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We simulate a non-human primate’s alcohol drinking pattern in order to better understand

temporal patterning of alcoholic drinks that can lead to the excessive intakes associated

with alcohol use disorder. A stochastic mathematical model of alcohol consumption

pattern is developed, where model parameters are calibrated to an individual monkey’s

drinking history. Themodel predicts a time series that simulates amonkey’s alcohol intake

in time, and we analyze this drinking pattern to understand the variations in day and night

drinking, the lengths of drinks (intake in 5 or more consecutive secs), and lengths of bouts

(1 or more drinks per 5 min occasion). This time series can predict a lifetime categorical

drinking level (light, binge, heavy, or very heavy), thus correlating an individual monkey’s

parameters with distinct long term drinking classifications.

Keywords: mathematical model, drinking classification, Markov process, stochastic, model fitting, alcohol

consumption

1. INTRODUCTION

Animal models in alcohol research incorporate wide experimental variation, including genetic
manipulation, longitudinal observation, and heredity studies [1] to elucidate determinants of
consumption as well as potential therapeutics. The Non-Human Primate (NHP) oral ethanol
self-administration model has the benefit of more closely approximating human physiological,
neuroanatomical and social influences on ethanol consumption then rodents, for example. Our
NHP model has been a powerful tool for recreating experimental conditions reflective of Alcohol
Use Disorder (AUD) in humans [2, 3]. This model has been successfully employed to measure the
driving forces and effects of drinking under numerous conditions and for a variety of biological
processes, including predicting future drinkers based on induction drinking [4], classification of
drinkers based on age of intoxication [5], epigenetic determinants [6], and effects on bone [7],
hormones [8], and neuro-anatomical [9] and brain transcriptome features [10], among others.
The strengths of this approach relies in its ability to track robust longitudinal data points and
reproducibility across cohort designs that maintain core procedural integrity.

However, many normative human behaviors cannot be faithfully recapitulated in any model
organism. The trajectories from a person’s first alcoholic drink to a diagnosis of AUD is an active
area of research for diagnostic and prevention purposes [11, 12]. To date, the vast majority of
these studies have been retrospective analyses of imprecise definitions of a “drink". This is changing
with advanced monitoring devices; however, studies of human naturalistic drinking still has severe
limitations on controlling organismal and environmental variables. Although the use of NHPs can
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control and track many of the drinking patterns that impede
human studies of AUD, including measurements in real time,
gender, nutritional and medical status, etc., accurate measures
of voluntary alcohol intakes that capture the excessiveness of
chronic alcohol drinking associated with AUD also remain
difficult aspects of animal models. Likewise, effective treatments
for AUD could improve if drinking patterns provided early
identification of successful as well as unsuccessful attempts to
control intake. Thus, a well-defined mathematical model may
represent an important approach to developing an instrument
that captures stable, longterm drinking trends, predicts harmful
drinking levels, and explores intervention strategies.

In this paper we present a mathematical model that
describes the drinking behavior of individual monkeys using
data collected as part of the Monkey Alcohol Tissue Research
Resource (MATRR) [13], a tissue repository and analytics
resource for NHP drinking experiments. The goal of the
model is to predict drinking behavior based on organismal
features such as those measured in the experiments described
above. Previous mathematical models of human alcoholic
drinking include compartmentmodels, where each compartment
represents a subset of the population. For example, in Benedict
[14] alcoholism is modeled as an infectious disease, where
the population is divided into Susceptible, Infected (addicted
to alcohol), and Recovered classes. Differential equations
are used to describe the evolution of alcoholism in the
population, mimicking the spread of a contagious disease,
allowing the authors to describe critical parameter values,
such as the reproduction number, familiar from the traditional
SIR models used to predict the onset of epidemics [15].
A modification of this model is presented in Bhunu [16],
where a fourth compartment consisting of drinkers who are
not addicted is added. These deterministic models focus on
determining strategies to control drinking behaviors through,
for example, limiting the consumption of alcohol in the
susceptible population. A more complex compartmental model
is described in Ackleh et al. [17] where the population is further
subdivided into abstainers, light drinkers, moderate drinkers,
problem drinkers, and binge drinkers. Movements between
groups are affected by an individual monkey’s characteristics
(“risk”), social interactions, such as individual monkeys from
two different groups meeting each other and affecting each
other’s behavior, and social pressure (seeing other people in
their community engage in e.g. binge drinking). After fitting
model parameters to data from college campuses, the model is
used to explore the effect of college policies on the prevalence
of drinking.

