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In many real-life situations, individuals are dared to simultaneously achieve social

objectives of acceptance or approval and strategic objectives of coordination. Since

these two objectives may take place in different environments, a two-layer network is

the simple and natural framework for the study of such kind of dynamical situations. In

this paper we present a model in which the state of the agents corresponds to one of

two possible strategies. They change their states by interaction with their neighbors in

the network. Inside each layer the agents interact by a social pressure mechanism, while

between the layers the agents interact via a coordination game. From an evolutionary

approach, we focus on the asymptotic solutions for all-to-all interactions across and

inside the layers and for any initial distribution of strategies. We find new asymptotic

configurations which do not exist in a single isolated social network analysis. We report

the emergence and existence of chimera states in which two different collective states

coexist in the network. Namely, one layer reaches a state of full coordination while the

other remains in a dynamical state of coexistence of strategies. In addition, the system

may also reach a state of global anticoordination where a full coordination is reached

inside each layer but with opposite strategies in each of the two network layers. We

trace back the emergence of chimera states and global anticoordination states to the

agents inertia against social pressure, referred here to as the level of skepticism, along

with the degree of risk taken into account in a general coordination game.

Keywords: multilayer network, coordination games, chimera states, anticoordination states, skepticism

1. INTRODUCTION

The chimeric states refer to the emergence of a hybrid state in a coupled dynamic system in which
one domain of the system exhibits a coherent behavior in combination with another domain that
displays an incoherent behavior. The coexistence of coherent and incoherent states has received
much attention as an intriguing manifestation of collective behavior. This interesting behavior
was first observed by Kuramoto et al. [1] and then named it as chimera state [2]. Although the
literature about chimera states started with the study of interacting populations of oscillators in
dynamical systems [3–7], it has been dizzily expanded to many fields in physics, chemistry, biology,
etc (see [8–20]). Also in social systems, situations of two interacting populations in which one
exhibits a coherent or synchronized behavior while the other is incoherent or desynchronized
are commonly observed [21, 22]. This phenomena has also been addressed from the conceptual
framework of chimera states. Models based on individual interactions have been introduced for
opinion formation and cultural dissemination [21] and [22] in order to analyze the emergence of
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localized coherent or chimeras states behavior in social contexts.
The systems considered consist in two populations of social
agents mutually coupled through global interaction fields that
account for the state of the majority of the agents in each
population. The internal interactions in each group have a
condition that allow for non-interacting states. Two examples of
such dynamics have been analyzed: (i) Axelrod’s model for social
influence [23], and (ii) a discrete version of a bounded confidence
model for opinion formation [24]. In both systems, there are
localized coherent states for some parameter values, in which a
group reaches a homogenous or consensus state, while the other
group remains in a disordered or polarized state. In this paper we
contribute further to the study of chimera states in social systems,
searching for them in the context ofmodels of social coordination
and learning dynamics [25].

The goal of reaching coordination has become one of the
most important challenges in modern societies: In spite of
the fact that individuals are now more connected and handle
more information due to technological progress, it seems that
coordination to reach consensus is becoming an increasingly
difficult goal. It is common to observe how some societies become
polarized either by economics concerns, ideological or political
opinions, or, the collective behavior leads the population to
states in which one part reaches a consensus while the other
part behaves in an unstable manner, or it displays a dynamical
coexistence of states. It can be argued that such diversity
of outcomes is the result of a constant search for achieving
simultaneously two different kinds of aims, namely, social and
economic aims. On one side, individuals, influenced by others,
seek for social acceptance and recognition and on the other
side they attempt to get higher gains. Whenever the social and
economic concerns take place in two different social networks or
environments, the population unavoidably splits into two disjoint
target groups. For instance, we can consider a country divided
into two regions. Between the regions the habitants search for
fulfilling economic aims and inside each region they search for
social aims of approval and acceptance.

Here we present a simple model to illustrate such situation
in which individuals of a population divided into two groups
are dared to coordinate in order to accomplish their social
and economic goals. Our framework for studying such kind of
population is a two-layer network. Each layer corresponds to a
group of the population and the interactions within the group
aim to satisfy social concerns, while interactions between agents
of different layers aim to satisfy economic concerns. In our
system, the economic goal turns out to be reached when agents
play the same strategy. Since there will be as many consensus
as numbers of possible strategies a coordination problem arises.
This situation is an important issue in economics, being analyzed
in many theoretical and experimental studies. From the game-
theoretical approach this situation has being modeled as a non-
cooperative game called coordination game, [26–30]. In our
framework, the individuals play a pairwise two-person two-
strategy coordination game.

