi), xi ∈ R
p, yi ∈ R, i = 1, ..., n} is given.

Let X = {x1, ..., xn} and Y = {y1, ..., yn}. For any subset B ⊂ X ,
we will write ȳB for the mean of yis in B:

∑

xi∈B
yi/nB, where nB

denotes the size of B. Our tree-based method consists of three
parts. We give a description for each of them below.

2.1. A Classifier for Space Partition and the
Partitioning Tree
We first need a binary classifier which acts on the subsets of X
and partitions any given subset A ⊂ X of at least two points
into two finer subsets based on some classification criterion. Note
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that the partitioningmethod of the classical CART regression can
certainly be one of such classifiers, but it can be computationally
inefficient for higher dimensional data. Here we propose a
different classifier based on the combination of an extension of
the random projection proposed in Dasgupta and Freund [6]
and Kpotufe and Dasgupta [7] and the idea of minimum sum
of squares criterion of CART. The original random projection
partition method do not utilize any information from yi’s. This
is a weakness of that method and we try to avoid it in the current
approach. The idea is to choose among several randomprojection
partitions the one that has the least mean square error for yi’s. The
partitioning classifier works as follows.

LetM be a preset integer number. For any subset A of X with
r points, we generate M unit directional vectors v1, ..., vM in R

p

from a priori distribution (an uniform distribution for example).
For each vj, j = 1, ...M, we project all the p-dimensional points x

in A onto this unit vector to obtain a set of r scalars vTj x. Let mvj

be the median of these scalars. Let

AL,j = {x ∈ A : vTj x < mvj} and AR,j = {x ∈ A : vTj x > mvj}.

If there are one or more xi ∈ A, i = 1, ..., r ≥ 1 such that
vTj xi = mvj , we split these points randomly with equal probability

into subsets of ⌊r⌋ (floor of r) and ⌈r⌉ (ceiling of r) points and
assign the subsets with equal probability to AL,j or AR,j and still
denote these subsets as AL,j and AR,j. In this way we obtain the
partition A = AL,j∪AR,j. Next we find the sum of squares for this
directional vector vj:

S(vj) =
∑

xi∈AL,j

(yi − ȳAL,j)
2 +

∑

xi∈AR,j

(yi − ȳAR,j )
2. (2)

We determine the vector v ∈ {v1, ..., vM} with the smallest S(vj)
value:

v = argvj , j=1,...,M min S(vj),

and choose the corresponding partitioning subsets AL and AR as
the final partition of A and let mv be the corresponding dividing
median. Let us denote the above process of obtaining a binary
partition for a set A as

πM(A) = {AL,AR, v,mv}, (3)

where M is an adjustable parameter. Clearly, the outcomes of
πM are random, depending on realizations of the random vectors
v1, ..., vM . The reason for using median as the splitting point for
partition is to keep the corresponding partition tree balanced.
A balanced tree possesses some nice analytical properties for
wavelet-like analysis on the tree, as we will see later.

With the partitioning classifier πM , we construct recursively a
partitioning tree T so that each node in the tree T is a subset of
X and the children nodes are partitioning subsets of their parent
nodes. In other words, we set the root of T to be the whole point
set X and, starting from the root, we keep partitioning each node
into two children nodes with about the same size until a node
becomes a singleton set. The leaves of T are singleton sets of X .

In this construction, each non-leaf node is associated with a
pair (v,mv) of a unit directional vector and the corresponding
dividing median. All the pairs are pre-calculated and stored, and
will serve as the parameters for partitioning the whole feature
space R

p. The space R
p can now be partitioned into disjoint

regions identified by the leaves of T as follows. To begin with, we
classify every point x ∈ R

p as an “X point.” Next, for any x ∈ R
p,

if it is already classified as an “A point” for some tree node A ⊂ X

of at least two points and if πM(A) = {AL,AR, v,mv}, we calculate
the projection of x onto v and then classify x further as either an
“AL point” if vTx < mv, or an “AR point” if vTx > mv. In the
case of vTx = mv, we classify x with equal probability into either
AL or AR. This classification process goes on and will eventually
classify x into one and only one of the leaf nodes. If x is ultimately
classified as a leaf node “{xi} point” for some xi ∈ X , we write
T (x) = xi. For every xi ∈ X , let

Ai : = {x ∈ R
p
: T (x) = xi}. (4)

Then Ai, i = 1, ..., n forms a partition of Rp according to the
partitioning tree T .