Compartment models describe the behavior of a population
using averages over a typically small number of subgroups.
Agent-based models, such as the one described in Gorman
et al. [18], can incorporate more complex interactions between
individual monkeys. Another way to capture variation between
individual monkeys is to describe their behavior using a
probability distribution. A non-parametric stochastic model
using a HiddenMarkovmodel is described inMaruotti and Rocci
[19] . In this model, individual monkeys are categorized as being
in one of three states: non-drinking, moderate drinking, and

heavy drinking. A finite-mixture model is used to characterize
individual monkeys according to a fixed set of characteristics.

Other models attempt to predict addictive behavior, for
both alcohol and tobacco consumption, based on an individual
monkey’s features [20, 21] . Our ultimate modeling quest is to use
an individual monkey’s features to inform a parametric stochastic
model of alcohol consumption. The model that we propose is
outlined in section 3. It describes drinking behavior over time
as an embedded Markov Chain, with transition probabilities and
rates assumed to be functions of physiological features of the
individual monkeys. In this paper we describe the model itself,
comparing simulations to experimental data.

2. METHODS

2.1. Animals
2.1.1. Monkeys
Models were constructed from twenty-three rhesus monkeys
(Macaca mulatta) collected as part of larger animal cohort
studies from the Oregon National Primate Research Center
(ONPRC). This study includes cohorts designated “4,” “5,” and
“7b,”Table 1, a subset previously reported in classification [3] and
prediction studies [4].

All animals were born in pedigreed populations at the ONPRC
(Oregon National Primate Research Center) and remained in
social groups until a minimum of three months prior to the
onset of oral ethanol self-administration. At that time they
were transitioned to individual cages according to established
protocols [5].

2.1.2. Ethics
The alcohol self-administration protocol was reviewed and
approved by the Oregon Health & Science University Animal
Care and Use Committee and was in accordance with the
guidelines for the care and use of laboratory animals (Guide for
the Care and Use of Laboratory Animals; Institute for Laboratory
Animal Research, National Research Council, National Academy
Press, 2011).

2.1.3. Ethanol Self-Administration Protocol
Adapted from the rodent literature, Schedule Induced Polydipsia
(SIP) in primates has been an effective protocol to establish
voluntary ethanol consumption (i.e., self-administration)
through the use of interval schedules of food delivery [2].
Briefly, as described in Grant et al. [2], animals were induced
to drink water and ethanol (4% w/v in water) after training

TABLE 1 | Three cohorts of Rhesus monkeys were used in this study.

ID N Sex Age (yrs) Weight (kg) LD BD HD VHD

4 10 M 8.24 9.4 5 4 1 0

5 8 M 5.63 8.31 0 1 3 4

7b 5 M 5.69 8.02 3 1 1 0

Age and Weight values represent cohort averages. Each cohort is further subdivided into

four drinking categories: LD, light drinkers; BD, binge drinkers; HD, heavy drinkers; and

VHD, very heavy drinkers.
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to operate a drinking panel affixed within their housing
cage. Banana-flavored food pellets (1 g) were delivered every
300 seconds (for a fixed time of 300s) until the intended
volume of fluid was consumed. After water only SIP, monkeys
were induced to increasingly large volumes of ethanol in
30 day increments, starting at 0.5 g/kg/day (52-74 ml), and
progressing to 1.0 g/kg/day (110-147 ml), then 1.5 g/kg/day
(170-223 ml). Following SIP induction, the monkeys were
allowed a choice of water or ethanol, each fluid concurrently
available, for 22 hrs/day in a phase of the protocol known as
“open-access.” Food was available in the form of 3 meals of
similar size (number of 1 g food pellets), at approximately
2 hr intervals. Each daily session of 22 hrs began in the
late morning and ended in the next calendar day’s early
morning. The lighting schedule in the room was 11 hrs light,

13 hrs dark; the lights went off 7 hrs after the start of the
open-access session.