In a social context, there is a wide number of theoretical
models and empirical evidences that explain and show how the
social influence can lead individuals to modify their behaviors,

attitudes or beliefs, and as results, collective behaviors of
consensus, polarization, or diversity may arise, [31], [32], [33].
Here, we consider an alternative model of social influence based
on the popularity of the strategies instead of the payoffs. Agents
search for social goals of acceptance or approval of the strategy
they use in their interlayer interactions.

There are a number of studies on population games with
binary choices and externalities in discrete time (e.g., [34–36]).
Within this literature, an interesting recent contribution by
Dal Forno and Merlone [37] considers the dynamical effect in
discrete time of a reference group in a system of two-group
population. They consider the reference group as a “model” in
which the behavior of such group affects the other population’s
dynamics. Our study follows the two-group population model
described in Lugo and San Miguel [38]. Both models study
the dynamics of a system of two-group population with binary
choices in discrete time and obtain results that can not be
obtained in a single isolated system. However, our model differs
from Dal Forno andMerlone [37] in several aspects, in particular
in two main points. A first one is where the binary choice game
takes place. In our model individuals in one population play the
two-strategy coordination game with the individuals in the other
population, instead of playing a game inside each population as
in the model of Dal Forno and Merlone [37]. A second main
difference is where the social influence takes place. In our model,
it takes place inside each population. In terms of the approach of
Dal Forno and Merlone [37], we may say that each group serves
as its own reference group.

Despite the simplicity of our model, the accomplishment of
social goals can be difficult to achieve because there is skepticism
in people to be influenced by the popularity of the opposite
strategy of their partners. The previous work of Lugo and
San Miguel [38] that considers such population searching for
social and strategic objectives shows that for an initial uniform
distribution of two possible strategies the skepticism to follow
the opposite strategy and the local connectivity are the driving
forces to accomplish full coordination for this two-layer network.
Here, we consider the role of different initial conditions leading
to different asymptotic states of the dynamics and we determine
the basin of attraction of these states. As one of our main results,
we find two asymptotic states with non-trivial collective behavior
which can not be found in a single isolated network analysis. A
first outcome is a social analog of a chimera state with coexistence
of coherent and incoherent states. In our model, one layer can
reach a homogeneous state of full coordination while the other
remains in a dynamical state of coexistence of strategies. The
second non-trivial asymptotic state is the anticoordination or
polarization state in which the system reaches coordination with
a different strategy in each layer.

The paper is organized as follows. Section 2 introduces the
general frame of our model. Based on a two-layer network, we
describe the kind of interactions inside and between layers and
the dynamical rule for individuals to update their strategies.
Section 3 describes the possible asymptotic solutions of the
collective dynamics reached by the system, as well as the basins of
attraction to reach these solutions. In particular we describe the
non-trivial chimera and anticoordination states and their basins
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FIGURE 1 | Sketch of a two-layer network. The nodes are connected to each

other in a pairwise manner both inside the layers (intralayer links) and across

the layers A and B (interlayer links). Dotted lines describe the interlayer

interactions and the solid lines describe the intralayer interactions. Black nodes

stand for the agents playing strategy L, while white nodes stand for the agents

playing strategy R in a coordination game.

of attraction. Section 4 shows bifurcation diagrams, in section 4.1
for the case of a symmetric coordination game and in section 4.2
for the case of an asymmetric coordination game. Finally, section
5 summarizes our conclusions. In the Appendix, we present a
mean-field theory for the time evolution of the system in the
infinite size limit.

2. METHODS

We consider an individual based model consisting in a
population in which individuals interact in two different groups,
A and B of sizes NA and NB respectively. We take NA = NB = N.
Using the frame of a two-layer network (see Figure 1), inside each
layer the individuals interact with social objectives and between
layers they interact with strategic or economic objectives, as
described in the following.

2.1. Interactions Between the Layers:
Coordination Games
In Game Theory, the coordination game is a prototype model
of a non-cooperative game in which players share the goal of
coordinating on any of the feasible actions, [26–30]. It has
multiple pure strategy Nash equilibria, and hence, a problem of
equilibrium selection arises. In our model, players between the
layers play a two-person, two-strategy coordination game.

The strategic interaction proceeds as follows. In each time
step, each agent in a layer plays with each agent in the other layer
a pairwise coordination game. Table 1 shows the payoff normal
form representation of a coordination game: For example if one
agent plays L and the other plays R, the payoff for the former is
0, and−b for the latter. We focus our analysis on two parametric
settings, a pure or symmetric coordination game (SCG) in which
s = 0 and b = 0 and a general or asymmetric coordination
game (ACG) in which s = 1 and b > 0. The profiles (L, L) and
(R,R) are the two pure strategy Nash equilibria in both settings.

TABLE 1 | Payoff matrix for a two-person, two-strategy coordination game.