These trees are maximal trees. In order to preserve more local
features of f in data, we do not prune them like CART. In fact,
a default pruning process in CART destroys its ability to be
adaptive to the intrinsic low dimension of data. On the other
hand, as an implementation issue, if all yis in a node A have very
close values so that S(vj) is small in all M selected directions, we
can stop splitting this node and treat it as a leaf and use the mean
of yis as the y-value for this node. All computations below can
still be carried out without change. The overfitting issue caused
by a large tree will be addressed in the last step of our estimation
process to be described later.

2.2. A Multiscale Soft-Thresholding
Estimate of f(xi)
As we will see in section 4, the procedure described below is
actually a modified version of a common wavelet denoising
process with an unbalanced Haar wavelet on a tree. But since
this process can also be described in a statistically more intuitive
manner with simpler notations, we give the following algorithmic
description first.

Suppose a partitioning tree T is obtained. A hierarchical
representation of the data X × Y = {(xi, yi), i = 1, ..., n} can
be obtained according to the tree T as follows. For each non-leaf
node in the tree A ⊂ X , we find the mean ȳA of the node and the
difference of the means of its children nodes AL and AR:

dA : = ȳAL − ȳAR . (5)

If A is a leaf, we set dA = 0. The original data can now be
represented with the set of the numbers

D = {ȳX } ∪ {dA, A ∈ T }

based on which regression estimates will be obtained.
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To estimate f̂ (xi), i = 1, ..., n, we first apply a soft-thresholding
operation with a given α ≥ 0 to dA for all the non-leaf nodes A
according to the formula

d̂A = sign(dA)max

{

0, |dA| − α

√

1

|AL|2
+

1

|AR|2

}

. (6)

Next, we calculate estimates ŷA of E(ȳA|X = x) for all nodes A of
T based on the data

D̂ = {ȳX } ∪ {d̂A, A ∈ T }

as follows. We start with setting

ŷX = ȳX .

For each node A, once ŷA is obtained, we calculate the estimates
for its two children nodes, ŷAL and ŷAR , according to the formula:

ŷAL = ŷA +
|AR|

|A|
d̂A (7)

and

ŷAR = ŷA −
|AL|

|A|
d̂A. (8)

Repeat this process until one reaches all the leaves. If A = {xi} is
a leaf, we use

f̂ (xi) : = ŷ{xi}

as an estimate of f (xi). We will write ŷi for ŷ{xi} for short below.

Note that, if α = 0 in (6), then d̂A = dA for all nodes A and, as
a consequence, ŷA = ȳA for all A ∈ T . To see this, we note that

ŷX = ȳX , and if we have ŷA = ȳA and d̂A = dA, then

ŷAL = ȳA +
|AR|

|A|
(ȳAL − ȳAR ) = ȳAL

and

ŷAR = ȳA −
|AL|

|A|
(ȳAL − ȳAR ) = ȳAR .

Also note that |AL| and |AR| are differed by at most 1 and
therefore for large nodes, |AL|/|A| ≃ |AR|/|A| ≃ 1/2.
The smoothing parameter α can be determined through cross-
validation.

In the framework of wavelet analysis, d̄A are the wavelet
coefficients and (7)–(8) is the fast wavelet reconstruction
algorithm to be derived in section 4.

2.3. The Averaging Random Tree
Regression
Now to estimate f (x) for any x ∈ R

p, we can in principle use

f̂ (x) =
∑

xi∈X

ŷiχAi (x). (9)

In other words, a search along the tree T (with O(log2 n)
steps) will allow us to determined for each x ∈ R

p which
partitioning subset Ai, as defined in (4), it belongs to and
then use ŷi as an estimate for f (x). However, despite some
nice theoretical properties, this estimate itself doesn’t perform
very well in our simulation experiments. It turns out that
a significant improvement can be achieved by an averaging
procedure described below.

For a given integer K, we repeat the process described in
Section 2.1 K times, independently, on the same data to obtain

trees Tk, k = 1, ...,K. For each tree Tk, we calculate estimates f̂k(x)
according to (9). Finally, we take the average

f̂∗(x) =
1

K

K
∑

k=1

f̂k(x) (10)

as the final estimate of f (x). Let’s call this estimate an “Averaging
Random Tree Regression” estimate, or ARTR estimate for short.
This averaging step improves significantly the accuracy of the
estimates for the regression function. The resulting estimates can
be adaptive to lower intrinsic dimension of data. It can also be
visually smoother than other tree-based regression methods in
two or three dimensional cases evenwith piecewise constant Haar
wavelets, and being sensitive to discontinuities at the same time.
It also addresses efficiently the overfitting problem.

