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Data-driven computational methodologies are developed to encode a system’s

spatiotemporal recording video into a global system-state trajectory, and extract a

patterned signature that mechanistically defines recurrent events exhibited by a large

complex system. Our developments begin by selecting informative units from various

spatial regions, among which we compute mutual conditional entropy to map out

an organization of communities. Each community is taken as a potential mechanism

operating across several different regions. Unsupervised machine learning algorithms are

employed on each community to identify a functional collection of local system-states,

and then its corresponding local system-state trajectory is used as a mechanistic

representation of the community. We further synthesize all local system-states trajectories

to identify global dependency and global system-states. Such a spatiotemporal structural

dependency points out which communities are main driving forces underlying the

recurrent dynamics, and at the same time offers a patterned signature that prescribes

a mechanics driving all recurrent events along the global system-state trajectory. We

illustrate our data-driven computing through a brain-wide calcium imaging video of a

PTZ-induced epileptic Zebrafish, and explicitly show the system-wise patterned signature

as a mechanics that characteristically defines epileptic seizures.

Keywords: data-driven computing, spatiotemporal recording, unsupervised machine learning algorithms, global

system-state, spatiotemporal structural dependency

1. INTRODUCTION

It is well-known that understanding a complex system, such as a brain, is among the most
challenging problems attracting neuroscientists, physicists and computing-scientists alike. The
challenges can be attributed to many factors. One fundamental factor is that a system unit, such
as a neuron in brain, has plenty of non-linearities (see [1, 2]). Another fundamental factor is
that interactions among system units are convoluted and indirect. Despite the knowledge of these
two known factors in physics literature, “correlation-based dependency and synchrony” concepts,
which assume linearity and direct interaction, still play instrumental roles (see [3–5]), in many
neuroscience literature.

Beyond the two aforementioned factors, the most profound factor attributing toward the
challenges is that system units aggregated within a physical system is eventually expected to
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show self-organized categorical behaviors and discrete structural
patterns (see [6–8]). Under the self-organized criticality (SOC)
theory, the sandpile model and scale-free distributional patterns
are proposed to support or to check such extremely stimulating
phenomenon (see [1]). Though such self-organized behaviors
and structures might be seen as results of system units’ emergent
collective computational abilities, see [9], the controversies
around SOC theory are still going on, far from being settled up
to today (see [10]).

From data analysis perspective, it might be worthwhile
not to conform to SOC concept or theory in any priori
manner when exploring within a complex system. Within such
explorations, a definite big issue is to be able to coherently
and realistically explain and graphically display how and
why do emergent self-organized patterns come about in a
data-driven fashion. This big issue is closely tied to the
following elementary computing problems:What are informative
pattern formations leading to recurrent crucial behaviors in a
complex system? Where a pattern signature that is a defining
mechanics for such behaviors? Nowadays these elementary,
but critical computing problems are still yet to be resolved
when scientists face a huge ensemble of time series or
video data.

Further a complex system typically consists of an anatomical
organization of physically distinct regions, and each region is
consisting of huge number of units, such as neurons, that are
indistinguishable beyond their basic functional types and spatial
coordinates. How these regions work in concert as a defining
mechanics underlying the recurrent behavior of interest? Which
networks linking which regions are the driving forces for such a
mechanics? These critical computing problems by and large are
also far from being settled.

In this paper, we develop computational methodologies to
attempt all aforementioned computing problems.We believe that
the solutions to these problems will pave an effective way for
discovering the defining mechanics of self-organized recurrent
behaviors in a complex system. Our developments here are fully
illustrated and worked out through a real example system. This
system gives rise to a data video, in which each unit gives rise to
one time series of measurements.

Within such a video data, these unit-based time series
are apparently related spatially as well as temporally. The
spatial relatedness is to be represented by network of unit-
nodes on local scale and network of network-nodes on global
scale. Correspondingly temporal relatedness has two scales:
local and global system-states pertaining to each local network
and the global one. These spatiotemporal relatedness certainly
will complicate computational issues facing any complex
system scientist. The theme of our data-driven computing
developments can be described as follows: first, discover
all relevant local-networks and their specific system-states;
secondly, synthesize local networks into a global one, and
extract a collection of global system-states; thirdly, infer a
patterned-dependency structure among global system-stated;
and finally, upon the global system-state trajectory, we discover
an universal pattern signature across all inter-event periods of all
recurrent behaviors.