L R

L 1, 1 0,−b

R −b, 0 1+ s, 1+ s

A problem of equilibrium selection is present in both settings. In
the symmetric coordination game both equilibria are equivalent,
in the sense that the payoff of each player for coordinating either
on L or R is equal to 1. However, in the general coordination
game, the payoff is equal to 2 for coordinating on (R,R) and 1
for coordinating on (L, L). Then, the higher payoff is achieved
when agents coordinate on R. The profile (R,R) is the socially
efficient solution and it is known in game theory, as the Pareto
(payoff) dominant equilibrium. However, when b > 1, the profile
(L, L) becomes the risk dominant equilibrium, in the sense of
[30]. When players coordinate on (L, L), the cost of a unilateral
deviation is 1 + b and when they coordinate on (R,R) the cost
of a unilateral deviation is 2. The cost of deviation from L to R
is greater than the cost of deviation from R to L, if 1 + b > 2,
or equivalently, if b > 1. In this case, by the criterion of risk
dominance, when b > 1, the agents select the profile (L, L) since
the socially efficient solution (R,R) turns risky. The parameter b
becomes a measure of the risk for playing the strategy R. For a
complete review, see [29].

2.2. Interactions Inside the Layers: the
Effect of Social Pressure
Inside each layer, searching for social acceptance and approval,
each agent observes the strategies being played by her partners.
An agent may not feel at ease with her strategy when such
strategy is not as popular as she wants in her social environment.
The level of skepticism in the population is calibrated by a
threshold T that determines the effect of the social pressure
exerted on an individual. The criterion used by each player i is
to measure how well she is doing by comparing the share of
agents who are playing the opposite strategy to hers, denoted
by di, with the threshold T ∈ [0, 1]. We may distinguish two
types of populations. Herding population, for T < 0.5, in which
individuals are influenced by low levels of popularity of the
opposite strategy, and, skeptical population, for T > 0.5, where
the social pressure has a weak effect on individuals: a feeling
of disapproval only arises for high levels of popularity of the
opposite strategy. Therefore, when di > T, the social pressure
is effective because player i generates a feeling of non-acceptance
about the strategy she is currently playing and she is willing to
revise it.

2.3. Inter-layer and Intra-layer Objectives:
The Degree of Satisfaction
In the interactions across and inside the layers agents intend to
satisfy two different objectives: social objectives of acceptance
and approval, and strategic objectives of coordination. These
objectives give rise into two different sources of satisfaction:
strategic satisfaction in terms of the monetary payoff obtained
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TABLE 2 | Degrees of satisfaction according to the fulfilment of social and

strategical objectives.

S P1 P2 U

πi = (1+ s)N πi = (1+ s)N πi < (1+ s)N πi < (1+ s)N

di < T di > T di < T di > T

in the coordination game and social satisfaction in terms of the
popularity of the current strategies. Therefore, there are four
degrees of satisfaction described in Table 2, where πi is the
aggregate payoff that agent i in a layer gets playing with all the
other agents in the other layer.

The value of s is derived from the parametric setting of the
coordination game. When s = 0 the equality πi = N shows the
total payoff when player i coordinates with all the members of
the other layer in the symmetric game. Then we say that agent i is
strategically satisfied. In the case of a general coordination game,
s = 1, an agent is strategically satisfied when the coordination
is on the socially efficient solution, i.e., the Pareto dominant
strategy. Then, the total payoff is πi = 2N. Besides, when di < T
the share of agents inside the layer of player i who play the same
strategy as she does is high enough so the player i feels socially
satisfied with her current strategy. This means that her social
objectives of acceptance and approval are fulfilled. Then, the level
of satisfaction of agent i can be: S (satisfied) when she is both
socially (di < T) and strategically (πi = (1 + s)N) satisfied, P1
or P2 (partially satisfied) when she is either socially (di < T)
or strategically (πi = (1 + s)N) satisfied and is U (unsatisfied)
when she is both socially (di > T) and strategically (πi <

(1+ s)N) unsatisfied.

2.4. Learning Dynamics
The learning dynamics in the system is described by the update
rule used to change strategy: at each elementary time step each
player plays the coordination game with all the members in
the other layer. Once the game is over and an aggregate payoff
is assigned to each player, each agent observes and measures
the popularity of her strategy in her own group. As a result, a
level of satisfaction arises. Then, she might change her strategy
impelled by her level of satisfaction. The process is repeated
setting aggregate payoffs to zero. The synchronous update rule
in which each player can change her current strategy according
to her level of satisfaction is described as follows,

1. If her level of satisfaction is S, she remains with the
same strategy.

2. If her level of satisfaction is P1 or P2, she imitates the strategy
of her best performing agent inside the layer in case that
such agent has received a larger payoff than the player herself,
otherwise she remains with the same strategy.

