
ORIGINAL RESEARCH
published: 15 February 2019

doi: 10.3389/fams.2019.00005

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 February 2019 | Volume 5 | Article 5

Edited by:

Sorin-Mihai Grad,

Technische Universität Chemnitz,

Germany

Reviewed by:

Vladimir Shikhman,

Technische Universität Chemnitz,

Germany

Akira Imakura,

University of Tsukuba, Japan

*Correspondence:

Edoardo Di Napoli

e.di.napoli@fz-juelich.de

Specialty section:

This article was submitted to

Optimization,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 28 August 2018

Accepted: 18 January 2019

Published: 15 February 2019

Citation:

Winkelmann J and Di Napoli E (2019)

Non-linear Least-Squares

Optimization of Rational Filters for the

Solution of Interior Hermitian

Eigenvalue Problems.

Front. Appl. Math. Stat. 5:5.

doi: 10.3389/fams.2019.00005

Non-linear Least-Squares
Optimization of Rational Filters for
the Solution of Interior Hermitian
Eigenvalue Problems

Jan Winkelmann 1 and Edoardo Di Napoli 2*

1 Aachen Institute for Advanced Study in Computational Engineering Science, RWTH Aachen University, Aachen, Germany,
2 Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, Julich, Germany

Rational filter functions can be used to improve convergence of contour-based

eigensolvers, a popular family of algorithms for the solution of the interior eigenvalue

problem. We present a framework for the optimization of rational filters based on

a non-convex weighted Least-Squares scheme. When used in combination with a

contour based eigensolvers library, our filters out-perform existing ones on a large and

representative set of benchmark problems. This work provides a detailed description

of: (1) a set up of the optimization process that exploits symmetries of the filter

function for Hermitian eigenproblems, (2) a formulation of the gradient descent and

Levenberg-Marquardt algorithms that exploits the symmetries, (3) a method to select the

starting position for the optimization algorithms that reliably produces effective filters, (4)

a constrained optimization scheme that produces filter functions with specific properties

that may be beneficial to the performance of the eigensolver that employs them.

Keywords: Hermitian eigenproblem, rational approximation, spectral projector, contour based eigensolver,

subspace iteration

1. INTRODUCTION

The last fifteen years have witnessed a proliferation of papers on contour based methods for the
solution of the Hermitian interior eigenvalue problem [1–4]. Contour based eigensolvers can be
described as a family of methods based on the Cauchy’s residue Theorem. The name “contour
based” stems from an integration of the matrix resolvent (M − zI)−1 along a contour in the
complex plane encircling an interval [a, b] within the spectrum of M. These contour integrals are
calculated via numerical quadrature which exchange the direct solution of the eigenproblem for
that of multiple independent linear systems. A key insight to the use of numerical quadrature is
the reinterpretation of the contour integration of the matrix resolvent as a matrix-valued rational
filter that maps eigenvalues inside and outside [a, b] to one and zero respectively. From this point
of view, the mathematical formalism of contour based methods can be considered closely related to
the richer mathematical field of rational function approximation.

In this paper we conduct a detailed investigation of how a carefully crafted rational function
can improve the efficacy of contour based eigensolvers. To this end, we look at the the numerical
quadrature of a complex-valued resolvent (t − z)−1 as an approximation of an ideal filter
represented by the standard indicator function. Then, we cast the problem of finding an efficient
filter as one of finding a continuous rational function that approximates the discontinuous indicator

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2019.00005
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2019.00005&domain=pdf&date_stamp=2019-02-15
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:e.di.napoli@fz-juelich.de
https://doi.org/10.3389/fams.2019.00005
https://www.frontiersin.org/articles/10.3389/fams.2019.00005/full
http://loop.frontiersin.org/people/653338/overview
http://loop.frontiersin.org/people/73420/overview

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

function so as to improve the effectiveness of the eigensolver.
Our method is based on a non-linear Least-Squares optimization
process, whose outcome is the simultaneous selection of poles
and coefficients characterizing a series of rational filters we
termed Symmetric non-Linear Optimized Least-Squares (SLiSe).
We show that, given a large systematic selection of distinct
intervals per problem M, our SLiSe filters have a statistically
better rate of convergence than any other state-of-the-art
rational filter. Moreover, our approach allows for constrained-
optimization, which is a step toward problem-specific filters
that are flexible enough to be capable of exploiting available
information on the spectral structure of a given problem. Besides
better convergence rates, such an approach can result in an
eigensolver with better performance and less parallel work-
load imbalance. We illustrate the mathematical background,
the construction of the optimization framework, and provide a
software implementation of it in Julia [5] that generates ready-
to-use rational filters.

1.1. Related Work
Two well-known contour based eigensolvers are the SS family
of solvers due to Sakurai and Sugiura [2], and FEAST library
due to Polizzi [1]. Early work by Sakurai et al. resulted in
the SS-Hankel method (SS-H), a non-iterative method based
on complex moment matrices. A different approach is taken
by Polizzi’s FEAST, which is an iterative contour based solver.
Underlying FEAST is a Rayleigh-Ritz procedure where the
contour integral is used to improve convergence. Later work by
Sakurai et al. resulted in a Rayleigh-Ritz typemethod (SS-R) [3, 6]
and various block methods [7]. Beyn proposed a similar method
in [8]. A recent comparison of common contour based solvers is
available in Imakura et al. [9].

The correspondence between contour methods and rational
filters was discussed for FEAST in Tang and Polizzi [4], for SS-H
in Ikegami et al. [3], and for SS-R in Ikegami and Sakurai [6].
Early on, Murakami proposed the use of classic rational filters
from signal processing [10–14] in the “filter diagonalization
method”; for a discussion of this work we refer to [15]. For FEAST
the Elliptical filters were proposed in Güttel et al. [16] to improve
load balancing and (in some cases) convergence behavior. The
rational function point-of-view also enables the development of
specialized algorithms: for instance, for real-symmetric matrices
it is possible to avoid complex-arithmetic entirely [15].

More recently the filter itself has been treated as a
parameter that can be designed via optimization methods.
Barel [17] proposed a non-linear Least-Squares approach for
non-Hermitian filters within the SS-H framework, while Xi and
Saad [18] described linear Least-Squares optimized filters for the
Hermitian FEAST solver. Since Barel’s approach is geared toward
non-Hermitian eigenproblems, it is not possible to make use
of the conjugate or reflection symmetry. The resulting degrees
of freedom make for a more difficult optimization problem.
By requiring a parameter space search, his approach results
in filters that are not as robust as our SLiSe. Barel’s Least-
Squares optimization is based on the discrete ℓ2 norm, not a
function approximation approach. Even in the case of Hermitian
problems, optimizing the squared distances in only a sample

of points must be done with great care. Choosing too small
a number of sample points can have undesirable effects: it is
possible to obtain poles near the real axis which are not detected
by the sample points. On the other hand having a large number
of sample points is very expensive. Finally, Barel’s approach does
not support constraints, as we present in section 4.4.

Xi and Saad present a FEAST related approach for linear
Least-Squares optimized filters focusing on the Hermitian
eigenproblem [18]. In this work, not the poles but only the
coefficients of the rational function are optimized. The result is
a robust process that is much easier to solve, at the cost of being
less expressive. An optimization approach that does not optimize
poles is limited by the initial choice of them. As we have shown
in this work, the process of optimizing a SLiSe filter significantly
moves the poles inside the complex plane. On the opposite,
fixing the poles imposes a constraint on the optimization that
is even larger than constraining just their imaginary part as
illustrated in sections 4.4, 5. In practice, when optimizing solely
the coefficients of the rational approximation, the optimization
algorithm behaves very differently. For example, positive penalty
parameters work much better in Xi and Saad’s approach, because
real poles cannot occur.

1.2. Contributions
This manuscript contains the following original contributions:

– Our optimization framework is based on a weighted Least-
Squares function computed using the L2 norm. All the
quantities appearing in our optimization are computed using
exact formulas for definite integrals as opposed to numerical
quadrature. This is a very distinct approach than optimizing
the rational function only at a number of sample points
via the ℓ2 norm as it is done, for instance, in [17]. The
residual level function, its gradient, and the partial Hessian
are all based on definite L2 integrals. These quantities are
then utilized with two distinct optimization methods: the
traditional steepest descent and the more effective Levenberg-
Marquardt. Flexibility is the landmark of our framework:
we present penalty parameters and box constraints to obtain
filters that, for example, are better suited for Krylov-based
linear system solvers.

– We make explicit the intrinsic symmetries (conjugation and
parity) of the rational function approximating the indicator
function. As a consequence, when computing the quantities
that enter in the optimization process, such as the gradient and
Hessian, we keep track of fewer degrees of freedom. Since each
process is iterative and the same numerical quantities have
to be computed hundreds of thousands of times, reducing
the sheer number of them results in at least four times faster
numerical executions.

– Optimizing the rational function’s poles and coefficients
requires the solution of a non-convex problem for which we
resort to a non-linear Least-Squares formulation. This is quite
a harder problem than optimizing only for the Least-Squares
coefficients as it is done, for instance, in [18]. Common pitfalls
on non-convex optimizations are asymmetric rational filters,
or failure to converge to a local minumum. In order to yield

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

consistent results, we provide a rationale for the selection of
initial parameters that consistently yield filters obtained from
a robust optimization process.

– We built and implemented an optimization package, written
in the Julia language, which is publicly available and easy
to use. As it stands the package could be easily integrated
in existing eigensolver libraries, such as FEAST, to provide
customized rational filters computed on the fly. In order
to showcase the promise of our implementation, we also
provide ready-to-use SLiSe filters. We compare such filters
with existing ones using a large representative problem set.
These SLiSe filters can be used as drop-in replacements for the
current state-of-the-art spectrum-slicing eigensolver libraries.
For instance, in FEAST users can employ the so-called expert
routines as described in section 2.2.

The rest of this paper is structured as follows. To showcase
the potential of our optimization method, section 2 discusses
examples of SLiSe filters. Section 3 considers the formulation
of the non-linear Least-Squares problem. We discuss the use of
symmetries of the filters, as well as the residual level function and
its gradients, which also make use of these symmetries. Section
4 illustrates the full framework for the generation of SLiSe filters
with and without constraints. In section 5, we provide additional
examples of optimized filters, and we conclude in section 6.