2. MATERIALS AND METHODS

2.1. About an Illustrative Example
Recently a new technique is added to these brain researchers’
repertoire. Calcium imaging is a newly revolutionized brain-wide
imaging technique. This new technique is designed to reveal
whole brain’s 2D or even 3D spatial patterns along the temporal
axis. Its key feature is its high sampling rate. This feature seems
to make the possibility of bringing out authentic dynamics of
brain activities across different brain regions more realistic than
ever before. That is, such a feature of calcium imaging indeed
separates it from functional Magnetic Resonance Imaging (fMRI)
and other brain imaging technologies.

In a brain-wide calcium imaging data video, a pixel is the
system unit under study, not neuron. Since a pixel within a
256 × 256 image likely includes several neurons. With such
a large ensemble of pixel specific time series, our major goal
here is to attempt data-driven algorithmic computing to directly
and explicitly reveal the emergent pattern formations leading to
epileptic seizure events based on brain-wide calcium imaging
videos derived from epileptic drug, PTZ, stimulated Zebrafishes.
Such discoveries of emergent dynamics are especially aiming
for more and better understanding on mechanisms underlying
seizure and epilepsy. Epilepsy is known as a disorder with various
crucially altered neuronal interactions (see [11, 12] and a review
paper by [13]).

We reemphasize that our data-driven computing doesn’t
incorporate such concepts of correlation-based dependency and
synchrony. First reason is the aforementioned non-linearity
in relationships among pixels. The second reason is that the
waveform of calcium intensity is acyclic. Its troughs tend to
be short and scattering, while its peaks tend to be high and
aggregating. The third reason is to retain the capability of making
graphic displays for all computed pattern formations.

2.2. Zebrafish’s Brain-Wide Calcium
Imaging Video
In Penfield and Jasper [11]: “Seizures are an extreme form
of synchronous brain activity, characterized by decreased
inhibition and enhanced excitation, leading to a transition
condition of intense, hyper-synchronous neuronal activity.” This
characterization on the global scale of seizure involves with three
types of dynamic functional mechanisms: inhibition, excitation
and the induced-collective behavior of decreased inhibition and
enhanced excitation.

To be precise the last mechanism leading to the unbalanced-
fixation of seizure or epileptic event is what we try to understand
via computational pattern-formations. It is an evolving process,
not simply just a phenomenon of “hyper-synchrony” at one
point in time. Further exact markers of inhibitory or excitatory
mechanisms are not included in calcium imaging video data
used in this paper because of the resolution is not fine enough
to mark individual neurons. Therefore a pixel identified within
imaging video is better seen as a small group of neurons. So
it can bear with neither inhibitory, nor excitatory identities.
Nonetheless we pursue the crucial task of identifying informative
pixels that collectively have the capability of revealing patterns
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being relevant to mechanistic processing of “decreased inhibition
and enhanced excitation.”

What kinds of pixels are potentially relevant to such
mechanistic characteristics of seizure? An illustrative Zebrafish’s
brain-wide calcium imaging video used exclusively throughout
this paper is consisting of 2,000 films with 256× 256 resolutions.
So there are 2562 = 216(> 64K) pixels involving. To address
this question of informative pixel, it is reasonable to intuitively
postulate that the characteristic mechanisms of seizure should be
manifested through large up-and-down fluctuations of calcium
intensity time series, particularly during all inter-ictal periods,
that are, between two consecutive epileptic events.

It is evident that all pixels inside a fish body, but outside
of fish’s brain have rather small fluctuations in their calcium
intensity time series in all inter-ictal periods. So they are not
relevant to the characteristic mechanism of seizure. Thus relevant
informative pixels are located within the two-halves of five
brain regions: forebrain, neuropil, SPV, cerebrum, and medulla,
as marked in the Figure 1. Pixels belonging to the five brain
regions indeed have heterogeneous calcium intensity waveforms
are within inter-ictal periods, while they all coherently peak at
the epileptic event-periods like pixels located outside of brain
regions. Such a property of having concurrent pikes right on
epileptic events provides a simple and reliable segmentation

FIGURE 1 | Zebrafish marked with five brain regions and color-coded observed pixel values (as being indicated in the color-bar) (A) and five examples of regional

calcium intensity time series (B).
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of inter-ictal against ictal periods. Five inter-ictal periods are
identified on this illustrative fish’s video data.