3. If her level of satisfaction is U, she changes her
current strategy.

Although the update rule takes place inside the layers,
individuals change their strategies by both social and strategic
considerations. The imitation of the best performing individuals

in her social environment aims to capture the individual behavior
observed in many complex real life situations. This learning
dynamics was first implemented in Lugo and San Miguel [38]
to study the effect of local interactions on a two-layer network
with an initial uniformly distribution of strategies and also, in
González-Avella et al. [39] to study the emergence of polarization
in a skeptical population for any initial distribution of strategies.

3. RESULTS

3.1. Asymptotic Solutions
Analytical equations for our model and their asymptotic
solutions are discussed in the Appendix. For the general case
of the asymmetric coordination game these solutions, described
below, are the following:

Solution I:Coordination in strategy L: All agents in both layer
play strategy L. It is linearly stable and exists for any T ∈ [0, 1].

Solution II: Coordination in strategy R: All agents in both
layer play strategy R. It is linearly stable and exists for any T ∈

[0, 1].
Solutions III: Coexistence of strategies. These solution exist

for any T 6= 1 and it occurs in two ways:

(1) unstable fixed points and,
(2) family of marginally stable periodic solutions.

Solutions III-a and III-b: Chimera solutions. This is an
interesting case of coexistence of two distinct solutions, namely,
solutions I and III. One of the layers goes to the absorbing state
of coordination in strategy L, namely layer A for Solution III-
a and layer B for solution III-b, while the other layer goes to a
dynamical state of coexistence of strategies, solution III type (2).
We also find the case of coexistence of two solutions in which
one layer coordinates in L and the other layer remains disordered
with both strategies coexisting in the same proportion [Solution
III type (1)]. Chimera solutions only appear when agents are
playing the asymmetric coordination game. They exist for almost
any T < 0.5 and almost any b > 0.

Although the strategies L and R are not equivalent in the
asymmetric coordination game because the first is the socially
undesired and the second the socially desired outcome, solutions
III-a and III-b are equivalent in the sense that the layer reaching
the absorbing state L is determined by the initial conditions
of strategies in the two layers. We refer to these solutions as
chimera states because of the coexistence of an ordered layer and
a disordered layer. The disordered layer can be in a dynamical
state [solution III (2)] or in a configuration in which the number
of agents playing each strategy is equal and constant in time
[solution III (1)].

Solutions IV Anticoordination states, layer A coordinates in
strategy L while layer B in strategy R.

Solutions V Anticoordination states, layer A coordinates in
strategy R while layer B in strategy L.

Solutions IV and V exist and they are linearly unstable and
exist for almost all T ∈ [0.5, 1].

We summarize in Figure 2 the domain of existence of
the different asymptotic solutions for the general case of the
asymmetric coordination game as a function of the threshold T
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FIGURE 2 | Domain of existence of the different asymptotic solutions in the

Asymmetric Coordination Game (ACG) as a function of the threshold T and the

risk parameter b as obtained from the analytic solution of the equations

discussed in the Appendix. The two curves ( T = 1+b
3+b and 1− T = 1+b

3+b ) and

the two lines (b = 1, T = 0.5) divide the figure in eight zones from (A) to (H). In

each of these zones the asymptotic solutions that exist are indicated. The red

dots correspond to values of T and b used in Figure 5.

and the risk b parameters. For this general case the parameters
of the pay-off matrix take the values s = 1 and b > 0 for
any T ∈ [0, 1]. Asymptotic solutions of the dynamics depend
on initial conditions (see below Figure 5), and in this sense we
refer to Q1 as those chimera states, solutions III-a and III-b, that
are reached from initial conditions such that xaa

0 + xbb
0 < 1,

where xaa
0 and xbb

0 are the initial conditions for xaa and xbb
respectively. Likewise we refer to Q2 as those chimera states,
solutions III-a and III-b, that are reached from initial conditions
such that xaa

0 + xbb
0 > 1. It turns out that solutions Q1 exist

for b > 0, zones A, C, and D in Figure 2, while Q2 only exist for
b > 1, zones D and C. The range of values of b and T in which
the system reaches solutions Q1, Q2, I ,II and III corresponds
to zones C and D in the Figure. The difference between zones
C and D refers to the areas of the basins of attraction of each
solution, as explained in section 3.2. For the case of symmetric
coordination game, the parameters take the values s = 0 and
b = 0. The asymptotic solutions in this case are the same as
those for the asymmetric coordination game except for Solutions
III-a and III-b, the Chimera states. Chimera states could not be
found for any level of skepticism in the case of the symmetric
coordination game.