We summarize the process into the following steps:

1. Generate a partitioning tree T according to classifier πM .
2. Obtain ȳX and dA = ȳAL − ȳAR for all non-leave nodes A ∈ T

and AL,AR ∈ πM(A).
3. Obtain D̂ fromD based on (6) for a given α and ŷi, i = 1, ..., n,

through recursively applying (7) and (8).

4. Calculate the estimate f̂ of f using (9).
5. Repeat steps 1–4 K times and take the average according

to (10).

There are three tuning parameters in this process:M, the number
of random projection directions for each partition in generating a
partitioning tree;K, the number of trees to generate for averaging;
and α, a factor in the threshold for smoothing. Cross-validation
can be used to choose the values of these parameters.

Simulation studies show that ARTR estimation outperforms
some standard methods, as can be seen through the examples
in the following subsection. Note that our averaging approach is
similar in its appearance to but different in principle from that of
the random forests. In fact, the random forests approach which
averages tree estimates based on resampling dataset does not
produce good results in our experiments. Formally, our estimate
can be viewed as a kernel method which takes a weighted average
of nearby data points to obtain an estimate.

3. EXAMPLES OF APPLICATIONS TO
SOME STATISTICAL PROBLEMS

We give three examples demonstrating potential applications of
the ARTRmethod. In all computations below, we set the number
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of random projections for partitioning M = 10 and the number
of partition trees for averaging K = 36.

Example 1: Regression on a Lower Intrinsic
Dimensional Manifold
This example is about high dimensional regression where the
values of predictors are actually from an embedded unknown
sub-manifold with a much lower dimension. In our example,
this sub-manifold is the surface of a two-dimensional “Swiss
roll” given by the parametric equations: x1 = u cos u, x2 =

u sin u, x3 = v, for u, v ∈ [0, 4π]. The regression function is

f (x1, x2, x3) =

(

x3 −

√

x21 + x22

)2

/2 = (v− u)2/2

and ε ∼ N(0, 1). Our data do not contain exact values of
(x1, x2, x3). Rather, all the 3-dimensional points are embedded
isometrically (with an arbitrary and unknown isometric
transformation) into the space R

4,000. Therefore, each feature
point is recorded as a p = 4, 000 dimensional point. We apply
support vector machine regression (SVMR), random forests
regression (RFR), extreme gradient boost regression (XGBR)
with the parameter nrounds set to 100, our ART regression
(ARTR) without averaging (K = 1) and with averaging (K = 36)
to a training dataset of n = 1, 000 points and then apply
the estimated models from these different methods to an
independent testing dataset of 1,000 points. Predictions of the
values for the function are obtained at these 1,000 testing points.
The approximation error at a point x is the difference between
the predicted value at x and the true value of the function at x.
Table 1 shows the mean squared approximation errors in this
computation. We see that in terms of the mean approximation
errors, ARTR with K = 36 is better than SVMR, and significantly
better than RFR or XGBR. We also see that without taking
average, ARTR with K = 1 has the worse performance. In ARTR
we have used α = 2.0.

Example 2: Discovering Mixtures in a
Higher Dimensional Space
This is a higher dimensional example. The problem in this
example can be described in more general terms as follows.
Suppose S1 and S2 are two unknown lower dimensional sub-
manifolds embedded in R

p. Suppose that data are sampled from
S1 ∪ S2 and that yi’s sampled from S1 have distribution N(µ1, σ

2)
and yi’s from S2 has distribution N(µ2, σ

2). In other words,

y = µ1χS1 (x)+ µ2χS2 (x)+ ε, x ∈ S1 ∪ S2,

where ε ∼ N(0, σ 2). We ask, from the data can we discover that
yi’s are a mixture of two different distributions? We show that
ARTR can achieve this while some standard method fails in the
following experiment.

In this example, S1 and S2 are two intersecting unit 2-spheres
embedded into a p = 6, 000 dimensional space R

6,000. The
centers of the 2-spheres are set to be 0.35 apart. We set µ1 = 0,
µ2 = 2, and σ = 1. The data consists of n = 4, 000 sample
points. A histogram of yi’s would reveal no signs that yi are from a

mixture of two distributions. Four different methods are applied
to fit the data: SVMR, RFR, XGBR, all with the default settings in
R packages “svm,” “randomForest,” and “xgboost” (nround=100),
and our ART regression. Estimates ŷi of f (xi) are obtained from
the methods and their histograms are displayed also in Figure 1.
For the ARTR we choose K = 36 and α = 2.0.