Upon each identified inter-ictal period, each pixel-specific
calcium intensity time series gives rise to a variance value. Based
on such an inter-ictal variance value, two pixel-selection schemes
are implemented as follows.

We organize all computational steps for informative pixels
and pixels-communities identifications into an algorithm:

Algorithm 1: Spatial Cluster Identification.

input : Calcium Imaging Video
output : Spatial cluster membership
1. Dimension Reduction
• From entire image to brain regions: circle 10 brain regions

and select pixels within each region i, i = 1, . . . , 10.
• From brain regions to informative pixels: for each pixel

selected from ith brain region, calculate the variance during
interictal segments, select pixel Pij if the variance is larger

than the top 5% variance in the ith brain region.

2. Stability of Spatial Cluster

• For each interictal segment: compute mutual conditional
entropy for pixels selected across the brain regions, apply
Hierarchical clustering tree (HC tree) on the entropy matrix
to reveal the spatial communities (see Figure 2A).

• For all interictal segments: compute mutual conditional
entropy for HC trees from each interictal segment
(see Figure 2B).

3. Spatial Cluster Identification

• For pixels selected across the brain regions, combine all
interictal segments, and compute mutual conditional entropy.

• Apply Hierarchical clustering tree (HC tree) on the entropy
matrix to reveal the spatial communities, and record the
cluster membership (see Figure 3A).

2.3. Computing Protocol
Our computing protocol is proposed as follows. Our
computations begin with performing two separate digital
coding schemes: one fine-scale and one coarse-scale, on each
unit-based time series. The fine-scale digital coding scheme,
which is based on their own possibly-gapped histograms
developed in Fushing and Roy [14]. This categorization
on continuous variable enables the evaluations of mutual
conditional entropy, which is a basic concept in combinatorial
information theory, among all selected informative units. The
resultant entropy matrix is taken as a distance matrix in an
unsupervised machine learning algorithm to bring out locally
non-linear dependency structures, or so-called synergism. Each
cluster of units, also called a synergistic unit-group, spatially
becomes a local-network, which would have its member units
belonging to several distinct regions.

The coarse-scale coding scheme applied on each unit-specific
time series is designed to preserve only time series’ signature

features, such as its peaks and troughs, which are used as
surrogates for categorical functions exhibited by the unit.
Therefore each time series is transformed into a digital sequence
along the temporal axis. So all digital sequences belonging to a
synergistic unit-group is then represented by a digital matrix.
Upon such a digital matrix, a computational paradigm developed
in Fushing and Chen [15] and Fushing et al. [16], called Data
Mechanics, is applied to layout and reveal visible emergent
temporal clusters to be taken as local system-states.

Therefore each local network will give rise to a trajectory of
local system-states. As each local system-state reflects its own
functional type, so it is assigned with a proper digital code. Under
this coding scheme, a local system-state trajectory becomes a
digital code sequence along the temporal axis. By stacking all
local networks’ digital code sequences, we have a matrix of local
system-states, which is the platform for synthesizing all these
relevant local-network into a global one.

The computing for such a global network is performed
through Data Mechanics, which primarily builds and
superimposes two clustering trees onto a digital matrix. The two
trees frame the matrix lattice into multi-scale block patterns,
which are collectively represented as a heatmap. The clustering
tree on the axis of local-network gives rise to a global network,
while the clustering tree on the temporal-axis particularly marks
and defines the global system-states. Beyond the two clustering
trees, the block patterns contained in the heatmap indeed reveal
the critical global dependency among all local networks. This
patterned dependency will shed lights on which local networks
are indeed driving forces as being responsible for the critical
recurrent behaviors in the complex system.

Then, by recovering the temporal coordinates, we explicitly
see the patterned dynamic process of global system-states
leading to each recurrent event. By color-encoding these global
system-states according to their functions, emergent patterned
system-wise signatures are likely and naturally to emerge and to
be seen throughout all inter-event segments. This is the theme
for a patterned system-wise signature to become a defining
mechanics that is capable of prescribing a complex system’s
self-organized recurrent behaviors.

2.4. Where Are Informative Pixels?
2.4.1. Scheme#1: Regional Screening
A MatLab program is used to draw the boundaries of the five
brain regions, and each marked region is separated into two
halves as well. Pixels within each of the 10 half-regions are
selected if their average inter-ictal variances are larger than
their region-specific top 5%-percentile. There are total 685
pixels selected.