2.2. Data Collection
2.2.1. Physical Data Collection
Drinking panels with custom acquisition interfaces were used
to capture self-administration data and food intake patterns
[2, 22]. Each animal has a choice of 4% ethanol by w/v diluted
by water or water, each attached to a scale with an accuracy of
±0.1 gram, where each gram is equivalent to one ml (O’Haus
Corporation, Parsippany, NJ). Scales are continuously measured
by custom Labview (National Instruments Corporation, Austin,
TX) hardware and software; resulting data is cleansed for
mechanical failures or outliers created from displaced bottles or
malfunctioning dispensers.

FIGURE 1 | Overview of Model: Once all parameters for the probability distributions are estimated from the data, the simulation is run for an individual monkey. The

probabilities determine if the monkey is in a bout or not, and the drinking state. The distributions determine how long the monkey stays in each state. The bottom

panel shows a short piece of a time series generated by a typical simulation. A Bout is defined as a sequence of drinks where the intervals between drinks is less than

300 s. In this simulation, we see a bout consisting of one drink with a low drinking rate, followed by two drinks at a high rate, and then three single drinks of varying

lengths at a high drinking rate.

FIGURE 2 | Bouts and Drinks: The length of time between drinks determines if a monkey is in a bout or not. When not in a bout, a monkey takes an individual drink.

When in a bout, a monkey takes several drinks in a row with short times in between. Regardless of whether or not the monkey is in a bout, a Markov Process dictates

the level of each drink where state 1 is not drinking, state 2 is low, state 3 is medium, and state 4 is high.
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2.2.2. Drinking Categories
Each animal was classified into one of four well-defined drinking
categories (LD, BD, HD, or VHD) based on percentage of open-
access days of thresholded intake volumes, modified slightly
from previously described methodology [3]. VHD animals have
average daily intakes > 3 g/kg with more than 10% of days
exceeding 4 g/kg; HD is categorized by ethanol intakes of > 3
g/kg per day for more than 20% of open-access days; BD exhibit
> 2 g/kg ethanol intake for more than 55% of open-access days,
with a minimum of at least one Blood Ethanol Concentration
(BEC) event of > 80 mg/dl. Remaining animals are categorized
as LD. For this study, VHD and HD animals are routinely
condensed into a single heavy drinking category. BD and LD are
likewise collapsed into a single non-heavy category. This increases
statistical power of the collapsed category for model testing and
circumvents the need for including BEC as a discriminating
factor as BEC data availability is currently not included in the
predictive modeling.

2.2.3. Drinks and Bouts
Intake of ethanol and water are discretized events called drinks.
Drinks have a minimum effective resolution of 0.1 second and 0.1
mg of fluid, and continue as a single episode until the completion
of an event. Less than 5 seconds between events is considered a
single drink. A bout is defined as the volume of ethanol consumed
without a 5-minute lapse between drinks, as defined by a previous
principle component analysis of drinking patterns [2].

2.2.4. MATRR
The Monkey Alcohol Tissue Research Resource [13] can be
found at http://www.matrr.com. It aims to maximize the use of
NHP resources by limiting experimental redundancy, provide
a repository of uniformly derived tissues and data imperative
for long term alcohol research, and enhance cross-discipline
integration. Data include drinking behavior on a per-second
basis, blood protein and hormone information, molecular and
genome data, imaging, and animal meta data among others.
Previous research has used publicly available data to classify
stable drinking categories in NHP [3] and enable the prediction
of future drinkers based on early drinking behaviors [4].

2.2.5. MATRR Computing Analytics
All data was collated and analyzed on the MATRR computing
servers, twin computers, each running 4 Intel Xeon E5620
processors (Intel Corporation, Santa Clara, CA) at 2.4 GHz,
having 4 cores per processor (16 cores per server), with 47 GB of
memory. Statistical analysis and data processing was performed
using Python and R.

3. DEVELOPMENT OF THE
MATHEMATICAL MODEL

Themathematical model of the drinking features that we develop
in this section is a stochastic process that predicts second by
second drinking of an individual monkey. At each time point,
a monkey is in one of four states: not drinking (state 1),
low (state 2), medium (state 3), or high (state 4) drinking.