We see from the histograms in Figure 1 that SVMR fails to
recognize correctly the underlying lower dimensional structure
of the data. It mistakenly treats the central region bounded
by the intersection of the two spheres as the third region in
which yi’s have a mean value (µ1 + µ2)/2 = 1. A much larger
sample size is needed for SVMR to achieve a correct estimate,
demonstrating the effect of the curse of dimensionality on the
method. The RFR is capable of noticing the mixture and XGBR is
better than RFR, but ARTR is clearly much more powerful than
all others in detecting the mixture. This comparison between
ARTR and RFR or XGBR supports the comment we make
in the introduction section that a mean-based estimate can
be significantly improved through shrinkage and thresholding
operations.

The mean squared errors, calculated using ŷi, i = 1, ..., 4, 000,
and the true means µ1 = 0 and µ2 = 2, are listed in Table 2. It
shows that ARTR has the smallest mean squared error among the
four methods. We also notice that, while the mean squared error
of SVMR is smaller than those of RFR or XGBR, the estimates
from SVMR can be totally misleading.

Example 3: Smoothness and Sensitivity to
Discontinuities
This is a two dimensional example to show smoothness and
sensitivity to discontinuities of ARTR estimates. We do this
through comparing ARTR to the thin plate splines (TPS) and
random forests regression (RFR). The regression function we
use is

f (x) = f1(x)+ f2(x)+ f3(x)+ f4(x)

with

f1(x) = 10e−2.5[x21+(x2−0.5)2]

f2(x) = 7e−3[(x1−0.5)2+(x2−0.5)2]

f3(x) = 4e−4[(x1−0.5)+(x2+0.5)2]

f4(x) = 4I(x1 + x2 < −0.5)

and ε ∼ N(0, 1). An image of f (x) is given in Figure 2 (in
these figures, the valleys are shown in red and the peaks are
shown in white). The data consist of n = 4, 000 points with
points in X generated uniformly inside a two-dimensional unit
square. Setting α = 2.0, we obtain ARTR estimates at 100 ×

100 grid-points which is compared to the estimates at the same
grid-points from the TPS and the RFR. In Figure 2, we observe
that both TPS and ARTR produce smoother estimates than RFR
does. Furthermore, the estimates from TPS and ARTR look more
similar in local regions.

We note that the surface of the true regression function has
a discontinuity line. Figure 3 provides a comparison among
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the three estimates. The two figures in the top row are
the plots of errors from ARTR estimates and TPS estimates
respectively. A difference between the two estimates along the
discontinuity line is visible. The left plot in the second row
of Figure 3 shows an even more significant difference. This
figure displays a difference in sensitivity to discontinuities
between the two methods. Note that, while such a property
is what one would expect from a wavelet-type method,
estimates from ARTR are smoother than those from a Haar-
type wavelet. In contrast, the difference between the TPS
estimates and the RFR estimates, while visible, is more noisy
and less definite. Overall, ARTR performs best in this example.
The “ARTR vs TPS” figure in Figure 3 suggests that one
might even consider using such a figure, obtained completely
from data, as a mean for detecting discontinuity of a noisy
surface.

The mean squared approximation errors of the three methods
from the same simulation computation are listed in Table 3.
We see that in terms of approximation errors, ARTR is similar
to (or slightly better than) TPS, and RFR is worse among
the three.

TABLE 1 | The mean squared approximation errors in example 1.

ARTR, K=36 ARTR, K = 1 SVMR RFR XGBR

1.691675 9.329235 2.684860 7.934476 7.759801

4. WAVELET-LIKE ANALYSIS ON TREES

It is possible that the tree-based method proposed above be
formulated and applicable within amore general context in which
X can be an arbitrary point set with a given partitioning tree
T . In particular, X need not be a subset of Rp. An important
concept that makes an analysis possible for this setting is the tree
metric [14] which characterizes the smoothness of the functions
defined on X in terms of their tree wavelet coefficients. In this
section we first give a formal description of a Haar wavelet-like
orthogonal system on the tree T , then we present a fast-algorithm
for decomposition and reconstruction of functions defined on X

according to the tree T . This algorithm includes the algorithm
in section 2 as a special case. The discussion below is for more
general trees for which a leaf node can have more than one point
and in this case thecorrespondingy-value is theaverageofyis in the
node.

4.1. Wavelet-Like Orthogonal Systems
on T
Without loss of generality, we can assume that the binary
partitioning tree T has L levels, with the root X at level 0 and

TABLE 2 | The mean squared errors of the estimates in example 2.

ARTR SVMR RFR XGBR

0.1605106 0.3114145 0.4000920 0.4136200

FIGURE 1 | Histograms of fitted data from different methods.
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FIGURE 2 | The regression function and its estimates from different methods.

all the leaves at level L. This would be exactly the case for a tree
T constructed in the previous section if X consists of 2L points.
To achieve this for an arbitrary X and tree T , if A is a node of
the tree at level ℓ < L which is a leaf node, we simply define its
offspring at level ℓ+ 1 to be the node itself.