2. SPECTRAL PROJECTION USING SLISE
FILTERS

In this section we briefly introduce the basics of subspace
iteration with spectral projection. Then we provide an illustration
of the effectiveness of our optimization framework by presenting
SLiSe filters that are meant as replacements for existing
state-of-the-art rational filters. The mathematical setup and
methods by which these filters were obtained are the topic
of later sections. The filters used in this section, and the
optimization parameters used to obtain them, are available in
Appendix C.

In section 2.2, we discuss a replacement for the Gauss filter.
An improvement for this filter is particularly useful, since the
Gauss filter and its variations are the default choice for many
contour based solvers [1, 19]. Next, we illustrate the replacement
for the Elliptic filter that is used for eigenproblems where an
endpoint of the search interval coincides with, or is near, a large
spectral cluster. Such a scenario can occur whenmultiple adjacent
search intervals are selected. For the sake of brevity we limit the
examples to rational filters with a total of 16 poles and relative
coefficients. Naturally, the optimization methods presented in
this work are applicable to filters with an arbitrary number
of poles.

2.1. Subspace Iteration Method
Accelerated via Spectral Projection
Given a Hermitian matrix M = M† ∈ C

N×N and a proper
interval [a, b], with [a, b] ∩ [λ1, λN] 6= ∅, we are interested
in finding the m eigenpairs (λ, v) inside [a, b] resolving the

secular equation1:

Mv = λv.

An efficient subspace iteration method requires a projection
procedure that identifies a search subspace approximating the
invariant eigenspace corresponding to the eigenvalues lying in
the [a, b] interval. In the course of this paper we focus solely on
methods that achieve such projection through a rational function
f (M) of the matrixM. Such functions are also known as rational
filters although other filter forms, such as polynomial filters, do
exist. A rational filter of degree (n − 1, n) can be expressed as a
matrix function in partial fraction decomposition

f (M)
.
=

n
∑

i=1

αi(M − Izi)
−1 (1)

where zi ∈ C\R and αi ∈ C are all distinct and are chosen in
a way such that the eigenvalues of M inside [a, b] are mapped to
roughly one, and the eigenvalues outside are mapped to roughly
zero. As a result, the filter suppresses eigenvalues outside of
[a, b], which improves convergence of the subspace iteration for
the desired eigenvalues and eigenvectors. As a scalar function
of t ∈ R, f (t) can be seen as a rational approximation to
the indicator function χ[a,b](t), with unit value inside [a, b] and
zero everywhere else. Filters are usually generated for a search
interval of [−1, 1], and then mapped to [a, b] via an appropriate
transformation on the αi’s and zi’s. Without loss of generality
we always consider the search interval to be [−1, 1]. Forming
f (M) from Equation (1) explicitly involves the calculation of the
matrix inverse. Using f (M) within a subspace iteration procedure
requires only X : = f (M)Y , which can be rewritten as n
independent linear system solves:

(M − Izi)X = αiY 1 ≤ i ≤ n. (2)

If we assume that f (M) outputs a good approximation to the
search subspace, a common form of subspace iteration is based
on the use of the Rayleigh-Ritz (RR) projection at each iteration.
Provided that the approximating subspace has a dimension p

equal or larger than m, such a projection reduces the size of the
eigenproblem to be solved, and is guaranteed to output eigenpairs
of the reduced problem that are in a one-to-one correspondence
with the eigenpairs inside the search interval.

One of themost well-known solvers for the interior eigenvalue
problem based on a rational resolvent followed by the RR
projection is the FEAST library [1]. In FEAST the filter function is
derived via n-point quadrature realization of the contour integral:

1

2π i

∫

Ŵ

dt

M − It
≈

1

2π i

n
∑

i=1

wi(M − Ixi)
−1 = f (M) (3)

where Ŵ is a contour in the complex plane enclosing the search
interval [a, b]. Quadrature along Ŵ yields integration nodes

1For notational convenience in the rest of the paper we make use of theM† instead

of the conventionalMH to indicate Hermitian conjugation.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

FIGURE 1 | Plot of the Gauss filter obtained by 16-points Gauss-Legendre

quadrature of Equation (3), assuming t ∈ R.

xi ∈ C and weights wi ∈ C. While any quadrature rule can
filter the eigenvalues to some extent, FEAST’s defaults to the
Gauss-Legendre quadrature rules. From Equation (3) follows
that numerical integration of the contour integral is functionally
equivalent to the rational filter formulation of Equation (1).
Accordingly, we can interpret FEAST’s filter function as a rational
filter function with xi = zi and − i

2π wi = αi, which we call
“Gauss filter.” As we are considering Hermitian eigenproblems,
we can plot the corresponding scalar function f (t). Figure 1 plots
the Gauss filter obtained by a 16-points quadrature on a circle-
shaped contour that circumscribes [−1, 1] symmetrically with
respect to the real axis. The resulting function is obviously even
and real-valued over the entire real axis.

Given an ordering of the eigenvalues such that

|f (λ1)| ≥ |f (λ2)| ≥ ... ≥ |f (λm)| ≥ ... ≥ |f (λp)| ≥ ... ≥

|f (λp+1)| ≥ ... ≥ |f (λn)|,

the convergence ratio of the FEAST algorithm for a chosen filter
f is given by [4, Theorem 4.4]

τ =
|f (λp+1)|

|f (λm)|
. (4)

For most filters it is the case that f (1) = f (−1) = 1
2 , in which case

we can extend the condition to: |f (λm)| ≥ ... ≥ 1
2 ≥ ... ≥ |f (λp)|.

2.2. γ -SLiSe: A Replacement Candidate for
the Gauss Filter
In order to have a fair comparison between an existing filter
and our candidate as filter replacement, we need to establish a
testing environment. Since our focus is the use of rational filters
within subspace iteration methods, we use FEAST as our test
environment for comparing filters. A simple filter comparison
could use the number of FEAST iterations required to converge
the entire subspace for a givenmatrixM and interval [a, b], which
we refer as benchmark problem. Obviously, the filter that requires
fewer iterations is the better one. While rather basic, we show
that this simple criterion already provides useful insights. Later in
the paper we introduce a more sophisticated evaluation criterion
based on the convergence ratio of the benchmark problem.

Once the comparison criterion has been selected, a natural
way to decide which filter is superior is to select many,
representative benchmark problems and see which filter
performs better. Comparing filters on only a few, hand-selected,

problems can introduce a strong bias. InAppendix B, we propose
a method to obtain many benchmark problems which we will
use throughout this section. The resulting comparison is based
on a large number of these benchmark problems and provides
a good statistical measure of our filters’ quality. To construct a
benchmark set, we fix the matrix M, construct a large number
of distinct search intervals [a, b], compute the exact number of
eigenvalues m each interval contains, and then set p to be a
multiple of this number. The benchmark set used throughout
this section was obtained by selecting 2116 search intervals, each
containing between 5 and 20% of the spectrum of the Hermitian
“Si2” matrix of the University of Florida matrix collection [20].
The Gauss and γ -SLiSe filters were used as filtering method in
FEAST’s version 3.0 through the scsrevx routine, a driver that
uses a sparse direct solver for the linear system solves2. For a
problem with m eigenpairs inside the search interval we select
a size of the subspace iteration of p = 1.5m, the value that FEAST
recommends for the Gauss filter.

Figure 2A shows a histogram of the iterations required for
the 2,116 benchmark problems by the γ -SLiSe and the Gauss
filter. Independently of which filter is used the vast majority
of problems of the set requires either 3 or 4 FEAST iterations.
Fast convergence of FEAST’s subspace iteration is a known
feature for the Gauss filter when p is chosen large enough.
When FEAST uses the γ -SLiSe filter, most benchmark problems
require 3 iterations. In contrast, when the Gauss filter is used,
a larger number of problems require 4 iterations. Summing
the iterations for all of the benchmark problems the γ -SLiSe
filter requires 6,774 iterations, while the Gauss filter requires
7,119 iterations. Since every iteration requires 8 linear system
solves and additional overhead, such as the calculation of
the residuals, saving even a single iteration is a substantial
performance improvement.

The increased performance of the γ -SLiSe filter comes with
some drawbacks. On the one hand, the Gauss filter is more
versatile than the γ -SLiSe. For instance, outside of the selected
interval, the Gauss filter decays very quickly to low values (see
Figure 3B), which yields better convergence when increasing the
number of vectors in the subspace iterations p to a larger multiple
of m. The γ -SLiSe does not have this property, and so does
worse when a very large spectral gap is present. On the other
hand, SLiSe filters are more flexible, so it is always possible to
generate a different γ -SLiSe filter that performs well also for large
spectral gaps.

2.2.1. Convergence Ratio as a Means of Comparison
While Figure 2A shows some promise as a tool for comparing
filters, the approach has a number of problems. Subspace
iteration counts provide a very coarse look at the performance
of a filter, underlined by the fact that most benchmark problems
require a very similar number of iterations for both filters.
Furthermore, the evaluation requires the use of a linear system
solver, and thus the outcome is dependent on the solver’s
algorithm and the parameters used (such as the desired accuracy,

2Feast was compiled with the Intel Compiler v16.0.2 and executed with a single

thread; the target residual was adjusted to 10−13.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

FIGURE 2 | Comparisons of the Gauss filter with our replacement candidate, γ -SLiSe, with p = 1.5m on a test set of 2116 benchmark problems obtained from the

“Si2” matrix. Both filters have 16 poles and are plotted in Figure 3. (A) Number of FEAST iterations required by γ -SLiSe and the Gauss filter. (B) Performance profiles

of convergence rates for γ - SLiSe and Gauss filters.

FIGURE 3 | Plots of the Gauss filter and our replacement candidate, γ -SLiSe. Both filters have 16 poles and coefficients. (A) Linear-scale plot. (B) Semi-log plot.

the type of solver, etc.). A reliable comparison should be based on
a more fine-grained metric which does not depend on a specific
solver, its specific parameters, and the computational kernels
used. One such metric is the ratio of convergence τ defined in
Equation (4). For small to medium sized problems, we can obtain
all eigenvalues of the matrix and calculate τ analytically. Since
τ is a function of only the eigenvalues, it does not depend on a
specific solver, and it is cheaper to compute. For testing purposes,
we computed all eigenvalues up front, and then calculated τ for
every benchmark problem.