2.4.2. Scheme#2: Global Filtering
A variance threshold, say Vo, is established by taking the average
of inter-ictal variances belonging to a small group of unselected
pixels within the medulla region. Pixels are progressively selected
if its averaged inter-ictal variance is larger than k × Vo with
k = 1, 2, .., 10. When k = 1, selected pixels are found in all 10
regions, but when 2 < k < 5, selected pixels are only seen in SPV
and neuropil, that is, in so called optical tectum. When k ≥ 5,
all selected pixels are all in neuropil. There are 696 pixels selected
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FIGURE 2 | Stability of spatial communities: (A) spatial communities identifies via blocks of mutual conditional entropy matrix on 685 pixels in the first inter-ictal

period; (B) Low mutual conditional entropies among community memberships across all five inter-ictal periods.

with k = 10. This selection is seemingly to counter the known
fact that SPV, which is primarily consisting of optical neurons,
is originally thought of as the most important region linking to
epileptic events.

2.5. What Are Information Contents?
Any aforementioned pixel-selection scheme is a pre-processing
step for denoising before applying any Machine Learning
algorithm. Onemore pre-processing step is needed after selecting
an ensemble of pixels because that there might be various
local-networks involving in such an ensemble. That is, such an
ensemble of selected pixels surely is consisting of distinct groups
of pixels. Within each local-network, pixels are more associated
than pixel-pairs belonging to two distinct local-networks. So
pixels sharing the same local-network are called being synergistic
to each other. It is essential to note that a pair of synergistic
pixels could be highly associated in a non-linear fashion, but not
necessary being in synchrony.

To bring out these synergistic groups of pixels, we apply
mutual conditional entropy from Combinatorial Information
Theory (see [17]) to measure the degree of synergistic association
between two pixels’ calcium intensity time series. Basically in
order to compute mutual conditional entropy, one possibly-
gapped histogram (see [14]) is derived for each of the two
time series, excluding their ictal periods. Such a histogram
provides a fine-scale digital coding on all time points within
all inter-ictal periods. That is, each time point within inter-
ictal periods is coded with a bivariate code. A contingency table
containing all counts of distinct bivariate codes is the most
natural way of revealing the dependency of the bivariate code-
variable. It is also a visualization of dependency of between the
two original time series. To numerically evaluate the dependency
upon a contingency table, the mutual conditional entropy in
combinatorial information theory is one natural measure. This
measure is a sum of rescaled Shannon entropies from row- and
column-aspects. It is asymmetric.

By calculating mutual conditional entropies among all pairs
of pixels’ digitalized time series, a mutual conditional entropy
matrix is resulted. This matrix is then taken as a distance matrix
for Hierarchical clustering (HC) algorithm. The resultant HC
tree becomes a platform for mapping out all mechanism-distinct
synergistic pixel-groups, within which all mutual conditional
entropies are relatively uniformly small. A synergistic pixel-group
would be a spatial network community. This is how distinct
local-networks are identified. It is evident that each local-network
might be crossing several boundaries of distinct brain regions.

To compute pattern information from a local-network of
synergistic pixels, we apply a triplet coding scheme based on each
involving pixel’s histogram derived from inter-ictal periods: (1)
code-1 for intensity values below the low-5% percentile; (2) code-
3 for intensity values beyond the upper-5% percentile; (3) code-
2 for intensity values falling between the two percentiles. The
code-1 and code-3 of this triplet coding are designed to capture
primary troughs and peaks of the calcium intensity time series
during the inter-ictal periods. From functional perspective, they
are surrogates for inhibition and excitation. Then a code-10 is
assigned to all time points within the ictal event periods. Hence a
pixel’s calcium intensity time series is transformed into a 4-digit
code series.

By stacking all pixel’s 4-digit code vectors along a row-axis,
we construct a 4-digit code-matrix. This code-matrix makes
possible to capture the collective up-and-down patterns. The
pattern information contained in such a code-matrix would be
sought by applying a newly developed unsupervised learning
paradigm, called Data Mechanics developed in Fushing and
Chen [15] and Fushing et al. [16], to iteratively build a HC-
tree and superimpose it onto row-axis and another HC-tree onto
column(temporal)-axis.

The resultant HC-tree on row axis gives rise to clusters of
pixels, which are somehow sharing similar up-and-down patterns
of original calcium intensity time series. On the other hand, a
tree level of the resultant HC-tree on column-axis would give
rise to a clustering composition on the temporal-axis. Each
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cluster will define a local system-state. Hence a local system-
state trajectory is obtained by recovering each local system-state’s
original temporal order.