For each ℓ = 0, 1, ..., L, we index all the nodes in T at level ℓ
with an index set Iℓ and let Pℓ be the set of these nodes :

Pℓ = {Aℓ,j, j ∈ Iℓ}, 0 ≤ ℓ ≤ L.

Then Pℓ forms a partition of X : Aℓ,i ∩ Aℓ,j = ∅ for i 6= j and
X =

⋃

j∈Iℓ
Aℓ,j. Further more, Pℓ+1 is a refinement of Pℓ with

Aℓ,j = Aℓ+1,j′ ∪ Aℓ+1,j′′ , Aℓ+1,j′ ∩ Aℓ+1,j′′ = ∅ (11)

for some Aℓ+1,j′ ,Aℓ+1,j′′ ∈ Pℓ+1 if |Aℓ,j| > 1, and

Aℓ,j = Aℓ+1,j′

for some Aℓ+1,j′ ∈ Pℓ+1 if |Aℓ,j| = 1. With these notations,
A0,0 = X is the root and AL,j, j ∈ IL are the leaves of T .

A wavelet-like orthogonal system can now be defined on T as
follows. Let

V = {f | f :X → R}

be the space of all functions defined on X , equipped with the
inner product:

〈f , g〉 =
1

n

∑

x∈X

f (x)g(x), f , g ∈ V . (12)

Let ν be the empirical probability measure of X induced by the
set X of sample feature points:

ν(A) =
|A ∩ X |

|X |
=

1

n
|A ∩ X | , ∀A ⊂ C, (13)

with the understanding that ν depends on the sample size n. For
a function f on X , then

‖f ‖ : =
(

ˆ

X

|f (x)|2dν(x)
)

1
2
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FIGURE 3 | Differences among the estimates.

TABLE 3 | The mean squared approximation errors in example 3.

ARTR TPS RFR

0.1267824 0.1363984 0.2560183

is just
√

〈f , f 〉.
An orthogonal system on V with respect to the inner product

in (12) can now be constructed based on the partitioning tree T .
The following describes the construction of Haar-type wavelets
on T , [13–15].

For each ℓ = 0, ..., L and Pℓ = {Aℓ,j : j ∈ Iℓ}, let

Vℓ : = {f ∈ V : f
∣

∣

Aℓ,j
is a constant for every j ∈ Iℓ}.

Clearly, we have Vℓ ⊂ Vℓ+1.
Let φℓ,j, 0 ≤ ℓ ≤ L and j ∈ Iℓ, be functions on X defined by

φℓ,j(x) : = χAℓ,j
(x). (14)

For each ℓ, 0 ≤ ℓ ≤ L − 1, let Jℓ ⊂ Iℓ denote the index
set for those nodes Aℓ,j with |Aℓ,j| > 1. For each j ∈ Jℓ, with
Aℓ,j = Aℓ+1,j′ ∪ Aℓ+1,j′′ , let ψℓ,j be functions defined by

ψ(x) : =
ν(Aℓ+1,j′′ )

ν(Aℓ,j)
χA

ℓ+1,j′
(x)−

ν(Aℓ+1,j′ )

ν(Aℓ,j)
χA

ℓ+1,j′′
(x) (15)

=
ν(Aℓ+1,j′′ )

ν(Aℓ,j)
φℓ+1,j′ (x)−

ν(Aℓ+1,j′ )

ν(Aℓ,j)
φℓ+1,j′′ (x).
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Then we have

〈φℓ,j,ψℓ′ ,j′〉 = 0, for ℓ ≤ ℓ′, j′ ∈ Jℓ

〈ψℓ,j,ψℓ,j′〉 = 0, for j 6= j′, j, j′ ∈ Jℓ.

Denote

Wℓ = span{ψℓ,j, j ∈ Jℓ}.