Figure 2B shows the convergence ratios for the same
benchmark set as in Figure 2A in a form called performance
profiles [21]. For a filter f , and a given point x on the abscissa,
the corresponding value φf (x) of the graph indicates that for
100 · φf (x) percent of the benchmark problems the filter f is
at most a factor of x worse than the fastest of all methods in
question. For example, φfGauss (3.4) ≈ 0.88 indicates that for 88%
of the benchmark problems the Gauss filter yields a ratio that is
at worst a factor of 3.4 from the best. So the performance profiles
not only report how often a filter performs best, but also how
badly the filter performs when it is not the best. We will use
performance profiles multiple times in this section to compare
the filters. From the value of φfγ -SLiSe (1) in Figure 2B we can infer
that γ -SLiSe achieves the best convergence ratio for 77% of the
benchmark problems, while the Gauss filter does best on the
remaining 23% of the problems. Moreover, the Gauss filter has
a convergence ratio that is worse than 3.4 times that of the γ -
SLiSe filter for 12% of the problems. In conclusion, the SLiSe filter

performs better than the Gauss filter in both metrics, iterations
counts and convergence ratio. However, the performance profile
plot of τ gives a much more detailed comparison.

A rough insight on the better convergence ratio of the γ -
SLiSe filter can be extracted from Figure 3where Figure 3A plots
the positive part of the abscissa of both filter functions, and
Figure 3B shows the absolute value of the same filter functions
as a log plot. Given that we used the FEAST recommended value
of p = 1.5m, and making the likely assumption that most of the
benchmark problems have a roughly equidistant spacing of the
eigenvalues around the canonical search interval [−1, 1], implies
that λp+1 ≈ ±1.25. Due to a smaller absolute value between
1.1 and 1.6, the γ -SLiSe filter out-performs the state-of-the-art
Gauss filter as long as λp+1 ∈ [1.1, 1.6]. If either end of the
search interval is near a large spectral cluster then λp+1 ≪ 1.1,
and neither of the two filters will do particularly well. In such a
case Elliptic filters are used.

2.3. η-SLiSe: A Replacement Candidate for
the Elliptic Filter
The Elliptic filter, also called Cauer or Zolotarev filter, has
been proposed for use in the context of the interior eigenvalue
problem in a number of publications [10–14, 16]3. This filter
is used specifically when large spectral clusters are at or near
the endpoints of a search interval. In these cases the Gauss

3Technically the Elliptic filter is a class of filters depending on a number of

parameters. We consider the specific filter discussed in Güttel et al. [16].

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

FIGURE 4 | Semi-log performance profile of the convergence ratio for the Gauss, η-SLiSe, and Elliptic filters. η-SLiSe is meant to replace the Elliptic filter. All filters

have 16 poles and p = m. (A) Semi-log performance profile of the convergence rate. (B) The same performance profile zoomed into [1, 3] with a linear axis.

filter exhibits very slow convergence unless p is chosen much
larger than 1.5m. We propose η-SLiSe as a replacement for
the Elliptic filter currently used in contour-based subspace
iteration methods.

The Elliptic filter is an optimal filter, in the sense that the
filter function is the best uniform rational approximation of the
indicator function. For a subspace size of p = m, such a filter
is worst-case optimal with respect to the convergence ratio of
Equation (4). In simple terms, the Elliptic filter works better than
the Gauss filter in the presence of spectral clusters close to the
interval boundary because it drops from 1 to 0 more quickly.
The η-SLiSe filter trades off slightly larger absolute values inside
[1, 1.01] for smaller absolute values in [1.01,∞] ([−1.01, 1] and
[−∞, 1.01], respectively).

Figure 4 shows a performance profile of the convergence
ratio for the Gauss, η-SLiSe, and Elliptic filters; Figure 4A is a
semi-log plot of the performance profile, while Figure 4B is a
linear-scale plot, zoomed into the interval [1, 3]. The comparison
between the two filters needs to be adjusted to represent the
specific use case of spectral clusters near the endpoints. We
use again the benchmark set from the “Si2” matrix, however,
instead of target subspace size of p = 1.5m, we choose p = m.
Thus, the eigenvalue corresponding to the largest absolute filter
value outside the search interval determines convergence for
all benchmark problems. For large spectral clusters |f (λp+1)| is
likely to be close to |f (λm)|, so this metric serves as an estimator
of the filter’s behavior with spectral clusters near the endpoints of
the search interval.

The figure indicates that, for our representative set of
benchmark problems, the η-SLiSe filter displays better
convergence rates than the Elliptic filter. The Elliptic filter
achieves the best convergence ratio for half of the benchmark
problems, and η-SLiSe does it for the other half. Further,
the figure indicates that for 99% of the problems, the
Elliptic filter has a convergence ratio at most 2.35 times
worse than the best against a factor of 1.38 of the η-SLiSe
[φfElliptic (2.35) = 0.99, and φfη−SLiSe

(1.38) = 0.99]. Simply

put, η-SLiSe performs better than the Elliptic filter for half
of the problems, and for the other half it performs very
similar to the Elliptical filter. Conversely, the Elliptical
filter exhibits convergence rates for some problems that are
twice as bad as the convergence rate of η-SLiSe. The Gauss

filter exhibits the worst rates of convergence by far, but
this is to be expected as the Gauss filter is not meant for
this use-case.

3. RATIONAL FILTERS FOR HERMITIAN
OPERATORS: A NON-LINEAR
LEAST-SQUARES FORMULATION

Rational filters can be written as a sum of simple rational
functions φi

f (t, z,α) =

n
∑

i=1

φi ≡

n
∑

i=1

αi

(t − zi)
(5)

with zi,αi ∈ C. We restrict ourselves to the case where the zi
and the αi are pair-wise distinct, and the zi have non-zero real
and imaginary parts. Our initial goal is to set the stage for the
formulation of a reliable method dictating the choice for the poles
zi and the coefficients αi such that f (t) constitutes an effective and
flexible approximation to the ideal filter h(t). In the Hermitian
case such an ideal filter corresponds to the indicator function
defined as

h(t) = χ[−1,1] =

{

1 if − 1 ≤ t ≤ 1
0 otherwise

. (6)

As h(t) is discontinuous we have to specify in what sense a given
filter f (t, z,α) is close to the target function h(t). To this end, we
focus on the squared difference of h(t)− f (t, z,α) with respect to
the L2 norm which is equivalent to defining a Least-Squares error
function, or residual level function

F(z,α) = ‖h− f (z,α)‖22. (7)

An optimal filter, in this sense, is the minimizer of the residual
level function

min
αi ,zi 1≤i≤n

∫ ∞

−∞

G(t)

∣

∣

∣

∣

∣

h(t)−

n
∑

i=1

αi

(t − zi)

∣

∣

∣

∣

∣

2

dt, (8)

resulting in a weighted Least-Squares optimization problem with
the weight function G(t). In order to simplify the optimization

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

process we impose the following restrictions on the weight
function: (1) G(t) is piece-wise constant with bounded interval
endpoints, (2) the number of piece-wise constant parts is finite,
(3) the weight function is even: G(t) = G(−t).

In section 3.1, we illustrate how to exploit the symmetries of
the indicator function h(t) in the Hermitian case. The rational
function f (t) approximating h(t) can be constructed so as to
explicitly satisfy these symmetries, which limits the degrees of
freedom used in the optimization problem. Section 3.2 contains
a matrix formulation of the Least-Squares residual level function,
while its gradients are introduced in section 3.3.

3.1. Discrete Symmetries of the Rational
Approximant
We wish to construct a rational function f (t, z,α) that explicitly
preserves the symmetries of the target function h(t). The target
function is invariant under two symmetry transformations,
namely complex conjugation, and reflection. The first symmetry
seems trivial since h is real-valued but f in general is not. The
second symmetry states that h is even. For the rational function f
to be a good approximation of h it should satisfy both symmetries

1. Complex Conjugation (C): f (t, z,α) = f (t, z,α)
2. Reflection or Parity (P): f (−t, z,α) = f (t, z,α).

(9)

Requiring the function f to satisfy the C symmetry implies that
half of the rational monomials φis are conjugate of each other.
In other words, half of the poles zis (and corresponding αis)
are in the upper-half of C (indicated as H

+) with the other half
in the lower-half (H−). Then, without loss of generality we can
enumerate the φi such that the first p = n

2 have poles zi in H
+:

αr
t−zr

= φr = φr+p with zr ∈ H
+ for 1 ≤ r ≤ p. This conclusion

enables us to rewrite the sum over monomials φi as a sum over
half the index range 1 ≤ j ≤ p = n

2

f (t, v,β) =

p
∑

j=1

(

ψj + ψ j

)

≡

p
∑

j=1

[

βj

(t − vj)
+

β j

(t − vj)

]

, (10)

where we relabeled the poles zis, the coefficients αis, and the
monomials φis to make the symmetry explicit.

zj = vj αj = βj φj = ψj

zj+p = vj αj+p = β j φj+p = ψ j
. (11)

Notice that satisfying the C symmetry forces the association of
conjugate coefficients β j with conjugate poles vj.

Imposing the P symmetry explicitly is a bit trickier. It can
be visualized as a symmetry for the complex numbers vj,βj and
their conjugates, living in C. Consider the poles vk in the right
(R) upper-half of the complex plane H

+R, that is those vk with
ℜe(vk) > 0 and ℑm(vk) > 0. Let the number of vk in H

+R be q.
Applying the P symmetry to the monomials ψk with poles vk in
H

+R yields:

ψk(t, v,β) =
βk

(t − vk)
−→ −

βk

(t + vk)
= ψk(t,−v,−β).

Consequently the reflection operation maps a rational monomial
with a pole in H

+R to a monomial with a pole in H
−L. For f

to be invariant under reflection, the q ψj monomials with poles

in H
+R “must” map to the ψ j monomials with poles in H

−L.

By complex conjugation, these same q ψj monomials map to ψ j

monomials inH
−R, consequently p = 2q. Nowwe can enumerate

themonomials such that the first half ofψj are inH
+R, the second

half of ψj are in the H
+L, the first half of ψ j are in H

−R and the

last qψ j are inH
−L. Invariance under reflection implies then that

ψk(t,−v,−β) = ψk+q(t, v,β) for 1 ≤ k ≤ q. The same reasoning

can be repeated formonomialsψk inH
+L. Finally, we can express

f by summing over a reduced range 1 ≤ k ≤ q as

f (t,w, γ) =

q
∑

k=1

(

χk + χk + χ

�

k + χ

�

k

)

(12)

=

q
∑

k=1

[

γk

t − wk
+

γ k

t − wk
−

γk

t + wk
−

γ k

t + wk

]

.