Transitions between each state, as well as the time spent in a given
state, are described by random variables whose distributions
can be calibrated to each individual monkey. Once a monkey’s
drinking is simulated, the average daily alcohol consumption
is calculated to classify the monkey as a non-heavy or heavy
drinker as described in section 2.2.2. These two categories are
further refined. The non-heavy category is sub-divided into light
drinkers (LD) and binge drinkers (BD), while the heavy category
is made up of heavy drinkers (HD), and very heavy drinkers
(VHD). These sub-categories are calculated from the average
daily ethanol intake (ADEI) as described in section 2.2.2, with the
exception of the binge category: since the current mathematical
model does not predict BEC, a simulation is classified as a “binge
drinker” if it has not been classified as HD or VHD, and the ADEI
is greater than 2 g/kg on more than 55% of the simulated days.

FIGURE 3 | (Top) The histogram shows 22 h of drinking per day for a year for

31 monkeys, not including 1 s drinks at a rate less than or equal to 0.2 mL/s.

The vertical black dashed lines denote breaks between the low, medium, and

high categories: low drinking is (0, 0.6), medium is [0.6, 1.1], and high is above

1.1. The upper and lower cut-off for each bin were derived from the data by

finding local minima in the (smoothed) histogram. The median values are

marked by white diamonds: median low is 0.383, median medium is 0.798,

and median high is 1.376. In the simulations, low, medium and high rates are

set at these median levels. (Bottom) The cumulative distribution function of

ethanol consumption rates plot presents another view of the same ethanol

consumption rates data as in the upper panel. The vertical dashed lines

represent the breaks between low, medium, and high drinking rates.
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3.1. Markov Model
We describe the drinking process as a continuous time Markov
process on the four states: not-drinking, drinking at a low,
medium or high rate. The transitions between these states are
given by a set of probabilities that depend only on the current
state, and not on the past history. In addition, a stochastic rate
process determines the time spent in each state. In this model,
there are two sets of rate processes, depending on whether a
monkey enters a bout or not. A bout is a sequence of drinks such
that the time between drinks is less than 300 seconds. If the time
between drinks is more than 300 seconds, the bout has ended,

and the decision to enter a new bout or not is made according
to a fixed probability, p. The lengths of the bouts is described by
the distribution, Qb(t). A diagram illustrating the model flow is
shown in Figure 1.

The Markov transition matrix describing the probabilities of
moving from state i to to state j with Prob(i 7→ j) = P(i, j) is:

P =









0 Pnl Pnm Pnh
1 0 0 0
1 0 0 0
1 0 0 0









TABLE 2 | The mean and range of the parameters used in the distributions describing the length of drinks (Q1,Q2,Q3), length of time between drinks (Tb,Td ), and length

of bouts (Qb).

Q1 Q2 Q3 Qb Tb Td

k1 λ1 k2 λ2 k3 λ3 kb λb kIBL λIBL kIDL λIDL

Mean 1.03 16.62 1.14 23.26 1.23 8.63 1.00 141.45 1.00 0.00 1.00 0.01

Min 1.00 1.97 1.00 3.42 1.00 1.28 1.00 47.59 1.00 0.00 1.00 0.01

Max 1.35 40.80 1.49 49.83 1.73 40.94 1.00 341.84 1.00 0.00 1.00 0.03

We assume a Weibull distribution, and fit the two parameters, k (shape) and λ (scale) for each monkey in the data set. We note that the shape parameters for the time between drinks

and the length of bouts is one for all monkeys in the data set, indicating that these distributions are well-described by an exponential distribution. Variation in the parameters reflects

variations in the drinking patterns of individual monkeys, allowing the model to describe drinkers of all four categories.

FIGURE 4 | (Top Left): A quantile-quantile (q-q) plot of the distribution of experimentally derived inter-drink intervals against the best-fit exponential distribution; note

that inter-drink intervals are always less than 300 s, explaining the deviation from the exponential quantiles at the high end. This particular monkey (ID # 10) is classified

as a heavy drinker. (Top Right) A q-q plot of the distribution of experimentally derived inter-bout intervals against the best-fit exponential distribution. Inter-bout intervals

are all greater than 300 s, so we subtract 300 from all data points before fitting (these shifted data points are shown here). The sharp vertical deviation of the plot from

the fitted quantile plot from ca. 9000 s (2.5 h) and 45,000 s (12 h) suggests that this monkey (ID # 23) took very few drinks during the night-time. This is consistent with

the monkey’s classification as a light drinker. (Bottom Left) A q-q plot of drink lengths of a heavy drinker (ID # 14), when drinking at medium rate. The distribution fits