Given that the agent population is divided in two layers, A and
B, we define xaa as the fraction of individuals playing strategy R
in layerA, and xbb as the fraction of individuals playing strategy R
in layer B. To describe the different asymptotic solutions we also
introduce the order parameter nAB giving the density of inter-
layer active links, i.e., the proportion of links connecting agents
in different layers with opposite strategies. The order parameter
nAB can be written in terms of xaa and xbb by,

nAB = xaa(1− xbb)+ xbb(1− xaa)

TABLE 3 | Asymptotic states and associated values of xaa, xbb, and nAB.

Asymptotic state nAB xaa xbb Solution SCG ACG

Coordination
0 0 0 I 3 3

1 1 II 3 3

Anticoordination
1 0 1 IV 3 3

1 0 V 3 3

Coexistence of strategies

1
2

1
2

1
2 III 3 3

4(1+b)
(3+b)2

1+b
3+b

1+b
3+b 7 3

u+v -2uv u, 1-u v, 1-v 3 3

Chimera states

v,1-v 0 v, 1-v III-a 7 3

1
2 0 1

2 7 3

u, 1-u u, 1-u 0 III-b 7 3

1
2

1
2 0 7 3

The last two columns indicate existence or non-existence of the state in the Symmetric

Coordination Game (SCG) and in the Asymmetric Coordination Game (ACG). The

parameter b corresponds to the risk parameter of the ACG and the numbers u, 1 − u

and v, 1 − v for u, v ∈ (0, 1) describe the family of periodic solutions in layer A and

layer B respectively. Chimera states in which the three variables xaa, xbb, and nAB take

constant values, either 0 or 1/2, correspond to the case in which the disordered layer is

in a solution III (1).

The different solutions described in terms of the asymptotic
values of nAB, xaa, and xbb are shown in Table 3. These solutions
follow from the mean-field analysis described in the Appendix.
We next describe these solutions as obtained from numerical
simulations. In these simulations, we have fixed the system size
NA + NB = 2000 where NA = NB = 1000.

Figure 3 shows the time evolution of xaa and xbb, as obtained
from the simulation of our individual based model, for different
initial conditions that lead to the asymptotic solutions I, II,
III, III-a, III-b, IV, and V. Figures 3A–G correspond to the
symmetric coordination game (SCG), while chimeras states
appearing in the asymmetric coordination game (ACG) are
shown in Figures 3H–J. In Figures 3A,B the order parameter
nAB = 0, indicates that the system goes to an absorbing state in
which the agents in both layers play the same strategy. Figure 3A
shows that after a short transient time the fractions xaa =

xbb = 0 and the density of inter-layer active links is nAB = 0
corresponding to solution I, while for Figure 3B after a short
transient time the fractions xaa = xbb = 1 and nAB = 0
corresponding to solution II.

In Figure 3C (solution IV) and Figure 3D (solution V), the
value nAB = 1 indicates that in both cases the system goes
to an anticoordination absorbing state, i.e., agents in each layer
are playing opposite strategies. This state of anticoordination
can emerge only in skeptical populations where T > 0.5. It
is interesting to notice that the layer with an initial higher
proportion of R is the layer that ends playing L. A complete
analysis of the anticoordination solutions for a skeptical two-
group population can be found in González-Avella et al. [39].

It is important to note that there exist absorbing states other
than solutions I, II, IV, and V. They correspond to an unstable
fixed point xaa = xbb = r of the dynamics for 0 < r < 1.
These solution correspond to the classification (1) of Solution III,
namely, r = 1/2 in the SCG for all T ∈ (0, 1) and in the ACG for

T < 1/2, or the fixed point r = 1+b
3+b

in ACG when T > 1/2.
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FIGURE 3 | Time evolution of xaa (circles), xbb (squares) and the density of active inter-layer links n
AB

(dashed lines). (A–D) Show the time evolution to coordination

(solutions I and II) and anticoordination states (solutions IV and V) for symmetric game (s = 0,b = 0) with T = 0.75. (E–G) Show the phase and anti-phase oscillations

[solutions III (2)] of the fraction of strategies xaa and xbb for symmetric game (s = 0,b = 0) with T = 0.25. (H–J) Show the temporal evolution of xaa and xbb and the

active inter-layer links n
AB

, for the asymmetric coordination game (s = 1,b = 0.5) with T = 0.25. (H,I) Show the chimera states, solution III-a and III-b respectively and

(J) shows the case when the initial and the final states are the same when xaa = 0 and xbb = 0.5.