Once again, we have relabeled poles, coefficients, and monomials
so as to make explicit the symmetry indicated by the

�

symbol

vk = wk βk = γk ψk = χk
vk+q = w

�

k = −wk βk+q = γ

�

k
= −γ k ψk+q = χ

�

k
vk = wk βk = γ k ψk = χk

vk+q = w

�

k
= −wk βk+q = γ

�

k
= −γk ψk+q = χ

�

k

. (13)

We would have reached the same result if we started to require
invariance under the symmetries in reverse order4.

3.2. Residual Level Function
Let us expand Equation (7) by temporarily disregarding the
discrete symmetries of the rational function and expressing f as
in Equation (5)

F(z,α) = ‖h−
∑

i

αiφi‖
2
2

=< h−
∑

i

αiφi, h−
∑

i

αjφj >

=< h, h > −2ℜe[
∑

i

< φi, h > αi]+
∑

i

∑

j

αiαj

< φi ,φj > .

The residual level function is expressible as

F(z,α) = α†Gα − 2ℜe[η†α]+ ‖h‖2 (14)

where the x† ≡ x⊤ indicates complex conjugation plus
transposition (Hermitian conjugation) and

Gij =< φi,φj >, ηi =< φi, h > .

4Physicists refer to the combination of these two discrete symmetries as CP

invariance. A necessary condition for its existence is that the operators generating

the transformations must commute.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

The inner products < ·, · > are defined through a weight
function G(t)

< φi,φj >=

∫ +∞

−∞

G(t)φi(t)φj(t)dt =

∫ +∞

−∞

G(t)

(t − zi)(t − zj)
dt,

(15)
and

ηi =< φi, h >=

∫ +∞

−∞

G(t)h(t)

t − z̄i
dt ‖h‖2 =

∫ +∞

−∞

G(t)h(t)2 dt.

We could have started directly with the CP invariant formulation
from Equation (12) of the rational function f . We preferred this
approach in order to show how requiring each symmetry to be
satisfied has direct consequences on the structure of the matrix G
and vector η. Recall from Equation (11) how the zis and αis were
mapped to vjs and βjs so as to make explicit the C symmetry.
Due to such map, the residual level function has the following
block structure:

F(v,β) =
(

β† β⊤
)

(

A B

B A

)(

β

β

)

− 2ℜe

[

(

ζ † ζ⊤
)

(

β

β

)]

+ ‖h‖2

(16)
with

Ai,j =

∫ +∞

−∞

G(t)

(t − vi)(t − vj)
dt ζi =

∫ +∞

−∞

G(t)h(t)

t − vi
dt

B i,j
i6=j

=

∫ +∞

−∞

G(t)

(t − vi)(t − vj)
dt Bi,i =

∫ +∞

−∞

G(t)

(t − vi)2
dt

for i, j = 1, . . . , p. ThematrixA is Hermitian while B is symmetric
(complex), so that B = B†. This equation can be reduced since it
contains only half of the unknowns as the initial residual level

function. For example β⊤A β = β†Aβ and β†Bβ = (β⊤Bβ),
so that

(

β† β⊤
)

(

A B

B A

)(

β

β

)

= 2
[

β†Aβ +ℜe
(

β†Bβ
)]

and similarly ζ †β = ζ⊤β . With the simplifications above the
residual level function reduces to

F(v,β) = β†Aβ +ℜe
(

β†Bβ
)

− 2ℜe
(

ζ †β
)

+
1

2
‖h‖2. (17)

Now we can require the latter equation to satisfy the reflection
symmetry P. Equation (13) maps poles vj and coefficients
βj respectively to wk and γk, so as to make the reflection
symmetry explicit. The residual level function now takes on a new
block form

F(w, γ) =
(

γ † (γ

�

)⊤
)

(

X Y

Y† X

�

)

(

γ

γ

�

)

+ℜe

[

(

γ † (γ

�

)⊤
)

(

W Z

Z† W

�

)

(

γ

γ

�

)

]

− 2ℜe

[

(

θ† (θ

�

)⊤
)

(

γ

γ

�

)]

+
1

2
‖h‖2 (18)

with

Wk,ℓ =

∫ +∞

−∞

G(t)

(t − wk)(t − wℓ)
dt W

�

k,ℓ =

∫ +∞

−∞

G(t)

(t + wk)(t + wℓ)
dt

Xk,ℓ =

∫ +∞

−∞

G(t)

(t − wk)(t − wℓ)
dt X

�

k,ℓ =

∫ +∞

−∞

G(t)

(t + wk)(t + wℓ)
dt

Yk,ℓ =

∫ +∞

−∞

G(t)

(t − wk)(t + wℓ)
dt Zk,ℓ =

∫ +∞

−∞

G(t)

(t − wk)(t + wℓ)
dt

θk =

∫ +∞

−∞

G(t)h(t)

t − wk
dt θ

�

k =

∫ +∞

−∞

G(t)h(t)

t + wk
dt

for k, ℓ = 1, . . . , q. These submatrix blocks can be computed
analytically (see Appendix A), and preserve some of the
properties of the matrix they are part of. For instance, X† = X
andW = W† while the P symmetry imposes new equalities Y† =

Y

�

and Z† = Z

�

. In addition to these, the P symmetry allows
for additional equalities thanks to the symmetric integration
boundaries of the inner product 〈·, ·〉. In other words

∫ a

0
g(t,wk) dt =

∫ 0

−a
g

�

(t,wk) dt for g an even function of t

∫ a

0
g(t,wk) dt = −

∫ 0

−a
g

�

(t,wk) dt for g an odd function of t.

The direct implication of this observation is that, for instance,
X = X

�

,W = W

�

.
If we expand the matrix expression for the residual level

function and exploit all the symmetries the final expression for
F becomes

F(w, γ) = γ †Xγ +
(

γ †Xγ
)⊤

− 2 ℜe
(

γ †Yγ
)

(19)

+ℜe

[

γ †Wγ +
(

γ †Wγ
)†

− 2 γ †Zγ

]

− 2 ℜe
(

θ†γ − (θ

�

)⊤γ
)

+
1

2
‖h‖2.

Despite the apparent complexity of the expression above, it would
have been quite more complex if we started to compute the
residual level function directly from Equation (12); the quadratic
term in γ s alone would have accounted for 16 terms. Moreover
the expression is a function of only γks and their conjugates.
Z and Y matrices appear only once, while X and W can be
transformed after their computation.

3.3. Gradient of the Residual Level
Function
Most optimization methods—including all the ones that we
consider—require the gradient of the residual level function. We
could compute the gradients analytically by using the expression
for F derived in Equation (14). A simpler way is to compute ∇f
out of the formulation in Equation (5) in conjunction with the
formulation of F in terms on inner products 〈·, ·〉

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

∇F = ∇〈h− f , h− f 〉 = −〈∇f , h− f 〉 − 〈h− f ,∇f 〉

= 2
[

〈f ,∇f 〉 − 〈h,∇f 〉
]

. (20)

Since f = f and the ∇ operator acts on the whole inner products,
the quantities 〈∇f , f 〉 and 〈f ,∇f 〉, while formally different, are
actually the same. In addition, the gradient of a real function
with respect to the conjugate of a complex variable is necessarily
the conjugate of the gradient with respect to the variable itself:

∇zf =
∂f
∂z =

∂f
∂z = ∇zf . Consequently we do not need to explicitly

compute the gradient with respect to the conjugate of the poles
and the coefficients. Equation (20) can be written making explicit
use of the C-symmetric or the full CP-symmetric formulation of
f , which is Equations (10) and (12) respectively.

C symmetry – Let us first derive f with respect to vk and βk

∂f

∂vk
=

βk

(t − vk)2
;

∂f

∂βk
=

1

(t − vk)
.

The expression above is the kth-component of the gradients
∇vf and ∇β f respectively. Plugging them in Equation (20) and
separating terms, we arrive at the matrix expressions

∇vF = 2
[

β†∇A+ β⊤∇B− ∇ζ †
]

Iβ (21)

∇βF = 2
[

β†A+ β⊤B− ζ †
]

(22)

where A, B, and ζ are the same quantities defined in section 3.2,
while remaining matrices are defined for i, j = 1, . . . , p:

∇Ai,j =

∫ +∞

−∞

G(t)

(t − vi)(t − vj)2
dt ∇ζi =

∫ +∞

−∞

G(t)h(t)

(t − vi)2
dt

∇Bi,j =

∫ +∞

−∞

G(t)

(t − vi)(t − vj)2
dt Iβ = diag (β)

CP symmetry – Analogously to what is done in the C-symmetric
case, we first compute the derivatives of f with respect to the poles
and the coefficients

∂f

∂wk
= γk

[

1

(t − wk)2
+

1

(t + wk)2

]

;

∂f

∂γk
=

1

(t − wk)
−

1

(t + wk)
.

After entry-wise substitution of the above components of ∇wF
and ∇γ F, some tedious rearrangement, and using the parity
with respect to the integration limits, we arrive at the following
matrix equations

∇wF = 4
[

γ † (∇X −∇Z)+ γ⊤
(

∇W − ∇Y
)

− ∇θ†
]

Iγ (23)

∇γ F = 4
[

γ † (X − Z−)+ γ⊤
(

W − Y−
)

− θ†
]

. (24)

The matrices not previously introduced are defined as follows.
For k, ℓ = 1, . . . , q:

∇Xk,ℓ =

∫ +∞

−∞

G(t)

(t − wk)(t − wℓ)2
dt

∇Zk,ℓ = −

∫ +∞

−∞

G(t)

(t − wk)(t + wℓ)2
dt

∇Wk,ℓ =

∫ +∞

−∞

G(t)

(t − wk)(t − wℓ)2
dt

∇Yk,ℓ = −

∫ +∞

−∞

G(t)

(t − wk)(t + wℓ)2
dt

∇θk =

∫ +∞

−∞

G(t)h(t)

(t − wk)2
dt Iγ = diag (γ)

Notice that, in both C-symmetric and CP-symmetric cases, the
gradients are row vectors. While this is an arbitrary choice, it is
a quite natural one to make. Moreover we decided to maintain
the overall multiplicative factor in front of them; such a factor
was scaled out of F when writing this in a symmetry transparent
form. Once again this is an arbitrary choice since re-scaling the
gradient of F does not influence the minimization process.