a Weibull very well for all drink lengths. (Bottom Right) The bout lengths for a light drinker (ID # 18) also fit a Weibull distribution quite well for a range of bout lengths.
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As shown in the transition matrix, we assume that, after every
drinking state, the monkey enters the non-drinking state with
probability 1. Probabilities of transitioning to one of the drinking
states are given in the top row of the matrix. We note that these
probabilities, Pnl, Pnm and Pnh, as well as the distributions giving
the time spent in each state, can be estimated from the drinks
taken by each individual monkey. In order to implement the
model, we will need to estimate these transition probabilities, as
well as the time spent in each state. Based on the experimental
data, we choose to use five different probability distributions
for the times between states. The distributions Td(t) and Tb(t)
describe the time spent between drinks in a bout or between
bouts, respectively. The distributions Qi(t) describe the time
spent in drinking state i, where i = 2 (low drinking rate), 3
(medium drinking rate) and 4 (high drinking rate) (see Figure 2).

3.2. Implementation
To estimate the transition probabilities, Pnj and to estimate the
parameters of the distributions describing the times spent in each
state, we start by examining the data for 31 monkeys, showing 22
hours of drinking per day for a year. We filter out drinks that
are 1 second long and contain 0.2 mL of alcohol consumption.
These drinks represent the lowest possible value that can be
recorded and could be an indicator of slight disturbances in
the balances, such as air bubbles in the tubing. As seen in
the histogram in Figure 3 we classify the rates into three bins

representing low, medium, and high drinking. The upper and
lower cut-offs for each bin were derived from the data by finding
local minima in the (smoothed) histogram. Any drink with a
rate between 0 and 0.6 is considered a low drink; any drink
between (and including) 0.6 and 1.1 is considered a medium
drink; drinks with a rate above 1.1 are considered high drinks.
In the simulations, we use the median values of each of the bins.
We used the binned data to estimate the transition probabilities
(Pnl, Pnm, and Pnh) as the fraction of drinks that were in each
category, as well as the probability of entering a bout (p). Note
that we are assuming that the probability of entering a given
drinking state (low, medium or high) is independent of the past
drinking history.

For each drinking and non-drinking state we extract from the
experimental data the corresponding drink lengths and breaks
between drinks. A first exploration of the distributions of these
data showed that the time spent in each drinking state was well-
described by a Weibull distribution. This makes sense, since a
Weibull distribution models a process for which the average
number of events per unit time (the rate) is a power of the
amount elapsed. The value of this power is called the shape of
the distribution. Thus, if the shape parameter is 1, the Weibull is
the same as an exponential distribution. If the shape parameter is
greater than one, it means that the rate of events increases with
time; in our context, it means that a monkey who is drinking is
more likely to stop drinking in the next second as the drink length

FIGURE 5 | Time series plots comparing simulated drinking data to actual drinking data for light and binge drinkers are shown in this figure. The simulations are

qualitatively the same as the data. The light drinkers act like sippers, taking a lot of drinks at a lower rate. Normally distributed noise was added to the simulated values

in order to more closely resemble the drinking data. The simulation was run for 180 days, where each day consists only of 7 h of daytime drinking. We use 750 drinks

from 12 months of daytime drinking (7 h) in the drinking data figures. (Upper Left) Simulated drinking data for a light drinker. (Upper Right) Actual drinking data for a

light drinker. (Lower Left) Simulated drinking data for a binge drinker. (Lower Right) Drinking data for a binge drinker.
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FIGURE 6 | Time series plots comparing simulated drinking data compared to actual drinking data for heavy and very heavy drinkers is shown in this figure. The

simulations are qualitatively the same as the data. Instead of sipping like the light drinkers, the heavy drinkers take more gulps as demonstrated by the higher rates of

consumption. Normally distributed noise was added to the simulated values in order to more closely resemble the drinking data. The simulation was run for 180 days,

where each day consists only of 7 h of daytime drinking. We use 750 drinks from 12 months of daytime drinking (7 h) in the drinking data figures. (Upper Left)

Simulated drinking data for a heavy drinker. (Upper Right) Actual drinking data for a heavy drinker. (Lower Left) Simulated drinking data for a very heavy drinker.