FIGURE 4 | Plot in color scale of the fraction of active links between layer A and B in the asymptotic solution of the dynamics as a function of the initial density of xaa
and xbb for the Symmetric Coordination Game (s = 0, b = 0). The color scale defines the values of the fraction of actives links, nAB = 1 black color and nAB = 0

white color. Asymptotic solutions are as indicated. (A–F) Correspond to different values of T: (A) T = 0, (B) T = 0.25, (C) T = 0.5, (D) T = 0.75, (E) T = 0.85, and (F)

T = 1. System size, NA + NB = 1000+ 1000 = 2000.

Figures 3E–G display the temporal evolution of the system for
marginally stable periodic solutions [solutions III (2)] in the case
of the symmetric coordination game. The asymptotic dynamical
configurations show phase (Figures 3F,G) and anti-phase
(Figure 3E) oscillations of strategies between the two layers. Note
that 0 < nAB < 1 remains constant during these oscillations.

The Chimera solutions are illustrated in Figures 3H–J for the
ACG with parameter values T = 0.25, b = 0.5. Figure 3H
corresponds to a solution III-a, in which all agents play strategy
L in layer A, i.e., xaa = 0 while a configuration of dynamical
coexistence of strategies takes place in layer B, i.e., 0 < xbb <

1. Note that the fraction of agents that choose to play strategy
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FIGURE 5 | Plot in color scale of the fraction of active links between layer A and B in the asymptotic solution of the dynamics as a function of the initial density of xaa
and xbb for the Asymmetric Coordination Game. The color scale defines the values of the fraction of actives links, nAB = 1 black color and nAB = 0 white color.

Asymptotic solutions are as indicated. (A–H) Correspond to the values of the threshold T and parameter b indicated by red dots in Figure 2. (A) T = 0.25,b = 0.50,

(B) T = 0.46,b = 0.50, (C) T = 0.25,b = 0.30, (D) T = 0.25,b = 3.00, (E) T = 0.55,b = 3.00, (F) T = 0.80,b = 3.00, (G) T = 0.55,b = 0.50, (H)

T = 0.80,b = 0.50. System size, NA + NB = 1000+ 1000 = 2000.

L or R in layer B changes over time, so that we also observe
an oscillation of nAB . Figure 3I corresponds to a solution III-
b. In this case the behavior is similar to the one in Figure 3H,
but now the L coordinating absorbing state occurs in layer B,
while the dynamical coexistence of strategies appears in layer
A. We also notice that possibly similar solutions with xaa 6= 0
constant, and xbb oscillating are not found in our model due
to the non-equivalence of the L and R strategies in the ACG.
In Figure 3J we illustrate the particular case of a chimera state
in which one layer coordinates in L, in this case layer B, while
the other layer remains in a solution III (1) in which agents in
that layer start and continue playing for all times both strategies
with equal proportions.

The particular collective behaviors described by solutions
III-a and III-b, are the social analog of a chimera state
arising in two interacting populations of oscillators observed
in dynamical systems. In general a chimera state describes a
situation where two populations that interact with each other, one
exhibits a coherent or synchronized behavior while the other is
incoherent or desynchronized. Likewise we have two populations
of interacting agents such that one reaches an absorbing state,
while the other remains in a dynamically disordered state. The
chimera states only arise in our system when the population
is herding (T < 0.5) and play an asymmetric coordination
game. This means that beside the initial distribution of strategies,
a herding behavior is the underlying mechanism that allows
to reach chimera states when the two Nash equilibria of the
coordination game are not equivalent in terms of payoff.

3.2. Basins of Attraction: The Global
Picture
Depending on the initial conditions for xaa and xbb, the
system reaches different asymptotic solutions characterized by
their value of the order parameter nAB. Extensive numerical

simulations of our individual based model are summarized in
Figures 4, 5 that show the basins of attraction of the different
asymptotic solutions in terms of the initial densities of xaa and
xbb, and for different values of the threshold parameter T for the
SCG and for different values of T and b for the ACG, respectively.
The color code defines the solutions in terms of the fraction
of inter-layer active links. Both figures show how the basins of
attraction in terms of the initial conditions are determined by the
value of the threshold parameter T in the case of the SCG and the
threshold T along with the parameter b in the case of the ACG.

4. BIFURCATION DIAGRAMS

In this section we consider possible transitions among the
different solutions discussed before. These transitions are
described by means of bifurcations diagrams obtained in terms
of the control parameters T and b.