4. OPTIMIZING RATIONAL FILTERS FOR
HERMITIAN OPERATORS

Our goal is to minimize the residual level function F(x) of
Equation (19) where we defined x = (w, γ) for sake of
conciseness. There are a number of possible approaches to the
minimization problem. Starting at a given position x(0), descent
methods minimize F(x) by iteratively refining this position,
such that F(x(k+1)) ≤ F(x(k)). Using the CP symmetries the
minimization problem can be stated as

min
x

F(x) = min
x

||h− f (x)||22, (25)

with the initial choice of parameters, or starting position, of the

form x(0) = [w
(0)
1 , ...,w

(0)
q , γ

(0)
1 , ..., γ

(0)
q].

In section 4.1, we use the the simple gradient-descent method
as a first example of minimization of Equation (25). Section 4.2
illustrates the more sophisticated Levenberg-Marquardt method,
which is more appropriate for non-convex Least-Squares
problems. Depending on the starting position, descent methods,
including the Levenberg-Marquardt method, may produce
results that are not globally optimal. Section 4.3 deals with
the choice of the starting position in a way that mitigates
this problem. Section 4.4 delves into constrained optimization
where it is advantageous to optimize more than just the
squared differences between the filter and the indicator function
h(t). Section 4.5 concludes with a brief introduction of the
software package specifically developed in the Julia programming
language for this research project.

4.1. Optimization via Gradient Descent
In this section we remark, through the most basic descent
method—gradient descent—on a number of issues of the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

TABLE 1 | Poles, coefficients, and residual levels of the filter functions show in

Figure 5.

Starting position 1 Starting position 2 Starting position 3

w1 +0.997360+ 0.044537i +0.721876+ 0.550662i +0.742834+ 0.246735i

w2 +0.721876+ 0.550662i +0.997360+ 0.044537i +0.744336+ 0.212182i

γ1 −0.024019− 0.002516i −0.135117− 0.148326i −0.791429− 0.331455i

γ2 −0.135117− 0.148326i −0.024019− 0.002516i +0.639334+ 0.196414i

F ([w γ]) 0.005846 0.005846 0.033640

optimization process. A gradient descent step drives down
the residual level function, at the current position, along a
direction colinear with its negative gradient. Given some mild
assumptions, one eventually arrives at a local minimum. For a
given starting position x(0) the update step of the gradient descent
method is

x(k+1) = x(k) + s ·1x(k) = x(k) − s · ∇xF(x)
∣

∣

x=x(k)
, s ≥ 0. (26)

There are a number of ways to select the step-length s in
Equation (26). While it is possible to set s as constant, we
can improve the convergence of the method by approximating
s(k) = argmin1≥u≥0F(x

(k) + u · 1x(k)) at each iteration. To
this end, we use a backtracking line search [22]: s is initialized
at each step with s = 1 and then s is halved until F(x + 1x) <
F(x)+ s

2∇xF(x)1x.

Remark 1 (Slow convergence): Gradient descent is a fairly slow
method, with linear convergence behavior at best. Even when
equipped with a line-search the number of iterations required to
reach a minimum is often in the millions.

In Table 1, we present three filters obtained using the gradient
descent method. The real and imaginary part of the poles w and
coefficients γ of the starting positions were chosen uniformly
random between [0, 1]5. For each filter function q = 2, and so
the filters have a total of 8 poles and coefficients. Starting Position
1 and 2 end in the same filter. Starting Position 3 generates a
different filter with a residual level that is one order of magnitude
higher than the others. The three filters are plotted on semi-log
scale and on a normal scale on the right hand side and the left
hand side of Figure 5, respectively. As the semi-log plot shows,
this last filter will likely perform significantly worse than the
first two.

Remark 2 (Dependence on starting position): The filter obtained
from the optimization depends on the starting position x(0).
Different starting positions can result in very different filters
with different residual levels. Our experiments indicate that when
increasing q the optimization finds more and more local minima,
and their residual levels compared to the best known solutions
get worse.

5The Least-Squares weights used to obtain these results are 1.0 inside

[−1000, 1000] and 0.0 everywhere else.

4.2. Improving Convergence Speed
We address Remark 1 by introducing the Levenberg-Marquardt
method [23, 24] (LM), which is a solver for non-linear Least-
Squares problems with a better convergence rate than gradient
descent. LM is a hybrid of the gradient descent and the
Gauss-Newton method (a detailed description of both methods
can be found in Madsen et al. [25]). We present the Gauss-
Newton method first, then introduce the LM method. We
give a formulation based on the inner product presented in
Equation (15).

For the sake of clarity, we re-write the residual level function
in terms of ξ ([α z], t) = h(t)− f (t, z,α)

F(x) = ||ξ (x)||22 = 〈ξ (x), ξ (x)〉 =

∫ ∞

−∞

G(t)|ξ (x, t)|2dt

=

∫ ∞

−∞

G(t)|h(t)− f (t, z,α)|2dt,

where we indicate the collection of parameters [z α] with x. The
basis of the Gauss-Newton method is a linear approximation of ξ

ξ (x+1x) ≈ ξ (x)+ ∇ξ (x) ·1x
.
= ξ +

∑

i

∂ξ

∂xi
1xi (27)

which, in the following, we refer to with the shortcut
notation ξ + ∇ξ ·1x. The Levenberg-Marquardt method aims
at minimizing a linear approximation of the residual level
function by Gauss-Newton iterates. By using the linear
approximation of ξ , such a requirement can be formulated as the
minimization of the following function with respect to1x

F(x+1x) = ||ξ (x+1x)||22 ≈ 〈ξ , ξ 〉 + 2〈ξ ,∇ξ ·1x〉

+ 〈∇ξ ·1x,∇ξ ·1x〉

= F(x)+ ∇F(x) ·1x+ (1x)† · 〈∇ξ ,∇ξ 〉 ·1x.

Notice that the condition ξ (x + 1x) = ξ (x + 1x) implies that
(1x)† · ∇ξ = ∇ξ ·1x with the consequence that 〈∇ξ ·1x, ξ 〉 =
〈ξ ,∇ξ · 1x〉. Taking the partial derivative of F(x + 1x) with
respect to1x and equating it to zero one gets

∂1xF(x+1x) = 2 [〈ξ ,∇ξ 〉 + 〈∇ξ ,∇ξ 〉 ·1x] = 0

Using the formulation above, the Gauss-Newton method iterates
over k in the following way:

1. Set: H : = 〈∇ξ (x(k)),∇ξ (x(k))〉

2. Solve: H ·1x
(k)
GN = 〈ξ (x(k)),∇ξ (x(k))〉 = −

1

2
∇F(x(k))

3. Update: x(k+1) = x(k) + s ·1x
(k)
GN .

Here H acts as a linear approximation of the Hessian of
F. Consequently, if H is well-conditioned, the Gauss-Newton
method can have quadratic convergence. However, there are
still scenarios where Gauss-Newton steps provide only a small
improvement of the residual. In those cases it is beneficial to
temporarily switch to gradient descent, even though it only has

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

FIGURE 5 | (A) Three SLiSe filters obtained from gradient descent with different starting positions. (B) Semi-log plot with absolute value of the filter functions. The

poles and residuals of the functions are listed in Table 1.

linear convergence at best. The Levenberg-Marquardt method
employs a dampening parameter µ ≥ 0 to switch between
the Gauss-Newton and gradient descent methods. By adding a
dampening term, the second step is substituted by

2. Solve: (H + µI)1x
(k)
LM = −

1

2
∇F(x(k)), (28)

where the gradient of F is intended over both the poles
and coefficients. Such an addition is equivalent to a
constrained Gauss-Newton with the parameter µ working as a
Lagrange multiplier.

In practice, the dampening parameter µ is re-adjusted after
every iteration. For a small µ, the solution to Equation (28) is
similar to the Gauss-Newton update step1xLM ≃ 1xGN . On the
other hand, when µ is large then 1xLM ≃ − 1

µ
∇F(x), which is

similar to the gradient descent update step. Often, instead ofH+

µI one usesH +µ · diag(H). Generally, when a LM-step reduces
the residual by a large amount, then µ is decreased. When a step
does not decrease the residual, or does not reduce the residual by
enough, µ is increased. So for large µ the resulting update1xLM
becomes increasingly similar to the gradient descent update.

Since the formulations of the LM method given so far
is independent from the symmetry of f , it is valid for any
formulation of the rational filter. Let us look now more in detail
atH. This is a matrix whose entries areHi,j = 〈∇xi f ,∇xj f 〉 which,
in the case of CP symmetry, can be represented in block form as

H =









H2 −H1 H1 −H2

−H1 H†
2 −H†

2 H1

H1 −H†
2 H†

2 −H1

−H2 H1 −H1 H2









. (29)

Only two of the matrix blocks composingH are independent and
are made of the following sub-blocks

H1 =

(

〈∇wf ,∇wf 〉 〈∇wf ,∇γ f 〉
〈∇γ f ,∇wf 〉 〈∇γ f ,∇γ f 〉

)

= 2

(

Iγ
[

∇∇W − ∇∇Y
]

Iγ Iγ
[

∇W − ∇Y
]⊤

[

∇W − ∇Y
]

Iγ W + Y

)

(30)

H2 =

(

〈∇wf ,∇wf 〉 〈∇wf ,∇γ f 〉
〈∇γ f ,∇wf 〉 〈∇γ f ,∇γ f 〉

)

= 2

(

I†
γ

[

∇∇X − ∇∇Z
]

Iγ I†
γ [∇X − ∇Z]†

[∇X − ∇Z] Iγ X − Z

)

(31)

where the only additional matrices that need to be defined are

∇∇Wi,j =

∫ +∞

−∞

G(t)

(t − wi)2(t − wj)2
dt

∇∇Y i,j = −

∫ +∞

−∞

G(t)

(t − wi)2(t + wj)2
dt

∇∇Xi,j =

∫ +∞

−∞

G(t)

(t − wi)2(t − wj)2
dt

∇∇Zi,j = −

∫ +∞

−∞

G(t)

(t − wi)2(t + wj)2
dt.

The factor of 2 in front of the block matrices H1 and H2 comes
from the P symmetry in combination with the evenness of the
integral boundaries (i.e. X = X

�

, ∇X = ∇X

�

, etc.). Notice that
block rows 3 and 4 of Equation (29) are exactly equivalent, up
to a sign, to block rows 2 and 1 respectively. Similarly, block
columns 3 and 4 are proportional to block columns 2 and 1. This
is expected due to the CP symmetry. In addition, H1 is complex

symmetric (H†
1 = H1), and H2 is complex Hermitian (H†

2 = H2)
which, implicitly, verifies that H is complex Hermitian itself.