(Lower Right) Drinking data for a very heavy drinker.

increases. As shown in Figure 1, the time between drinks, or time
in state 1, is described by two random variables: Td, the time
between single drinks, defined as times less than 300 seconds, and
the Tb, the time between bouts, defined as non-drinking times
greater than 300 seconds.

We fit the parameters of the corresponding distribution to the
data using a best-fit function in R. Table 2 shows a summary of
the shape (ki) and rate (λi) parameters for each of the drinking
states: 1 (not drinking), 2 (low drinking rate), 3 (medium
drinking rate), and 4 (high drinking rate). We note that Qb

(length of bouts), Tb and Td had shape parameters equal to 1,
i.e., they are well-described by an exponential distribution.

Figure 4 shows comparisons of the experimentally derived
values to the best-fit distributions. We note that the fits are quite
good for a range of drinking behaviors, with the exception of
the distribution of the length of times between bouts, i.e., inter-
drink lengths that are greater than 300 s. The fit is good for
times up to 10,000 s, or just under 3 h, after which the data
shows a greater frequency of longer times than an exponential
model would predict. This is consistent with our observation
that certain individual monkeys, in particular light drinkers, do
not drink during the night time. We discuss model refinements
that might better reflect this variability in drinking behavior in
section 5.

4. RESULTS

We test the model described in section 3 by simulating monkeys
from all four drinking categories: light, binge, heavy, and very
heavy. Simulations for monkey number 19, a light drinker,
monkey number 1, a binge drinker, monkey number 9, a heavy
drinker, and monkey number 26, a very heavy drinker, are shown
in Figures 5, 6. In our simulation, drinking rates are binned as
low (0.383 mL/s), medium (.798 mL/s), and high (1.376 mL/s).
These values are obtained from a histogram of all of the drinking
data, as shown in Figure 3 and explained in section 3.2. To closer
resemble the actual data, we add some noise to the simulated
values. We added normally distributed noise with the mean equal
to the calculated median value of each bin. For the low bin, the
standard deviation is the high limit of the bin minus the median
of the bin divided by 2. The other bins are calculated in a similar
way. Notice that the light drinkers have drinks mainly around
the low drinking rate (0.383 mL/s) and very heavy drinkers have
drinks mainly at the high drinking rate (1.376 mL/s). The figures
for the drinking data are made from 7 hours of daylight drinking
for 12months of open access.We utilized only 7 hours of daylight
drinking each day instead of 22 hours since the monkeys sleep
a lot during the night and most of the alcohol consumption is
during the day. We run the simulation for 180 days and plot 750
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FIGURE 7 | This plot shows the average rate of consumption (mean Rate) in

mL/s and the average daily ethanol intake (mean ADEI) in g/kg for all 23

monkeys. Each dot represents one monkey and is color coded by drinking

category. Although mean ADEI is very important in determining the monkey’s

drinking category, it alone is not enough information. Notice that not all of the

heavy drinkers are grouped close together.

drinks. We chose enough drinks to be able to see several days
worth of comparison.

For each of the 23 monkeys, we calculate the average rate of
ethanol consumption and the average daily ethanol intake. The
average daily ethanol intake is calculated in g/kg to account for
the different monkey weights. As seen in Figure 7, these values
alone are not enough to classify the animals. See section 2.2.2
for a description of how the monkeys are classified into different
drinking categories.

Next we looked at the accuracy of the simulation by simulating
23 monkeys, comprised of 8 light drinkers, 6 binge drinkers, 5
heavy drinkers, and 4 very heavy drinkers. We ran the simulation
100 times and calculated the monkey’s drinking category in
each simulation as described in section 2.2.2. The results are
in Table 3. We record the percentage of times the correct
drinking category out of 4 possible categories is identified for
100 simulations. We also collapse the drinking categories into
heavy and non-heavy and record the accuracy of identifying the
correct category out of just two categories. The light drinkers are
correctly identified 100 percent of the time. See section 5 for a
more thorough discussion of the results.

5. DISCUSSION

Table 3 shows the results from 100 simulations of 23 virtual
monkeys. In each simulation, the model parameters were first
estimated from the individual monkey’s data, as described in
section 3.2. Next, 100 simulations were generated with those
parameters, and each of the resulting drinking patterns were
classified as LD, BD, HD, or VHD. The table shows the results
of these classifications, and also tabulates the fraction of time

TABLE 3 | One hundred model simulations using parameters estimated from

each monkey’s data.