Together these two coupled HC-trees in fact frame a multi-
scale block patterns on the code-matrix lattice. This is one
version of systemic dependency among clusters within a local-
network of synergistic pixels and a series of system states. So,
when such local-systemic dependency is displayed in a fashion
of a local-system-state trajectory, it might be expected to reveal
pattern-formations leading to each every epileptic events. Such
information contents also allow us to address whether all local-
network of synergistic pixel offer very distinct or similar “stories”
about the complex system under study.

We organize all aforementioned computational steps
for extracting and identifying local and global system-state
trajectories into an algorithm:

Algorithm 2: Temporal System State Trajectory.

input : Calcium fluorescence intensity series of
selected pixels

output : Temporal System State Series

Digital Encoding for Si(t) (calcium fluorescence intensity
series of ith pixel).
foreach Si(t), i = 1, 2, . . . n do

Build the empirical distribution Di for {Si(1), . . . Si(T)},
and denote the percentile of the distribution as D−1

i (·)
and the encoded series as Ci

1. Ci(t) = 3 if Si(t) > D−1
i (0.95)

2. Ci(t) = 2 if D−1
i (0.05) < Si(t) < D−1

i (0.95)

3. Ci(t) = 1 if Si(t) < D−1
i (0.05)

end

Aggregate Ci into a heatmap, and apply Data Mechanics
(Fushing and Chen [15] and Fushing et al. [16]), then
permute row and columns according to the updated
Hierarchical clustering tree (HC tree).
Temporal system states are identified based on the temporal
HC tree and block pattern of the heatmap, then
alphabetically coded as {a, b, c, . . . }.
foreach system state do

Find the time points t which corresponds to the
system state.
Compute the ratio of pixels experiencing peak P(t) and
trough T(t) at time t.

P(t) =
Number of Elements in {i|Ci(t)=3}

Number of selected pixels

T(t) =
Number of Elements in {i|Ci(t)=1}

Number of selected pixels

end

Find the functional content of temporal system state by
comparing P(t) and T(t).

• Peak dominant state if P(t)≫ T(t)
• Trough dominant state if P(t)≪ T(t)
• Transitional state if P(t) ≈ T(t)

Recover the original time order to see the system
state trajectory.

Algorithm 3: Data Mechanics Algorithm.

input : A n ∗mmatrix
output : Updated row and column distance and

Hierarchical clustering tree

DM1: Denote d
(0)
R as the Euclidean distance among m-dim

row vectors. Build a hierarchical clustering tree T
(0)
R

based on the row distance matrix.

DM2: Denote d
(0)
C as the Euclidean distance among n-dim

column vectors, d
(0)
C is the initial column distance.

Then, we add layers based on the row tree clusters.

Choose LR levels from row tree T
(0)
R . Each tree level

i(i = 1, 2, . . . ,LR) corresponds to G(i) clusters and
each element in the matrix corresponds to one cluster
g(g = 1, 2, . . . ,G(i)) at tree level i. The updated column

distance d
(1)
C (ci, cj) between column i and column j is

defined as following:

d
(1)
C (ci, cj) = d

(0)
C (ci, cj)+

LR∑

i=1

G(i)∑

g=1

(s(ci|g, i)− s(cj|g, i))
2

where s(ci|g, i) is the sum of components in column i that
are in cluster g(i) at tree level i.

DM3: Based on the updated column distance d
(1)
C , construct

a distance matrix among all column vectors and build a

HC tree T
(1)
C on column axis.

Dm4: Update row distance d
(0)
R the same way as in [DM2]

using new column tree T
(1)
C . Based on the updated row

distance d
(1)
R , construct the updated row tree T

(1)
R .

DM5: Repeat step [DM2] to [DM4] until (T
(k)
R , T

(k)
C ) pair

sequence converges.

3. RESULTS

In this section we report our computational results from
explorations on computed pattern formations in local and
global scales.