Going back to the Equation (28), one can also write the vector
1xLM in block notation,

(1xLM)⊤ = [(1y)⊤ − (1y)† (1y)† − (1y)⊤]

with (1y)⊤ = [1w⊤1γ⊤]. Writing Equation (28) in terms
of 1y with µ · diag(H) in place of µI one obtains 4 separate
equations. Thanks to the symmetries ofH, it is possible to reduce
them to a single equation solving for 1y. There are several
different ways to achieve this result. Starting from the third

equation, one can extract
(

H11y
)

as a function of H†
2 , 1y, and

∇yF, then take the conjugate of it, and substitute it in the fourth
equation. The final result is a linear system whose dimension is
one fourth of the original size of H

[

iℑm (H2)− µ diag (H2)
]

1y =
1

2
∇yF. (32)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

The Levemberg-Marquardt method is considerably faster than
gradient descent. Let us illustrate their performance difference
with a short example. The optimization process for γ -SLiSe
carried on with Levemberg-Marquardt (see section 2.2) requires
8.2 · 105 iterations and about 711 s on an Intel i7-5600U
CPU. On the other hand, gradient descent needs 1.0 · 107

iterations and about 3.5 h for the same optimization on the same
hardware. Comparing the performance of both approaches using
only number of iterations can be misleading. Each optimization
method performs a very different amount of work per iteration:
LM assembles and solves a linear system, while gradient descent
performs a line-search and thus evaluates the residual level
function many times. Nevetheless, by providing iteration counts
and timings there can be no doubt that the LM method is
significantly faster than gradient descent. Such result is obtained
thanks to the improved convergence of the LM method together
with the reduced size of the equation to be solved.

4.3. Systematic Choice of Starting Position
In general, random choices for w and γ do not produce good
filters. In Figure 5 we have seen an example of multiple local
minima of the residual level function F with q = 2. To realize why
the starting positions are crucial for the optimization method
let us consider what happens when increasing the number of
poles and coefficients q in one quadrant of C. 6 Our extensive
numerical experiments indicate that higher q values not only
increase the number of local minima in F, but have the effect
of worsening the residual levels of most of these additional local
minima w.r.t. the best known local minimum. In one of our
numerical experiments, using a random starting position with
q = 8 yields a filter with a residual of 5.4× 10−4, while with q =

4 we achieved a residual level of 2.4 × 10−4. Choosing q =

8 requires 16 linear system solves for each filter application,
whereas q = 4 requires only 8 solves. To offset the additional
cost of the linear system solves we want a filter that has a lower
residual level, thus likely requiring fewer subspace iterations.
Without a good starting position we obtain a filter with q = 8 that
requires more linear system solves and more iterations. What is
more, the optimization for a filter with q = 8 is significantly more
expensive than for q = 4. Simply put, random starting positions
tend to yield worse and worse filters for larger q.

We can reinterpret the problem of finding good starting
positions for the poles and coefficients as finding a filter that
serves as a good initial guess for an optimized filter. To this
purpose we could use contour filters expressed through a
numerical implementation of Cauchy’s Residue Theorem (see
section 2.1), namely the Gauss and Trapezoidal filters, or more
specialized ones, like the Elliptic filter, that have already been
proposed as substitutes for the contour solvers [16].

Figure 6 shows the residual levels of different filters for
different q. The residual levels of the Gauss and Elliptic filters
are indicated with blue and red triangles respectively. Conversely,
shown with blue and red circles are the residual level of the
filters that are obtained when the initial position of the SLiSe

6For some spectrum slicing methods, such as the DD-PP projection [26] which

does not iterate the subspace, it is essential to be able to choose large q.

optimization is started with the corresponding Gauss and Elliptic
filter poles and coefficients. The SLiSe filters have significantly
lower residual levels than the Gauss and Elliptic filters. Using
poles and coefficients from Gauss and Elliptic filters as starting
positions for a q < 10 results in the same unconstrained SLiSe
filter, although the Gauss and Elliptic are quite different. While
we cannot claim optimality for the SLiSe filters so obtained,
but we have extensively explored the space of initial conditions
and found no evidence of better filters obtained starting from
different positions. In our experience existing filters, and the
Elliptic filter in particular, make for excellent starting positions
practically eliminating the problem of finding an appropriate
starting position.

4.4. Constrained Optimization
In this section we discuss two filter properties that can be
achieved by implementing constraints on the optimization. First,
we introduce a penalty term on the gradient of the filter function,
which results in filters of varying “steepness” and with varying
amounts of “overshooting.” Given our standard search interval,
[−1, 1], we call the derivative of the filter f (t) at the endpoints of
the interval ∇tf (t)|t=1 = −∇tf (t)|t=−1 the steepness of the filter.
The steepness—or separation factor—of a filter has previously
been suggested as a quality measure in the context of optimizing
exclusively the coefficients of the rational function [18]. A steep
filter is considered desirable because it dampens eigenvalues
outside the search interval even when the eigenvalues are close to
the interval endpoints and, in doing so, improves convergence.
When optimizing the poles of the rational functions together
with its coefficients the steepness alone does not serve as a good
measure of quality anymore. It is possible for a filter to be steep,
and yet not to dampen eigenvalues outside of the search interval
sufficiently well. The lack of dampening is due to an effect called
“overshooting,” which is a known behavior when approximating
discontinuous functions with continuous ones. Usually a very
steep filter tends to overshoot at the endpoint of [−1, 1], and
conversely filters that do not overshoot are not particularly steep.
By adding a penalty term to the residual level function and tuning
the value of the parameter c, we disadvantage those features that
make for ineffective filters

min
wi ,γi 1≤i≤q

||h− f (w, γ)||22 +
c

2
·
[

∇tf (t)|t=1 − ∇tf (t)|t=−1

]

.

(33)

Note that since ∇tf (1) is supposed to be negative, a positive c will
make for a steeper filter when minimizing the residual.

A different kind of constraint, namely a box constraints on the
imaginary part of the poles, may be advantageous when Krylov
solvers are used for the linear system solves as they appear in
Equation (2). In such cases, the condition number of the shifted
matrix M − wiI may become large when |ℑm(wi)| is small,
which can occur for large degrees of the Elliptic and SLiSe filters.
One possible way to circumvent this problem is to ensure that
the absolute value of the imaginary part for each pole is large
enough. For SLiSe filters this translates into a box constraint d

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

FIGURE 6 | Residual levels of Gauss and Elliptic filters, as well as, SLiSe filters obtained from Gauss and Elliptic filters as starting positions.

FIGURE 7 | Examples of filters obtained via penalty terms. (A) An appropriately sized penalty parameter yields filters of different steepness. (B) Too large a (positive)

penalty parameter results in a pole on the real axis.

on the parameters:

min
wi ,γi 1≤i≤q

||h(t)− f (t,w, γ)||22 s.t. ∀i : |ℑm{wi}| ≥ d . (34)

Both approaches to constrained optimization presented in
this section require some tuning in the selection of the
parameters. This lack of automatism is the exception in our
work. Constrained optimization without the need for extensive
parameter selection is an area of future work. In section 4.4.1,
we discuss how to adjust the optimization to generate filters
of varying steepness, while section 4.4.2 describes the box
constraints approach.

4.4.1. Steepness and Overshooting via Penalty Term
From a visual inspection of Figure 3A it is evident how the Gauss
filter starts to drop significantly earlier than the endpoint of the
search interval at t = 1, and it is significantly less steep than
the γ -SLiSe filter. Conversely, the latter maintains a value close
to one inside the search interval closer to the endpoint, and it
takes small values just outside the search interval. The increased
steepness of the γ -SLiSe filter comes at the cost of overshooting:
the SLiSe filter shoot up above 1 and drops below 0 just inside
and outside the search interval respectively. The surge above
1 is not a problem, however the overshooting outside [−1, 1]
is an undesirable effect since it maps eigenvalues to relatively
large negative—and thus large in magnitude—values outside the
endpoints, hurting convergence.

While it is possible to increase the steepness of SLiSe filters
via the penalty term, there is little benefit in even steeper

TABLE 2 | Residual levels and steepness of the filter functions shown in

Figure 7A.

Penalty parameter c Residual Steepness

0 2.265829× 10−5 −1.211081× 104

−2 · 10−10 2.279018× 10−5 −1.063877× 104

+2 · 10−10 2.288353× 10−5 −1.429542× 104

filters with more overshooting. Figure 7A shows an illustrative
example of filters obtained with an appropriately sized penalty
parameter and number of poles per quadrant q = 4. Table 2
shows the residuals without penalty term and the steepness
of the filter ∇tf (1) for the resulting filters. A negative penalty
term tends to decrease steepness and overshooting while a
positive c increases them. Since the penalty parameter is chosen
significantly smaller than the residual, the change to the filter is
not very pronounced. Choosing a larger penalty parameter may
have negative consequences and requires great care, especially
when c is chosen to be positive. Figure 7B shows a filter generated
with a larger value for c, resulting in a very steep slope. Such filter
has a pole on the real axis that causes significant overshooting
which substantially hurts convergence. Additionally, a real pole
affects the corresponding linear system, which can become
seriously ill-conditioned causing failure or slow converge of
the iterative solver. While a large and positive parameter is
problematic because of the risk of a real pole, this is usually not
a concern in practical applications. Often, it is more important

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

to limit the overshooting than it is to make the already steep
SLiSe filters even steeper. Figure 7B shows that a negative penalty
parameter c reduces overshooting. η-SLiSe was obtained using a
negative penalty parameter, which we discuss further in section 5.

4.4.2. Large Imaginary Parts via Box Constraints
Implementing box constraints in our framework is
straightforward: Instead of the old update step in Equation
(26) we use gradient projection by updating as follows

x(k+1) = P(x(k) − s · ∇xF(x)
∣

∣

x=x(k)
) , s ≥ 0, (35)

where P(x) projects x into the constraints. In practice we project
onto the constrained value only when the constraint is violated.
We implement this scheme by forcing the absolute value of the
imaginary part of every pole to be equal or larger than some value
lb. For a single pole wl the projection is

P(wl) =

{

ℜe(wl)+ i · sgn(ℑm(wl)) · lb |ℑm(wl)| < lb

ℜe(wl)+ i · ℑm(wl) otherwise .