The fact Vℓ = span{φℓ,j : j ∈ Iℓ} and the orthogonality of φℓ,j and
ψℓ,j imply thatWℓ ⊂ Vℓ+1 and Vℓ ⊥ Wℓ. In addition, by a direct
calculation, we have, forAℓ,j,Aℓ+1,j′ , andAℓ+1,j′′ as related in (11)
and j ∈ Jℓ,

φℓ+1,j′ (x) =
ν(Aℓ+1,j′ )

ν(Aℓ,j)
φℓ,j(x)− ψℓ,j(x),

φℓ+1,j′′ (x) =
ν(Aℓ+1,j′′ )

ν(Aℓ,j)
φℓ,j(x)− ψℓ,j(x),

which implies that Vℓ+1 ⊆ Vℓ + Wℓ. Therefore, Wℓ is the
orthogonal complement of Vℓ in Vℓ+1, i.e., Vℓ+1 = Vℓ ⊕

⊥ Wℓ,
where⊕⊥ denotes the orthogonal sum. Hence

VL = WL−1 ⊕
⊥ VL−1 = WL−1 ⊕

⊥ WL−2 ⊕
⊥ VL−2 = · · ·

and finally

VL = V0 ⊕
⊥ W0 ⊕

⊥ · · · ⊕⊥ WL−1. (16)

From (16), we see Wℓ ⊥ Wℓ′ for ℓ 6= ℓ′. Hence ψℓ,j, 0 ≤ ℓ ≤

L − 1, j ∈ Jℓ are orthogonal to each other. More precisely, we
have

〈ψℓ,j,ψℓ′ ,i〉 = Bℓ,j δ(ℓ− ℓ
′)δ(j− i),

for all 0 ≤ ℓ, ℓ′ ≤ L− 1, j ∈ Jℓ, i ∈ Jℓ′ , where

Bℓ,j : = 〈ψℓ,j,ψℓ,j〉 =
ν(Aℓ+1,j′ ) ν(Aℓ+1,j′′ )

ν(Aℓ,j)
. (17)

We summarize this into the following theorem.

Theorem 1. The system of Haar-type wavelets

ψℓ,j(x), 0 ≤ ℓ ≤ L− 1, j ∈ Jℓ, (18)

together with φ0,0(x) ≡ 1 form an orthogonal basis of VL. More
precisely, VL can be decomposed as (16) with f ∈ VL represented
as

f (x) = 〈f ,φ0,0〉φ0,0(x)+

L−1
∑

ℓ=0

∑

j∈Jℓ

1

Bℓ,j
〈f ,ψℓ,j〉ψℓ,j(x), (19)

where Bℓ,j = ‖ψℓ,j‖
2 is given by (17).

Since VL = V , (19) is a representation of all functions f on X .

4.2. Fast Multiresolution Algorithm For
Wavelet Transform
The orthogonal system we discussed above allows for a fast
algorithm for computing wavelet coefficients 〈f ,ψℓ,j〉.

Let f ∈ VL be the input data given by

f (x) =
∑

j∈IL

aL,j φL,j(x) (20)

with aL,j : = n〈f ,φL,j〉/|AL,j| = the average value of f (x) at the
leave node AL,j.

From

VL = VL−1 ⊕
⊥ WL−1 = · · · = V0 ⊕

⊥ W0 ⊕
⊥ · · · ⊕⊥ WL−1

and that for any L0 with 0 ≤ L0 ≤ L − 1, φL0 ,i,ψℓ,j, L0 ≤ ℓ ≤

L − 1, i ∈ IL0 , j ∈ Jℓ form an orthogonal basis for VL, we know
that f ∈ VL can also be represented as

f (x) =
∑

j∈IL−1

aL−1,jφL−1,j(x)+
∑

j∈JL−1

dL−1,jψL−1,j(x) (21)

=
∑

j∈IL−2

aL−2,jφL−2,j(x)+
∑

j∈JL−2

dL−2,jψL−2,j(x)

+
∑

j∈JL−1

dL−1,jψL−1,j(x)

= · · ·

= a0,0φ0,0(x)+

L−1
∑

ℓ=0

∑

j∈Jℓ

dℓ,jψℓ,j(x),

where a0,0 = 1
n

∑

x∈X f (x), and the wavelet coefficients dℓ,j are
given by

dℓ,j =
1

Bℓ,j
〈f ,ψℓ,j〉.

A multiscale fast algorithm to compute the wavelet coefficients
can be obtained based on the refinement of the scaling
function φℓ,j. Next, let us look at the decomposition algorithm
for calculating aL−1,j, dL−1,j from aL,j, and the reconstruction
algorithm for recovering aL,j from aL−1,j, dL−1,j.

Clearly, if k ∈ IL−1\JL−1, then aL−1,k′ = aL−1,k, where k
′ ∈

IL−1 is such an index that AL−1,k′ = AL,k. Next we consider
k ∈ JL−1, and let AL,k′ and AL,k′′ be two children of AL−1,k.
From (20), (21), the orthogonality of φL−1,j,ψL−1,j and the fact
supp(φL−1,k) = AL−1,k = AL,k′

⋃

AL,k′′ , we have

aL−1,k‖φL−1,k‖
2 =

〈

φL−1,k,
∑

j∈JL−1

aL−1,jφL−1,j +
∑

j∈JL−1

dL−1,jψL−1,j

〉

= 〈f ,φL−1,k〉 =
〈

φL−1,k,
∑

j∈IL

aL,jφL,j

〉

= aL,k′ 〈φL−1,k, φL,k′ 〉 + aL,k′′ 〈φL−1,k, φL,k′′ 〉

= aL,k′ν(AL,k′ )+ aL,k′′ν(AL,k′′ ).