4.1. Symmetric Coordination Game
We have shown in the previous section that the solution obtained
for the SCG, and for a fixed initial condition, depends on the
value of the threshold parameter T, so that by varying T we find
transitions among those solutions. Examples of these transitions
are shown in Figures 6A–C. These are bifurcation diagrams that
give the average of the fractions of inter-layer active links nAB
or 1 − nAB as a function of the threshold T. These bifurcation
diagrams describe transitions that occur, for threshold values of
T, between solutions III to I, III to V, and I to V, respectively for
different fixed values of the initial conditions. Each panel shows
two examples. We also find subsequent transitions among three
solutions. For instance, the bifurcation diagram Figure 7A for
the average of nAB, illustrates a first transition between solution
III and solution I, followed by a second transition between
I and V as T increases. These results show the effect of the
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skepticism on the collective behavior in a two-layer network.
Tuning the level of skepticism from the limit value T = 0, where
the population is extremely herding to the limit value T = 1
where the population is extremely skeptical. Figure 4 indicates
that the system goes from a state of complete coexistence of
strategies, Solution III for almost all initial conditions, to states
of anticoordination, Solutions IV and V, and states of global
coordination, Solutions I and II.

4.2. Asymmetric Coordination Game
As discussed before, Figure 2 shows for the ACG case a phase
diagram, obtained from a mean field theoretical approach,
indicating domains of existence of different asymptotic solutions
in the b - T parameter space. In comparison with the SCG
case, the additional parameter b allows for new transitions that
occur for a threshold value of b and fixed T, including transition
to chimera states. Examples of these transitions are shown in
Figures 6D–G. Figure 6D shows a transition between a state
of anticoordination IV and a state of full coordination I and
Figure 6G shows a transition between a state of full coordination
II and a state of anticoordination V, while Figures 6E,F show
transitions between a state of coordination II or dynamical
coexistence III and a chimera state III-a. On the other hand,
Figure 7B shows an example of subsequent transitions as T
increases for fixed b = 3, with a first transition between a state of
dynamical coexistence III and a chimera state III-a, followed by a
transition between III-a and a state of full coordination II and a
final transition between II and a state of anticoordination IV.

A different form of bifurcation diagrams can be obtained by
considering the area of the basin of attraction of a given solution
in the parameter space of the initial conditions xaa

0 and xbb
0.

Results for this area are indicated in Table 4 for the chimera
states Q1 and Q2 and the different zones of the T-b parameter
space of Figure 2. We recall that Q1 are those solutions III-
a and III-b reached from initial conditions such that xaa

0 +

xbb
0 < 1, while Q2 are those obtained when xaa

0 + xbb
0 > 1.

The areas of the basins of attractions AQ1 , AQ2 for Q1 and Q2

respectively are plotted vs. T and b in Figure 8. Using AQ1 , AQ2

as order parameters, these figures show bifurcation diagrams for
the transition from existence AQ 6= 0 to non-existence AQ = 0 of
a chimera state.

Figures 8A,B show a threshold value T = 0.5, so that chimera
states exist for T < 0.5 in agreement with the phase diagram
of Figure 2. They also show that as T increases the areas of
the basin of attraction of chimera states first increase until a
certain value of T and then they decrease to become zero for
T = 0.5. In addition Figures 8C,D identify a threshold value
of b for the existence of chimera states. For Q2 chimeras this is
fixed at b = 1 independently of T, while for Q1 it depends on T,
with Q1 chimera states existing for all values of b and T small
enough. For both Q1 and Q2 we also identify a characteristic
T-dependent value of b beyond which the area of the basin of
attraction remains constant.

More generally and on a qualitative basis, it follows from
Figures 4, 5 that, for any fixed b, the basins of attraction of
solution III and chimeras states disappear as T increases, so that
and in the limiting case of T = 1, only Solutions I, II, IV and V

TABLE 4 | Areas of the basin of attraction of chimera states in the parameter

space of initial conditions of xaa and xbb according to the zones

described in Figure 2.

Zones Ranges AQ1
AQ2

A T < 1+b
3+b < 0.5 2

(

1+b
3+b − T

)

T 0

B 1+b
3+b < T < 0.5 0 0

C 1− 1+b
3+b < T < 0.5 2(1− 2T )T 2(1− 2T )T

D T < 1− 1+b
3+b < 0.5 2

(

1+b
3+b − T

)

T 2
(

2 1+b
3+b − 1

)

T

can be reached by the system. Another interesting limiting case
is the one of the risk parameter b → ∞, where it is extremely
risky to play strategy R. It can be expected that in this limit
solution I becomes preponderant. Indeed, we show in Figure 9,
as compared with Figure 5, that the basin of attraction of solution
I increases, solution II disappears and solution III and chimeras
remain for fixed values of T < 0.5. When both parameters b and
T increase, solutions II, III, IV, and V disappear and the basin of
attraction of solution I increases. In the limit case, T = 1 and
b → ∞, solution I becomes the main solution in the system for
almost every initial condition.