In the following, we compare filters with different box
constraints. Figure 8 shows four filters each with q = 4. Shown
are the Elliptic filter, a SLiSe filter obtained via unconstrained
optimization7, and two additional SLiSe filters obtained with
different lb constraints. For the Elliptic filter min1≤i≤q |ℑm(wi)|
is about 0.0022, while it is 0.001 for the unconstrained SLiSe filter.
In the case of the constrained SLiSe filters, we consider “SLiSe
(lb=0.0022)” filter, with a lb corresponding the the Elliptic
filter. Additionally, we also examine “SLiSe (lb=0.0016)”
generated with a constraint of 0.0016, about half way between
the Elliptic and the unconstrained SLiSe filters. We calculate the
condition number for each of the shifted linear systems that
result from an application of the filter to each of the benchmark
problems illustrated in section 2.

Figure 8 is a performance profile of the largest condition
number for each of the benchmark problems. The Elliptic
filter and the SLiSe (lb=0.0022) perform identically in the
performance profile. Both filters have a value of one over the
entire abscissa range, which indicates that the condition numbers
are the same. The figure implies that the largest condition number
is influenced solely by the smallest absolute imaginary value
of the poles. Accordingly, the constrained filter with lb of
0.0016 performs worse, and the unconstrained SLiSe filter is the
worst. This effect can be understood by realizing that the shifted
matrices M − Iwl become nearly singular only if wl is near an
eigenvalue of M. An increase in the lb constraint has a large
influence on the filter. As a result, caution is required when
optimizing with box constraints.

4.5. The SliSeFilters Software Package
The optimization methodology described in section 4 is
implemented in a software package written in the Julia
programming language and can be accessed by the interested
reader in a publicly available repository named SliSeFilters8.

7The weights are available in Appendix C under “Box-SLiSe.”
8https://github.com/SimLabQuantumMaterials/SLiSeFilters.jl

The code is fairly straithforward and aims at a fire-and-forget
approach, where the target is to obtain the desired results without
parameter space exploration. There is one set of parameters
that have not been discussed but nonetheless can influence the
outcome of the optimization procedure: the weight functions
G(t). While the automatic selections of G(t) is the topic of a
forthcoming publication, here we briefly remark on the adoption
of three simple guidelines for the choice of the weight functions.
Each guideline is a heuristic that can be easily implemented as
part of the optimization algorithm, or checked manually.

Guideline 1 (Outside): Slowly taper off the weights in a large
enough neighborhood outside the search interval. In order to
avoid trial-and-error, it is advisable to detect increasing local
maxima of the absolute value of the rational function during the
optimization process and increase the weights where required.

Guideline 2 (Endpoints): The weight function should be selected
so as to be symmetric around the endpoints of the search interval.
Accordingly, during the optimization process, choose G(±1 −

ǫ) = G(±1 + ǫ) for ǫ ≤ 0.2. Additionally, if desired, scale the
resulting filter to f (±1) = 0.5.

Guideline 3 (Inside): The weights in the entire search interval
should be chosen large enough to prevent large oscillations.
During the optimization process, it is advisable to monitor
the difference between minima and maxima of the filter inside
[−1, 1] and adapt weights accordingly.

5. A RICH VARIETY OF FILTERS:
PRACTICE AND EXPERIENCE

In the previous section we discussed a number of techniques
to influence the optimization procedure. Some of the filters
resulting from this procedure are already presented in section 2.
In this section we illustrate the effects of the constrained
optimization described in section 4.4 and highlight its potential.
First, we discuss η-SLiSe, where a penalty parameter is used
to limit overshooting. Second, we present a filter that uses
box constraints to achieve better condition numbers for the
shifted matrices that arise from the filter application. In these
examples the focus is on illustrating the power of the SLiSe
filters by showing the improvement over the Elliptic filter. All
the experimental tests are executed on the same benchmark set
described and used in section 2. For experimental tests using
benchmark sets generated from different eigenvalue problems,
we refer the reader to the Jupyter notebook which is part of the
freely available test suite9.

5.1. Penalty Parameter: η-SLiSe
We have seen η-SLiSe in section 2.3, where we compare its
convergence rate to the Elliptic and Gauss filters. η-SLiSe
was obtained via a negative penalty parameter, to limit the

9https://github.com/SimLabQuantumMaterials/Spectrum

SlicingTestSuite.jl.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 February 2019 | Volume 5 | Article 5

https://github.com/SimLabQuantumMaterials/SLiSeFilters.jl
https://github.com/SimLabQuantumMaterials/SpectrumSlicingTestSuite.jl/blob/master/doc/notebooks/demo.ipynb
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

FIGURE 8 | Performance profile comparing the worst condition number for the linear systems arising from filter application to 2116 problems obtained from the “Si2”

matrix. The performance ratio for the Elliptic and SLiSe (lb=0.0022) filters are one over the entire abscissa range.

FIGURE 9 | Plots of the Elliptic filter, η-SLiSe, and the η-SLiSe filter without penalty term. All filters have 16 poles and coefficients. (A) Semi-log plot. (B) Semi-log plot.

Abscissa limited to [1, 1.01].

overshooting of the filter. Without the penalty term the filter
would perform significantly worse. Figure 9 shows the Elliptic
and η-SLiSe filter, and the unconstrained version of η-SLiSe.
Figure 9A shows an abscissa range of [0.95, 1.4]. At this scale
both SLiSe filters look identical and oscillate less than the Elliptic
filter, which we would expect from the rate of convergence for
η-SLiSe. Figure 9B shows the same filters for an abscissa range
of [1, 1.01], just outside the search interval. At this scale, the two
SLiSe filters are very different. The SLiSe filter without penalty
term is steeper and overshoots more than the Elliptic filter, which
results in larger absolute function values inside [1.001, 1.006].
The penalty parameter for η-SLiSe was chosen large enough
to make the filter about as steep as the Elliptic filter. As a
result, η-SLiSe overshoots less than the unconstrained filter and
oscillates at a magnitude only slightly larger than the Elliptic
filter. Compared to the Elliptic filter, η-SLiSe trades-off slightly
larger (absolute) function values near the end of the search
interval for much smaller values farther away.

The value of the penalty parameter is chosen to be of large
absolute value, as compared to the values in section 4.4.1. Such
a large penalty parameter results in a significant reduction in the
steepness and overshooting of the filter. The difference between
the SLiSe filters with and without penalty term is large near
the end of the search interval, but negligible in [1.05,∞]. In
“designing” such a filter we first chose the weights such that
the filter has the desired behavior for most of the t axis, e.g.,
[0, 1]∪[1.05,∞] and overshoots slightlymore than desired. Then,
we used a negative penalty term to lessen the overshooting; this
step usually requires only very few iterations.

5.2. Box Constraint: κ-SLiSe
Figure 10A shows a performance profile of the Gauss,
Elliptic, and ζ -SLiSe filter that compares the rates of
convergence for these filters. It appears that ζ -SLiSe would
be a better replacement for the Elliptic filter than η-
SLiSe, as shown in Figure 4. However, ζ -SLiSe filter does
not conform to Guideline 1. The filter has a single local
extremum that has a significantly larger absolute value
than both of its neighboring extrema. This extremum is
still smaller than the equi-oscillation of the Elliptic filter,
which is the reason why ζ -SLiSe performs better than the
Elliptic filter.

There is another problem with ζ -SLiSe. The filter has a pole
with an absolute imaginary value of min1≤i≤q |ℑm(wi)| ≈ 0.001.
Analogously to the filters discussed in section 4.4.2, this small
imaginary part deteriorates the convergence of Krylov-based
linear system solvers. To mitigate this problem we can use box
constraints to obtain a filter where each pole has an absolute
imaginary value of at least 0.0022, the same value of the Elliptic
filter. The κ-SLiSe, obtained with a box constraint of lb(=0.0022)
and the same weight function used to obtain ζ -SLiSe. κ-SLiSe
violates Guideline 1, just as ζ -SLiSe does.

Figure 10B shows the performance profile for κ-SLiSe against
the Elliptic filter but without the ζ -SLiSe. The box constraint
results in two changes of κ-SLiSe as compared to the ζ -SLiSe.
First, the box constraint contributes to lessen the overshooting of
the filter. As a result κ-SLiSe attains a better rate of convergence
than the Elliptic filter for 86% of the benchmark problems, as
compared to the 70% of ζ -SLiSe. Second, κ-SLiSe has larger (as

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

FIGURE 10 | Semi-log performance profile of the convergence rate for the Gauss, Elliptic, ζ -SLiSe, and κ-SLiSe filters. All filters have 16 poles and p = m. The last

two filters violate Guideline 1. (A) Performance Profile of the Gauss, Elliptic, and ζ -SLiSe filters. (B) Performance Profile of the Gauss, Elliptic, and κ-SLiSe filters.

TABLE 3 | Overview of SLiSe-filters, the section in which each filter is introduced,

and a short comment for each filter.

Filter Section Comment

γ -SLiSe Section 2.2 Replacement for gauss filter

ζ -SLiSe Section 5.1 Replacement for Elliptic filter; Violation of guideline 1

η-SLiSe Section 2.3 ζ -SLiSe optimized with use of penalty parameter

κ-SLiSe Section 5.2 ζ -SLiSe optimized with use of box constraints

compared to ζ -SLiSe) absolute function values for most of the
t axis, which results in rates of convergence that are closer to the
rates of the Elliptic filter. This behavior is reflected in Figure 10B,
where above a performance ratio of 1.3 the two filters have
exactly the same profile. κ-SLiSe illustrates that box constraints
can be used to obtain SLiSe filters with good convergence rates.
Nevertheless, larger box constraints usually tend to result in
worse rates of convergence, as compared to an unconstrained
filter. While κ-SLiSe is still marginally better than the Elliptic
filter, it yields rates of convergence that are not nearly as good
as ζ -SLiSe or η-SLiSe.

To close out this section, Table 3 provides an overview of
all filters we have presented in this work as well as their
distinguishing features. γ -SLiSe, introduced in section 2.2, is our
proposed replacement for the Gauss filter. As such is it well-
suited as a default filter, when little is known about the spectral
properties of the problem at hand. ζ -SLiSe is a filter that aims to
replace the Elliptic filter, for small spectral gaps at the endpoints
or for application where load-balacing is a priority. Earlier in this
section we discussed ζ -SLiSe, a filter that violates Guideline 1: the
optimization weights G(t) taper off very quickly outside of the
[−1, 1] interval. η-SLiSe—introduced much earlier, in Sec. 2.3—
improves on ζ -SLiSe by means of a penalty parameter that limits
overshooting. Finally, we discussed κ-SLiSe, another variation of
ζ -SLiSe for use with Krylov-based solver for the linear systems
arising from the filter application.