With ‖φL−1,k‖
2 = ν(AL−1,k) = ν(AL,k′ )+ ν(AL,k′′ ), we have

aL−1,k =
ν(AL,k′ )

ν(AL,k′ )+ ν(AL,k′′ )
aL,k′ +

ν(AL,k′ )

ν(AL,k′ )+ ν(AL,k′′ )
aL,k′′ .
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Similarly, we have

dL−1,k‖ψL−1,k‖
2 = 〈ψL−1,k, f 〉 =

〈

ψL−1,k,
∑

j∈IL

aL,jφL,j

〉

= aL,k′〈ψL−1,k, φL,k′〉 + aL,k′′〈ψL−1,k, φL,k′′〉

= aL,k′

ˆ

AL,k′

ψL−1,k(x)dν(x)+ aL,k′′

ˆ

AL,k′′

ψL−1,k(x)dν(x)

= aL,k′
ν(AL,k′ )ν(AL,k′′ )

ν(AL−1,k)
− aL,k′′

ν(AL,k′ )ν(AL,k′′ )

ν(AL−1,k)

= (aL,k′ − aL,k′′ )‖ψL−1,k‖
2.

Thus, we have

dL−1,k = aL,k′ − aL,k′′ .

Combining these calculations, we obtain the following
decomposition algorithm





aL−1,k

dL−1,k



 =







ν(AL,k′ )

ν(AL,k′ )ν(AL,k′′ )

ν(AL,k′′ )

ν(AL,k′ )+ν(AL,k′′ )

1 −1











aL,k′

aL,k′′





One can obtain as above by the refinement of φL,j: φL−1,j = φL,j′+

φL,j′′ and the orthogonality of φL,j the following reconstruction
algorithm (which can also be obtained directly from the above
decomposition algorithm):





aL,k′

aL,k′′



 =









1
ν(AL,k′′ )

ν(AL,k′ )+ν(AL,k′′ )

1 −
ν(AL,k′ )

ν(AL,k′ )+ν(AL,k′′ )













aL−1,k

dL−1,k





We can obtain the algorithms in the same way for all other
aℓ,k, dℓ,k. To summarize, we have the following theorem.

Theorem 2. Let aℓ,k, dℓ,k be coefficients of f ∈ VL with the wavelet
expansion. Then for every non-leave node Aℓ−1,k, k ∈ Jℓ−1, and
its children nodes Aℓ,k′ and Aℓ,k′′ , where 1 ≤ ℓ ≤ L, we have the
decomposition algorithm:





aℓ−1,k

dℓ−1,k



 =







ν(Aℓ,k′ )

ν(Aℓ,k′ )+ν(Aℓ,k′′ )

ν(Aℓ,k′′ )

ν(Aℓ,k′ )+ν(Aℓ,k′′ )

1 −1











aℓ,k′

aℓ,k′′



 (22)

and the reconstruction algorithm:





aℓ,k′

aℓ,k′′



 =









1
ν(Aℓ,k′′ )

ν(Aℓ,k′ )+ν(Aℓ,k′′ )

1 −
ν(Aℓ,k′ )

ν(Aℓ,k′ )+ν(Aℓ,k′′ )













aℓ−1,k

dℓ−1,k



 . (23)

It can be easily verified that here aℓ,k is exactly the mean of f (xi)’s
over the subset Aℓ,k and dℓ,k is the difference of the means of f (xi)
over the children subsets Aℓ+1,k′ and Aℓ+1,k′′ , respectively. This
justifies (5), (7), and (8) without shrinking.

After the wavelet coefficients dℓ,k are thresholded with

d̂ℓ,k = sign(dℓ,k)max

{

0, |dℓ,k| − α

√

1

|Aℓ,k′ |2
+

1

|Aℓ,k′′ |2

}

(24)

for some α > 0, the estimation of f (x) is obtained:

f̂ (x) = 〈f ,φ0,0〉φ0,0(x)+

L−1
∑

ℓ=0

∑

j∈Jℓ

d̂ℓ,jψℓ,j(x). (25)

A fast algorithm to evaluate the estimation ŷj : = f̂ (xj) can be
given as follows.