Counts

Monkey # ID LD BD HD VHD Accuracy 4 Accuracy 2

15 LD1 100 0 0 0 1 1

16 LD2 100 0 0 0 1 1

17 LD3 100 0 0 0 1 1

18 LD4 100 0 0 0 1 1

19 LD5 100 0 0 0 1 1

23 LD9 100 0 0 0 1 1

24 LD10 100 0 0 0 1 1

25 LD11 100 0 0 0 1 1

1 BD1 0 33 67 0 0.33 0.33

2 BD2 100 0 0 0 0 1

3 BD3 17 83 0 0 0.83 1

4 BD4 0 0 100 0 0 0

5 BD5 0 0 96 4 0 0

7 BD7 100 0 0 0 0 1

8 HD1 0 0 100 0 1 1

9 HD2 0 5 95 0 0.95 0.95

10 HD3 0 0 92 8 0.92 1

11 HD4 17 83 0 0 0 0

14 HD7 35 35 30 0 0.3 0.3

26 VHD1 0 0 0 100 1 1

27 VHD2 0 0 10 90 0.9 1

28 VHD3 0 0 0 100 1 1

29 VHD4 0 100 0 0 0 0

The first column (“ID”) identifies the monkey as a LD, light drinker; BD, binge drinker; HD,

heavy drinker; and VHD, very heavy drinker . The second through fifth columns show the

number of simulations that were classified as LD, BD, HD, and VHD, according to the

definitions given in section 2.2.2. The sixth column shows the fraction of simulations that

were classified correctly (“Accuracy 4”) and the final, seventh, column shows the fraction

of simulations that are classified correctly when the four categories are collapsed to only

two: LD and BD are classified as non-heavy, while HD and VHD are classified as heavy

(“Accuracy 2”).

that the simulations were classified correctly, i.e. if the simulation
depicted a monkey in the same class as the original monkey.
This gives us two measures of how accurate our model is in
predicting drinking class. The sixth column of the table shows
the fraction of the simulations that were correctly classified
in one of the four groups (“Accuracy 4”), while the seventh
column shows the fraction that are correctly classified as either
non-heavy, (LD or BD) or heavy, (HD or VHD). We can
see from this table that the simulations of light drinkers are
accurately classified in both cases, while the other categories
show some inconsistencies. In fact, 100% of the light drinkers
are classified correctly 100% of the time and three out of four
of the very heavy drinkers are correctly identified 100 % of the
time when the drinking categories are collapsed into heavy and
non-heavy drinkers. Overall, approximately 80% of the monkeys
are classified correctly in at least 95% of the simulations. The
binge category has the lowest accuracy and is one of the hardest
to classify. The definition of a binge drinker requires the monkey
to have at least one binge which is represented by a BEC above
80 mg/dl. Our current model does not include a BEC model,
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FIGURE 8 | This figure shows an individual monkey’s rate of consumption for 700 drinks, which is several days. The figure on the left is a plot of a light drinker, the

middle figure is a plot of a binge drinker, and the figure on the right is a plot of a very heavy drinker. There is a substantial difference between daytime drinking and

nighttime drinking. Each dashed line represents the end of a day. For all types of drinkers, there are shorter gaps between drinks during the daytime than at night.

Notice the large breaks in drinking at the end of the day, which is when the monkey is sleeping.

FIGURE 9 | This bar plot shows the difference in ethanol consumption during

the first 6 months of open access and the second 6 months of open access

for 2 monkeys in cohort 7a. The monkeys matured from adolescence to

adulthood during the open access period, which substantially impacted their

weight and drinking patterns. The ethanol consumption rate for the first 6

months is different than the second 6 months for all of the monkeys in the

cohort. This plot shows the average daily ethanol intake for one very heavy

drinker and one heavy drinker.

thus for our future work we plan on incorporating a BEC
model (see section 6). The inconsistencies in the classifications
can be explained by several factors, and suggest (at least) two
improvements to our model.