3.1. Stability of Spatial-Communities
Across Inter-ictal Periods
Each inter-ictal period gives rise to one symmetric 685 ×

685 mutual conditional entropy matrix. This entropy matrix
is taken as a distance matrix in the hierarchical clustering
computations for a HC-tree. By superimposing this HC-tree on
the row- and column-axes of this symmetric matrix, a series
of blocks are evidently seen and displayed along the diagonal,
as shown in Figure 2A for first inter-ictal period. Each block
corresponds to pixels-clusters found on the HC-Tree. That is,
pixels sharing the same cluster have relative low entropy-values,
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so are highly synergistic. They together form a spatial community
as a local-network.

Such a pattern formation of a series of communities is
also seen throughout the rest of four inter-ictal periods. Are
memberships of these communities or local-networks stable
across the five inter-ictal periods? To address this issue, we
calculate the mutual conditional-entropy among five clustering
compositions, each of which respectively corresponds to one 7-
cluster tree-level of one computed HC-tree, pertaining to five
inter-ictal periods. That is, each HC-tree renders one categorical
variable with 7 categories in each inter-ictal period (see [17]).

The resultant 5 × 5 matrix superimposed with a HC-tree,
as shown in Figure 2B, indicates two important and interesting
phenomena. First, all values of mutual conditional-entropies
are rather low. This result says that memberships of all local-
networks are rather stable across all inter-ictal periods. This is
one important spatial-dynamic signature. So, from functional
perspective, majority of pixels behave in a stable and collective
manner. Secondly, the HC-tree upon the 5 × 5 matrix indicates
the presence of two clusters of inter-ictal periods: {1, 4} and
{2, 3, 5}. Such a clustering composition indicates that, if a pair
of synergistic pixels relationship breaks in one inter-ictal period,
then it likely regains their high associative relations back in the
next inter-ictal period.

With the confirmed stability of spatial communities across the
serial inter-ictal periods in Figure 2, it becomes reasonable to
pool data from all five inter-ictal periods together in order to map
out these involving local-networks. Based on the pooled data,
we carry out likewise evaluations of all pairs’ mutual conditional
entropies among the 685 pixels. The resultant 685 × 685 mutual
conditional-entropy matrix is constructed and superimposed
with a HC-tree, as shown in Figure 3A. There are 7 evident
blocks along the diagonal of the matrix uniformly having relative
low mutual conditional-entropies. With respect to the color-
coding of brain regions attached to each cluster, we see that
some clusters consist of pixels exclusively belonging to neuropil,
some belonging to neuropil and SPV, and some belonging to
all five brain regions. We denote the 696 pixels exclusively in
neuropil selected via Scheme #2 to be the 8th local-network.
These 8 local-networks are expected to reveal various degrees of
functional differences.

3.2. The Temporal Pattern-Mechanics
Toward Epileptic Seizure
Such heterogeneous compositions of brain regions within some
local-network very naturally induces an important question: Do

some or all these 8 local-networks conserve certain tempo-
patterned signatures that are relevant to recurrence of epileptic
seizure? We first explore the tempo-patterned signatures toward
epileptic seizure on the 8th local-network in details. Other local-
network can be likewise explored.

The potential tempo-patterned signatures toward epileptic
seizure are explored and illustrated based on the 4-digital coded
696 × 2, 000 matrix. Data Mechanics’ iterative computations

are performed and resulted into two HC-trees: T
(2)
C on

column (temporal) axis and T
(2)
R on row (spatial) axis, as

shown in Figure 4A. For pictorial clarity, the cluster marking
epileptic event periods being excluded from the panel. Upon

the tree T
(2)
C , 16 clusters of time-points on the temporal

axis are identified and alphabetically coded with code-words
{a, b, c, d, e, f , g, h, i, , ....p, q}. Here code word a is used for the
cluster of epileptic event periods. So there are 17 local-system
states found in the 8th local network. It is reiterated that a
local system state stands for a common feature shared by of all
time points within a cluster via having similar 696 dimensional
vectors. These within-in-cluster features are distinct among
different local system states with various degrees of differences.

From functional aspect, as shown in Figure 4B, the local-
system states encoded with alphabet codes {b, c, d, f , g} are seen
to have trough-count being larger than peak-count, while the
local-system states encoded with alphabets coded {h, i, , ....p, q}
are seen to have trough-count being smaller than the peak-
count are. One distinct cluster having low values on both
trough- and peak-counts is coded e. This e state is likely the so
called “transition state”, which is like a “bridge” connecting two
functional distinct states.