Set â0,0 = a0.0 = 〈f ,φ0,0〉. Assume âℓ−1,k for k ∈ Iℓ−1 have
been obtained. Define âℓ,k for k ∈ Iℓ as follows. If k 6∈ Jℓ−1,
then the corresponding node Aℓ−1,k is a leaf node, and let âℓ,k =

âℓ−1,k′ , where k
′ is the index such that Aℓ,k = Aℓ−1,k′ . If k ∈ Jℓ−1,

then the corresponding nodeAℓ−1,k has two children, denoted by
Aℓ,k′ and Aℓ,k′′ , and we define





âℓ,k′

âℓ,k′′



 =









1
ν(Aℓ,k′′ )

ν(Aℓ,k′ )+ν(Aℓ,k′′ )

1 −
ν(Aℓ,k′ )

ν(Aℓ,k′ )+ν(Aℓ,k′′ )













âℓ−1,k

d̂ℓ−1,k



 . (26)

Theorem 3. Let âL,j, j ∈ IL be the scalars defined above iteratively

with ℓ = 1, 2, · · · , L and let f̂ (x) in be the estimation for f (x)

given in (25). Then f̂ (xj) = âL,j. More precisely, f̂ (x) in (25) can
be represented as

f̂ (x) =
∑

j∈IL

âL,jχAL,j (x). (27)

Clearly, (26) is actually the wavelet reconstruction algorithm (23).

Thus we can use a fast algorithm to evaluate f̂ (x).

The representation (27) for f̂ (x) defined by (25) can be proved
easily by applying the following claim.

Claim 1. For k ∈ Jℓ−1 with Aℓ−1,k = Aℓ,k′ ∪ Aℓ,k′′ , where
1 ≤ ℓ ≤ L, we have

Proof of Calim 1: By the definitions of φℓ−1,k(x) and
ψℓ−1,k(x), we have

âℓ−1,kφℓ−1,k(x)+ d̂ℓ−1,kψℓ−1,k(x)

= âℓ−1,k

(

φℓ,k′ (x)+ φℓ,k′′ (x)
)

+ d̂ℓ−1,k
( ν(Aℓ,k′′ )

ν(Aℓ−1,j)
φℓ,k′ (x)−

ν(Aℓ,k′ )

ν(Aℓ−1,j)
φℓ,k′′ (x)

)

=
(

âℓ−1,k + d̂ℓ−1,k
ν(Aℓ,k′′ )

ν(Aℓ−1,j)

)

φℓ,k′ (x)

+
(

âℓ−1,k − d̂ℓ−1,k
ν(Aℓ,k′ )

ν(Aℓ−1,j)

)

φℓ,k′′ (x)

= âℓ,k′φℓ,k′ (x)+ âℓ,k′′φℓ,k′′ (x),
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as desired. �

Observe that (26) is the algorithm (7) and (8) we use in section
2, and (27) is the representation (9) we also use in section 2 for
estimation of f (x).

5. DISCUSSION

The regression method discussed in this paper is based on a
tree-based representation of data and a wavelet-like multiscale
analysis. The tree-based representation organizes data into
hierarchically related partitioning subsets of feature points
together with the differences of means of the response variables
over the partitioning children subsets. With this representation, a
wavelet soft-thresholding and reconstruction procedure allow us
to fit the data into the tree-structure. For normal data, the soft-
thresholding is equivalent to shrink a t-confidence interval about
the origin to the origin on the real-line.

Through the examples (section 3), we see that this tress
regression method can be an effective alternative to CART,
random-forest, smoothing splines, or support vector machines
in various circumstances. Its ability of being adaptive to intrinsic
low dimension of data allows it to detect some hidden features
of data, as is shown in Example 2, when the standard methods
like support vector machine fail to archive this. It outperforms

another popular tree-based method, random-forest in terms of
prediction error in our regression example (Example 1) in high
dimensional feature space with low intrinsic dimension of data.

When applied to lower dimensional data (Example 3), it again
shows lower prediction error than CART or random-forest, and
outperforms other smoothing method when regression function
has discontinuities.

Other partitioning trees could be used in subsection 2.1. Rules
for stopping further splitting a node can also be considered,
provided that the local structures of the regression function
in data can be optimally preserved. Another feature of this
regression is that, unlike a standard wavelet analysis, the
unbalanced Haar orthogonal system here is data dependent.

For large and high dimensional datasets, our method takes
significantly more computation time than the other algorithms
we used in our examples above. How to improve the speed
of computation in our method is a challenge. One possible
direction in searching for a faster algorithm is to use smaller and
random subsets of the features for splitting each node in growing
a tree.
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