One of our model assumptions was that the distributions of
times between drinks and of transitions between drinking states
are stationary; in particular, they do not depend on the time of
day. This assumption is questionable when we examine the data
more closely. Consider the time series shown in Figure 8. We
note that, in all three types of drinkers, there are longer breaks
during the night-time hours than during the early part of the
day, giving evidence that the distribution of times between drinks
is not stationary. We propose that, because the distributions of
inter-bout times for light drinkers will have very light tails, this
non-stationarity has less of an effect when simulating drinkers in
the LD class. In future work, we plan to use two distributions of
inter-bout times for each monkey, one that describes day-time
drinking, and one that describes night-time drinking.

Another violation of the non-stationarity assumption is the
result of drinking behavior that changes as the monkeys age.

One cohort of monkeys matured from adolescence to adulthood
during the open access period. The mean average daily ethanol
intake is shown for two different monkeys from this cohort
in Figure 9. We note that the first 6 months of open access
had very different ethanol consumption rates than the second 6
months of open access, and the magnitude of these differences
may depend on the drinking type of the monkey. Another model
refinement that we plan to implement is to estimate different
distributions for open access periods at different states of an
individual monkey’s development.

In summary, we have developed and calibrated a
mathematical model of drinking behavior that produces
simulations of individual monkeys that are accurately classified
80% of the time. The accuracy is much better in the class of
light drinkers, which suggests two improvements to the model:
inter-drink time distributions that depend on the time of day,
and distributions that vary with the age of the monkey.

6. FUTURE WORK

One of the deficiencies of the current model is that, while
it predicts ethanol intake it does not predict blood ethanol
concentration (BEC). In the next iteration of the model, we
plan to add BEC to the model output by incorporating a
pharmakokinetic-pharmakodynamic (PKPD) model of ethanol
metabolism and elimination. PKPD models that describe BEC
as a function of ethanol intake have been developed for humans
[23–26]. The goal of these models has either been to predict BEC
from the analysis of alcohol on the breath [27], or to understand
social behavior. We will adapt these models to our environment
by adjusting the parameter values to reflect the physiological
characteristics of non-human primates. The addition of the BEC
model to the current drinking model will accomplish two goals.
It will allow us to more accurately classify drinkers, since BEC
is used to characterize the BD (binge drinker) class, and we will
be able to better relate behavior to ethanol intake, since BEC has
been more closely correlated to behavior than ADEI.

In addition, we would like to extend our working model
for male rhesus monkeys to include female monkeys. Ethanol
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FIGURE 10 | In the next phase of the project, the parameters of the probability distributions will be estimated from an individual monkey’s set of features derived from

physiological characteristics and measurements.

consumption of female monkeys is impacted by menses, having a
strong correlation with progesterone [28]. By including follicular
and luteal phase information in our model, we hope to be
able to closely approximate the complexity of NHP drinking in
female animals.

In addition, both human and non-human primates are social
beings, and drinking behavior among humans has been shown
to be affected by social circumstances [29]. Social drinking
influences are also observed in rodent studies [30], but have
not been quantitative beyond anecdotal evidence in NHP
populations. By aggregating individual monkey models, we plan
to explore the social effects on the drinking behavior of monkeys
by modeling a network of monkeys that reflects cage locations
and observed interactions.

Now that we have a calibrated model of drinking behavior,
we wish to use it to predict drinking behavior from physiological
characteristics. In order to do this, we will use data as described
in Baker et al. [4] and an unsupervised learning algorithm to
estimate the parameters of the model. In other words, we will
estimate the parameters that describe the probability distribution
functions from the feature data. A schematic of the process, an
extension of Figure 1, is given in Figure 10. As a simple example,
merely for the purpose of illustration, suppose we have a vector
of n feature characteristics: F = (a1, a2, . . . , an) and we want to
estimate the three transition probabilities, Pnl, Pnm and Pnh which
give the probabilities of transitioning from the non-drinking state
to the low, medium and high drinking states, respectively. We
might assume that the relationship between the features and these
probabilities takes the form:





Pnl
Pnm
Pnh



 =





1− eD1·F

1− eD2·F

1− eD3·F





where the vectors D1,D2 and D3 will be estimated using
an optimization procedure such as a maximum likelihood
estimate (MLE).

Our belief is that a general, feature-driven probabilistic model
of drinking behavior will help us understand the factors that lead
to AUDs. Ultimately, we hope to use the model to independently
test the impact of individual characteristics on drinking in silico,
explore the occurrence and impact of AUDs, and, ultimately,
provide a framework to rapidly evaluate pharmacological and
behavioral interventions.
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