It is critical to note that, whenmemberships of each cluster are
recovered according to their original temporal coordinates, then
an evolution of local-system states are revealed. Consequently
the transition counts are represented in a matrix, as shown in
Figure 4C. It is evident that the e-cluster play a critical role of
transition, that is, trough-dominant states rarely go directly to
peak-dominant states, but they likely go through the transition-
state e, and then into trough-dominant states. Likewise peak-
dominant states rarely go directly to trough-dominant states, but
they go to transition-state e and back to peak-dominant states.

Most importantly, the entire local-system state trajectory,
as shown in Figure 4D, reveal one critical coding pattern-
switch from trough-dominant local-system states going
through transition-stated e to peak-dominant local-system
states within each of the five successive inter-ictal periods.
Thus, the evolution of local-system states together with such
a patterned-switch constitute and define the local-system’s
temporal pattern-mechanics toward epileptic seizure. It is worth
mentioning that this temporal pattern-mechanics pertaining
to the 8th local network is potentially and functionally a
reliable EWS.

3.3. Network Linkages Among the 8
Local-Networks
Next we investigate whether the temporal pattern-mechanics
discovered within the 8th local-network is also seen in any of
the 7 communities or not? We repeat the whole set of DM
computations on each of the 7 local-networks: No. 1 through
No.7. A HC-tree is likewise superimposed onto the column
(temporal)-axis of the heatmap and their system states are
similarly defined.

Upon these 8 tempo-HC-trees and corresponding 8 clustering
compositions, which are respectively used in identifying their
local-system states, we compute the 8 × 8 mutual conditional
entropy matrix, as shown in Figure 3B. Correspondingly a
network upon 8 nodes of local-networks is built by thresholding
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FIGURE 3 | Spatial communities among 685 pixels selected from five brain regions: (A) identification of 7 communities; (B) mutual conditional entropies matrix of 7

collections of community-specific system states; (C) network representation of temporal-connectivity among the 7 communities (the solid linkages have mutual

entropies being <0.7 for indicating high associations, while dotted linkages have mutual entropies more than 0.7 for indicating low associations).
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FIGURE 4 | System state identification and trajectory: (A) identification of system states resulted from Data Mechanics computations; (B) functional markers of

system states; (C) transition probability matrix; (D) seizure-bearing patterns of system state trajectory across all five inter-ictal periods.

the entropy values is derived and shown Figure 3C. Here
such a linkage between two nodes within the network is
explained as that two time-points sharing one local system-
state of one local-network is likely to have high probability
of sharing one local system-state via the other local-network.
These two system-states might not necessary being coherent
in terms of trough- or peak-prevalent. As would be seen

below, the coherent linkages are that between local-networks
{No. 5, No. 6, No. 7} and No. 8. This is naturally expected
because they consist of pixels exclusively from neuropil.
The relatively incoherent linkages are seen between {No. 1,
No. 2} and No. 8. This network indicates that the 8th
local-network’s pattern-mechanics might not share with local-
networks { No. 1, No. 2}.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 March 2019 | Volume 5 | Article 13

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Hsieh and Zheng Mechanics Defining Self-Organized Recurrent Behaviors

FIGURE 5 | Global patterned-dependency: (A) identification of global system-states upon the 8 communities (the 8th one the 696 pixels from neuropil); (B) summary

of functional dependency among 8 communities and its driving force of the 8th community.

3.4. Global Pattern-Mechanics Toward
Recurrent Epileptic Events
The final phase of analysis is to synthesize the above 8 local
system-state trajectories into one brain-wide global system-state
trajectory. Such a global system-state trajectory is expected to give

rise to an evident structured pattern-formation leading toward
an epileptic event within an inter-ictal period. The synthesis
is proposed and proceeded as follows. Each local system-state
trajectory is converted into 4-digit time series: (1) code-10 (color-
coded Bright-Red) for epileptic event; (2) code-1 (color-coded
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FIGURE 6 | Pattern-mechanics: seizure-bearing patterns through global system state trajectory within each five inter-ictal periods. Red color-coded and underlined

global system states for inhibition and black color-coded global system states for excitations.
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Red) for Trough dominant system state; (3) code-2 (color-
coded Yellow) for transitional state ; and (4) code-3 (color-
coded White) for Peak dominant state. We apply the Data
Mechanics on this 8 × 2, 000 4-digit code matrix and result
into a heatmap with two HC trees superimposed upon its row
and column axes, as shown in Figure 5A. This heatmap brings
out the patterned system-wise dependency among the 8 local
system-state trajectories.