5. CONCLUSIONS

We have considered a model of evolutionary game of a
population divided into two groups where individuals are
searching to fulfil their social and strategic objectives. The frame
for this situation has been a multilayer network of two layers.
Interactions within each layer aim to fulfill social objectives
associated with learning dynamics, while interactions across layer
consist in a coordination game, therefore involving strategic
objectives. Our analysis, based on a mean-field theoretical
approach and corroborated by numerical simulations of the
model, reveals the existence of collective behaviors commonly
observed on nature but impossible to find on a single isolated
network analysis. In our multilayer framework we find states
different of those of global coordination or dynamical states
of coexistence of the strategies. Namely, in the multilayer
coordination challenge, anticoordination and chimera states
solution emerge. In the former the dynamics of the system
polarizes the population, with each layer coordinating in a
different strategy. This can also happen in the asymmetric
coordination game where the two strategies correspond to
different Nash equilibria: the socially efficient or Pareto
dominant, and the risk dominant equilibrium. In the chimera
states one layer coordinates in the risk dominant equilibrium,
while the second remains disordered, that is with coexistence of
the two strategies. This coexistence can be time independent or
in the form of periodic solutions.

In connection with the standard notion of chimera states in
two populations of dynamical oscillators having global or long
range interactions [2, 8, 14, 40], we note that in our evolutionary
game theory framework we also have the basic ingredients of
two non-linear dynamical systems which are globally coupled.
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FIGURE 6 | Bifurcation diagrams for the average of nAB as function of T for fixed initial conditions for the SCG, (A–C), and for the ACG, (D–G). (A): xaa = 0.40 and

xbb = 0.10 (circles), xaa = 0, 40 and xbb = 0.30 (squares). (B): xaa = 0.40 and xbb = 0.60 (circles), xaa = 0, 10 and xbb = 0.90 (squares). (C): xaa = 0.25 and

xbb = 0.51 (circles), xaa = 0, 37 and xbb = 0.52 (squares). (D): xaa = 0.30 and xbb = 0.45 with T = 0.75. (E): xaa = 0.10 and xbb = 0.48 with T = 0.15. (F):

xaa = 0.25 and xbb = 0.1 with T = 0.7. (G): xaa = 0.45 and xbb = 0.65 with T = 0.75.

FIGURE 7 | (A): Bifurcation diagram among solutions III, I, and V of the average of nAB as function of T in the SCG for a fixed initial condition xaa = 0.20 and

xbb = 0.60. (B): Bifurcation diagram among solutions III, III-a, II, and IV of the average of nAB as function of T for a fixed initial condition xaa = 0.78 and xbb = 0.60

where the risk parameter b = 3 in the ACG.

In chimera states of coupled oscillators, one population is in
a coherent state and coexists with the other population in
an incoherent state. In our social analog of the chimera state
we have interpreted the coordination states in one layer as a
coherent or ordered state, while we identify the incoherent state
with the layer that exhibits coexistence of the two strategies.
In most cases this coexistence is of dynamical nature, being
the disordered layer in an active dynamical state of oscillation
between the two possible strategies. Our model only incorporates
two possible individual states of the agents, but we envisage that
in social models including more individual states or strategies,
such as those in reference [21, 22], the disordered state would
show a richer dynamical behavior, since the individual elements
can dynamically visit a large number of possible states. In

this case the disordered or incoherent population would have
a dynamical behavior similar to those found in populations
of dynamical oscillators.

We observe chimera states only for the asymmetric
coordination game where the coherent state reached is in
the socially least desired coordination state. For herding
individuals, the presence of a degree of risk in coordinating on
the socially efficient outcome has an effect on the emergence
of chimera states. However, for skeptical individuals, the
anticoordination states are present in both symmetric and
asymmetric coordination games. While the presence of two
layers in the network is a consequence of the type of interaction
that individuals have inside and across the layers, the actual
factors that play a key role for the existence of chimera and
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FIGURE 8 | Sizes of the basins of attraction of chimera states categorized by Q1 and Q2, denoted by AQ1
and AQ2

, as function of T for different values of b (A,B) and

as function of b for different values of T (C,D).

FIGURE 9 | Plot in color scale of the fraction of active links between layer A and B in the asymptotic solution of the dynamics as a function of the initial density of xaa
and xbb for the Asymmetric Coordination Game. The color scale defines the values of the fraction of actives links, nAB = 1 black color and nAB = 0 white color.

Asymptotic solutions are as indicated. (A): b = 100, T = 0.25, and (B): b = 100, T = 0.50.

anticoordination states are the level of skepticism and the
existence of a risk parameter on the coordination game.

In the context of coordination in social systems,
our contribution brings a more realistic insight about
the consequences of a collective behavior that makes
a distinction between social and strategic objectives.
This collective behavior may lead herding societies to
chimera states and skeptical societies to polarized states
of anticoordination.
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