6. CONCLUSIONS AND OUTLOOK

In this work we set up a weighted non-linear Least-Squares
framework for the optimization of a class of rational filters.

Our approach is non-linear in the sense that it optimizes both
the pole placement and the coefficients of the rational filters,
requiring the solution of a non-convex problem. Because of
its non-convexity the iterative optimization process has to be
carefully engineered so as to guarantee symmetry preservation
and numerical stability. The implementation of such framework
in a simple software package offers a rich set of solutions
among which we provide with alternatives to the standard
Gauss and Elliptic filters that are currently used in contour
based eigensolvers.

First, we explicitly formulate the filters to be conjugation
and parity invariant. Such a formulation stabilizes the target
function and reduces the complexity of the optimization process
by at least a factor of four. Because the iterative optimization
depends on the initial value of its parameters, convergence to
an optimal solution is not easily guaranteed. We show that a
careful placement of the starting positions for the poles and
the selection of an appropriate optimization algorithm lead to
solutions with systematically smaller residuals as the degree of
the filter is increased.

When used in combination with a spectrum slicing
eigensolver, our optimized rational SLiSe filters can significantly
improve the efficiency of contour based eigensolvers on large
sets of spectral intervals for any given problem. In the specific
instances of the standard Gauss and Elliptic filters, we show-case
the flexibility of our approach by providing SLiSe replacements.
This flexibility is achieved through the guided selection of
Least-Squares weights and the use of constrained optimization.
The optimization with box constraints addresses the issue of
rational filters with poles very close to the real axis, which
lead to almost singular matrix resolvents. Such constrained
optimization decreases the condition number of the resolvents,
which positively affects the solution of the corresponding linear
system solves when Krylov based methods are employed.

Significant effort went into designing the optimization
process and its implementation so as to be user-ready. The
resulting software is written in the Julia programming language
and is available in a public repository together with a test
suite and further examples in addition to the one presented
in this manuscript. Future work will focus on the automatic
selection of the Least-Square weights as well as in more robust
optimization approaches when it comes to constraints. The

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Winkelmann and Di Napoli Rational Filters for Hermitian Eigenproblems

ultimate goal is to provide filters that adapt to any given specific
problem. Such filters would be generated on-the-fly and take
advantage of spectral information, if cheaply available. Not only
do problem-specific filters promise better convergence, but they
can provide automatic load balancing between multiple contour
“slices.” The present work is meant as a significant step toward
such a direction.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

Financial support from the Jülich Aachen Research
Alliance High Performance Computing and the Deutsche
Forschungsgemeinschaft (DFG) through grant GSC 111 is
gratefully acknowledged.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2019.00005/full#supplementary-material

REFERENCES

1. Polizzi E. Density-matrix-based algorithm for solving eigenvalue problems.

Phys Rev B (2009) 79:115112. doi: 10.1103/PhysRevB.79.115112

2. Sakurai T, Sugiura H. A projection method for generalized eigenvalue

problems using numerical integration. J Comput Appl Math. (2003)

159:119–28. doi: 10.1016/S0377-0427(03)00565-X

3. Ikegami T, Sakurai T, Nagashima U. A filter diagonalization for generalized

eigenvalue problems based on the Skaurai-Sugiuara projection method.

J Comput Appl Math. (2010) 233:1927–36. doi: 10.1016/j.cam.2009

.09.029

4. Tang PTP, Polizzi E. FEAST as a subspace iteration eigensolver accelerated by

approximate spectral projection. SIAM J Matrix Anal Appl. (2014) 35:354–90.

doi: 10.1137/13090866X

5. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to

numerical computing. SIAM Rev. (2017) 59:65–98. doi: 10.1137/141000671

6. Ikegami T, Sakurai T. Contour integral eigensolver for non-hermitian

systems: a Rayleigh-Ritz-type approach. Taiwanese J Math. (2010) 14:825–37.

doi: 10.11650/twjm/1500405869

7. Imakura A, Sakurai T. Block Krylov-type complex moment-based

eigensolvers for solving generalized eigenvalue problems. Numeric. Algor.

(2016) 75:413–33. doi: 10.1007/s11075-016-0241-5

8. Beyn WJ. An integral method for solving nonlinear eigenvalue problems.

Linear Algebra Appl. (2012) 436:3839–63. doi: 10.1016/j.laa.2011.03.030

9. Imakura A, Du L, Sakurai T. Relationships among contour integral-based

methods for solving generalized eigenvalue problems. Japan J Indust Appl

Math. (2016) 33:721–50. doi: 10.1007/s13160-016-0224-x

10. Murakami H. Optimization of Bandpass Filters for Eigensolver. Tokyo

Metropolitan University (2010).

11. Murakami H. Experiments of Filter Diagonalization Method for Real

Symmetric Definite Generalized Eigenproblems by the Use of Elliptic Filters.

Tokyo Metropolitan University (2010).

12. Murakami H. An Experiment of the Filter Diagonalization Method for the

Banded Generalized Symmetric-Definite Eigenproblem. Tokyo Metropolitan

University (2007).

13. Murakami H. The Filter Diagonalization Method for the Unsymmetric Matrix

Eigenproblem. Tokyo Metropolitan University (2008).

14. Murakami H. A filter diagonalization method by the linear combination of

resolvents. IPSJ Trans ACS (2008) 49:66–87.

15. Austin AP, Trefethen LN. Computing eigenvalues of real symmetric matrices

with rational filters in real arithmetic. SIAM J Sci Comput. (2015) 37:A1365–

87. doi: 10.1137/140984129

16. Güttel S, Polizzi E, Tang PTP, Viaud G. Zolotarev quadrature rules and

load balancing for the FEAST eigensolver. SIAM J Sci Comput. (2015)

37:A2100–22. doi: 10.1137/140980090

17. Barel MV. Designing rational filter functions for solving eigenvalue

problems by contour integration. Linear Algebra Appl. (2016) 502:346–5.

doi: 10.1016/j.laa.2015.05.029

18. Xi Y, Saad Y. Computing partial spectra with least-squares rational

filters. SIAM J Sci Comput. (2016) 38:A3020–45. doi: 10.1137/16M10

61965

19. Saad Y, Li R, Xi Y, Vecharinsky E, Yang C. EigenValues Slicing

Library. Available online at: http://www-users.cs.umn.edu/~saad/software/

EVSL/ (Accessed November 05, 2016).

20. Davis TA, Hu Y. The University of Florida sparse matrix collection. ACM

Trans Math Softw. (2011) 38:1:1–1:25. doi: 10.1145/2049662.2049663

21. Dolan ED, Moré JJ. Benchmarking optimization software with performance

profiles.Math Program. (2002) 91:201–13. doi: 10.1007/s101070100263

22. Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge

University Press (2004).

23. Marquardt DW. An algorithm for least-squares estimation of nonlinear

parameters. J Soc Ind Appl Math. (1963) 11:431–41. doi: 10.1137/01

11030

24. Levenberg K. A method for the solution of certain non-linear problems

in least squares. Q Appl Math. (1944) 2:164–8. doi: 10.1090/qam/

10666

25. Madsen K, Nielsen HB, Tingleff O. Methods for Non-Linear Least Squares

Problems. Technical University of Denmark (2004).

26. Kalantzis, V, Kestin, J, Polizzi E, Saad, Y. Domain decomposition

approaches for accelerating contour integration eigenvalue solvers for

symmetric eigenvalue problems.Numer Linear Algebra Appl. (2018) 25:e2154.

doi: 10.1002/nla.2154

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Winkelmann and Di Napoli. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 17 February 2019 | Volume 5 | Article 5

https://www.frontiersin.org/articles/10.3389/fams.2019.00005/full#supplementary-material
https://doi.org/10.1103/PhysRevB.79.115112
https://doi.org/10.1016/S0377-0427(03)00565-X
https://doi.org/10.1016/j.cam.2009.09.029
https://doi.org/10.1137/13090866X
https://doi.org/10.1137/141000671
https://doi.org/10.11650/twjm/1500405869
https://doi.org/10.1007/s11075-016-0241-5
https://doi.org/10.1016/j.laa.2011.03.030
https://doi.org/10.1007/s13160-016-0224-x
https://doi.org/10.1137/140984129
https://doi.org/10.1137/140980090
https://doi.org/10.1016/j.laa.2015.05.029
https://doi.org/10.1137/16M1061965
http://www-users.cs.umn.edu/~saad/software/EVSL/
http://www-users.cs.umn.edu/~saad/software/EVSL/
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/s101070100263
https://doi.org/10.1137/0111030
https://doi.org/10.1090/qam/10666
https://doi.org/10.1002/nla.2154
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Non-linear Least-Squares Optimization of Rational Filters for the Solution of Interior Hermitian Eigenvalue Problems
	1. Introduction
	1.1. Related Work
	1.2. Contributions

	2. Spectral Projection Using SLiSe Filters
	2.1. Subspace Iteration Method Accelerated via Spectral Projection
	2.2. Gamma-SLiSe: A Replacement Candidate for the Gauss Filter
	2.2.1. Convergence Ratio as a Means of Comparison

	2.3. Eta-SLiSe: A Replacement Candidate for the Elliptic Filter

	3. Rational Filters for Hermitian Operators: A Non-linear Least-Squares Formulation
	3.1. Discrete Symmetries of the Rational Approximant
	3.2. Residual Level Function
	3.3. Gradient of the Residual Level Function

	4. Optimizing Rational Filters for Hermitian Operators
	4.1. Optimization via Gradient Descent
	4.2. Improving Convergence Speed
	4.3. Systematic Choice of Starting Position
	4.4. Constrained Optimization
	4.4.1. Steepness and Overshooting via Penalty Term
	4.4.2. Large Imaginary Parts via Box Constraints

	4.5. The SliSeFilters Software Package

	5. A Rich Variety of Filters: Practice and Experience
	5.1. Penalty Parameter: η-SLiSe
	5.2. Box Constraint: κ-SLiSe

	6. Conclusions and Outlook
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