Such a patterned system-wise dependency with large scale
structures is discovered, summarized and reported in Figure 5B.
Based on such large scale structures, we conclude that the No. 8
local-network of 696 pixels from neuropil indeed to a great extent
drives the whole global dynamics leading to recurrent epileptic
events across all the five inter-ictal periods.

For extracting the fine scale structures constituting such
patterned system-wise dependency among these 8 local-
networks, we select a tree-level with 12 temporal clusters as 12
global-system-state upon the tree superimposed on the column
(temporal) axis of heatmap in Figure 5A. These 12 clusters are
encoded with alphabetic-codes: {a, b, ...., l}, from the left to the
right. The Red-underlined code-words {b, c, d} are to functionally
indicate these global-system-states having trough-dominance. So
they are taken as having inhibitory-functional tendency.

To further reveal our discovery on system-wise pattern-
mechanics toward epileptic event, we recover each global state’s
temporal coordinate. The five segments of global system-state
trajectory pertaining to the five inter-ictal period are given
Figure 6. The most evident system-wise signature we found
is that red-underlined consecutive codes with length four or
more disappear after the middle point of inter-ictal period.
Even triplet, pair or single red-underline code become very
sparse in the 2nd half of the inter-ictal period. Such a system-
wise pattern-mechanics is robustly observed throughout all five
inter-ictal periods. Therefore, we conclude such a discovered
signature as an early warning signal to an incoming epileptic
event. This system-wise pattern-mechanics is coherent to the
pattern-formation found exclusively based on the No. 8 local-
network as reported in Figure 4D. Such fine scale structures
once again confirm that neuropil in this illustrative fish’ optical
tectum indeed play a significant role in leading to each
epileptic event. This finding on neuropil is rather relatively
new and potentially significant in neuroscience related to
epileptic dynamics.

4. DISCUSSION

As shown in Figure 6, our computed system-wise signature that
is universally seen in all five inter-ictal periods clearly provides
a precise description of global interacting dynamics between
inhibition and excitation functions leading to an epileptic event.
This brand new description in fact is not only informative, but
also realistic and reliable. Thus, we personally believe that our
data-driven computing for wax and wane patterns of trough-
dominance and peak-dominance in the brain-wide calcium
imaging video data from the illustrative PTZ-treated Zebrafish
is indeed applicable in many complex system studies beyond

neuroscience. Since our computational methodologies achieve
one generic goal: compressing the whole ensemble of time series
by digital coding to discover dynamic patterns of system-wise
dependency among many involving mechanisms without being
compromised by unrealistic modeling assumptions or structures.

Among our computational methodologies, the combinatorial
information theory based computations, including various
digital coding schemes and mutual conditional-entropy for
potentially non-linear synergistic associations, involve rather
elementary counting operations. While our Data mechanics
algorithms builds unsupervised hierarchical clustering (HC)-
trees for identifying system states on digital-coded data and pixel-
communities on mutual conditional-entropy matrices involving
only simply permutations operations. Our digital coding schemes
and Data mechanics algorithms employed here are rather simple.
They seemingly cut off many detailed pieces of information.
However, it is worth emphasizing that the key underlying this
digital coding is to make the major information contents like
children’s Lego blocks, so that they can possibly and likely
aggregate in a collective fashion. This is how global dependency
could possibly be discovered.

Through the brain-wide calcium imaging video data, our
computations successfully reveal the realistic and visible
information contents of all involving mechanisms via pixel-
communities and their idiosyncratic system state trajectories. We
then synthesize all mechanism-specific information contents into
system-wise spatial×temporal dependency dynamics, which is
represented by explainable displays of recurrent global system
state trajectories leading to each epileptic event.

At the end we particularly remark that our mutual
conditional-entropy is shown as a more reliable non-linear
measurement of association of a pair of time series than the
linearity based correlation. It is also asymmetric. Directed
associations between two time series or even two variables
are needs. Further it works universally for all data types:
continuous, discrete and categorical. Commonly used correlation
is a symmetric measurement and only works for continuous data.
The most restrict aspect correlation is its meaning. It is recalled
that a correlation is meaningful when the bivariate normality
assumption holds. In reality, such assumption is not likely true
because two pixels’ calcium intensity time series could have
rather distinct waveforms, which affect each other in a non-
linear manner. Thus, a broader form of dependency is required
here in order to accommodate diverse mechanisms involved
within brains.
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