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This paper deals with the problem of semi-supervised learning using a small number

of training samples. Traditional kernel based methods utilize either a fixed kernel or

a combination of judiciously chosen kernels from a fixed dictionary. In contrast, we

construct a data-dependent kernel utilizing the Mercer components of different kernels

constructed using ideas from diffusion geometry, and use a regularization technique with

this kernel with adaptively chosen parameters. Our algorithm is illustrated using a few

well-known data sets as well as a data set for automatic gender identification. For some

of these data sets, we obtain a zero test error using only a minimal number of training

samples.

Keywords: machine learning, semi-supervised learning, reproducing kernel hilbert spaces, tikhonov

regularization, laplace-beltrami operator, gender identification, line spectral frequencies

1. INTRODUCTION

The problem of learning from labeled and unlabeled data (semi-supervised learning) has attracted
considerable attention in recent years. A variety of machine learning algorithms use Tikhonov
single penalty or multiple penalty schemes for regularizing with different approaches to data
analysis. Many of these are kernel based algorithms that provide regularization in Reproducing
Kernel Hilbert Spaces (RKHS). The problem of finding a suitable kernel for learning a real-valued
function by regularization is considered, in particular, in the papers [1–3] (see also the references
therein), where different approaches were proposed. All the methods mentioned in these papers
deal with some set of kernels that appear as a result of parametrization of classical kernels, a
kind of convolution of “inner” and “outer” kernels, or linear combination of some functions. Such
approaches lead to the problem of multiple kernel learning. In this way, the kernel choice problem
is somehow shifted to the problem of a description of a set (a dictionary of kernels), on which a
multiple kernel learning is performed.

In the present paper we propose an approach to construct a kernel directly from observed data
rather than combining kernels from a given dictionary. The approach uses ideas from diffusion
geometry [see, e.g., [4–8]], where the eigenvectors of the graph Laplacian associated to the unlabeled
data are used to mimic the geometry of the underlying manifold that is usually unknown. The
literature on this subject is too large to be cited extensively. The special issue [9] of “Applied and
Computational Harmonic Analysis” is devoted to an early review of this subject. Most relevant
to the current paper are the papers [7, 10], where the graph Laplacian associated to the data
has been used to form additional penalty terms in a multi-parameter regularization functional of

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2019.00021
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2019.00021&domain=pdf&date_stamp=2019-04-24
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vasyl.delta@gmail.com
https://doi.org/10.3389/fams.2019.00021
https://www.frontiersin.org/articles/10.3389/fams.2019.00021/full
http://loop.frontiersin.org/people/281015/overview
http://loop.frontiersin.org/people/288454/overview
http://loop.frontiersin.org/people/699603/overview
http://loop.frontiersin.org/people/387351/overview


Mhaskar et al. Data Based Construction of Kernels

Tikhonov type. In contrast to Belkin et al. [7] and Bertozzi
et al. [10], we use eigenvectors and eigenfunctions of the
corresponding family of graph Laplacians (rather than a
combination of these graph Laplacians) to construct a data-
dependent kernel that directly generates an RKHS.

The paper is organized as follows: in the next two sections
we present the main theoretical background. Then, we give
the numerical algorithms for the implementation of the
proposed method. Finally, we provide experimental results with
their discussion.

2. BACKGROUND

The subject of diffusion geometry seeks to understand the
geometry of the data {xi}

n
i=1 ⊂ R

D drawn randomly from an
unknown probability distribution µ, where D is typically a large
ambient dimension. It is assumed that the support of µ is a
smooth sub-manifold of RD having a small manifold dimension
d. It is shown in Jones et al. [11] that a local coordinate chart
of the manifold can be described in terms of the values of the
heat kernel, respectively, those of some of the eigenfunctions,
of the so called Laplace-Beltrami operator on the unknown
manifold. However, since the manifold is unknown, one needs to
approximate the Laplace-Beltrami operator. One way to do this
is using a graph Laplacian as follows.

For ǫ > 0 and x, y ∈ R
D, let:

Wε(x, y) : = exp

(
−
‖x− y‖2

4ε

)
. (1)

We consider the points {xi}
n
i=1 as vertices of an undirected graph

with the edge weight between xi and xj given by Wε(xi, xj),
thereby defining a weighted adjacency matrix, denoted by Wε .
We defineDε to be the diagonal matrix with the i-th entry on the

diagonal given by

n∑

j=1

Wε(xi, xj). The graph Laplacian is defined

by the matrix:

Lε =
1

n

{
Dε −Wε

}
. (2)

We note that for any real numbers a1, · · · , an,

n∑

i,j=1

aiajL
ε
i,j =

1

2n

n∑

i,j=1

Wε
i,j(ai − aj)

2.

We conclude that the eigenvalues of Lε are all real and non-
negative, and therefore, can be ordered as:

0 = λε
1 ≤ λε

2 ≤ · · · ≤ λε
n. (3)

It is convenient to consider the eigenvector corresponding to λε
k

to be a function on {xj}
n
j=1 rather than a vector in R

n, and denote

it by φε
k
, thus:

λε
kφ

ε
k (xi) =

n∑

j=1

Lε
i,jφ

ε
k (xj) =

1

n


φε

k (xi)

n∑

j=1

Wε(xi, xj)

−

n∑

j=1

Wε(xi, xj)φ
ε
k (xj)


 , (4)

i = 1, . . . , n.

Since the function Wε is defined on the entire ambient space,
one can extend the function φε

k
to the entire ambient space using

(4) in an obvious way (the Nyström extension). Denoting this
extended function by 8ε

k
, we have:

λε
k8

ε
k(x) =

1

n


8ε

k(x)

n∑

j=1

Wε(x, xj)−

n∑

j=1

Wε(x, xj)φ
ε
k (xj)


 ,

x ∈ R
D. (5)

More explicitly, [cf. von Luxburg et al. [12]]

8ε
k(x) =

∑n
j=1W

ε(x, xj)φ
ε
k
(xj)∑n

j=1W
ε(x, xj)− nλε

k

, (6)

for all x ∈ R
D for which the denominator is not equal to 0.

The condition that the denominator of (6) is not equal to 0 for
any x can be verified easily for any given ε. The violation of this
condition for a particular k can be seen as a sign that for given
amount n of data the approximations of the eigenvalue λk of
the corresponding Laplace-Beltrami operator by eigenvalues λε

k
cannot be guaranteed with a reasonable accuracy.

We end this section with a theorem [13, Theorem 2.1]

regarding the convergence of the extended eigenfunctions 8ε
k
,

restricted to a smooth manifold X, to the actual eigenfunctions
of the Laplace-Beltrami operator on X. We note that each 8ε

k
is constructed from a randomly chosen data {xi}

n
i=1 from some

unknown manifold X, and is therefore, itself a random variable.

Theorem 1. Let X be a smooth, compact manifold with dimension
d, and µ be the Riemannian volume measure on X, normalized
to be a probability measure. Let {xi}

n
i=1 be chosen randomly from

µ, 8ε
k
be as in (6), and 8k be the eigenfunction of the Laplace-

Beltrami operator on X that has the same ordering number as k,
corresponding to the eigenvalue λk. Then there exists a sequence
εn → 0, such that:

lim
n→∞

1

ε1+d/2
|λ

εn
k
− λk| = 0, (7)

and

lim
n→∞

‖8
εn
k
− 8k‖ = 0, (8)

where the norm is the L2 norm, and the limits are taken in
probability generated by µ.
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3. NUMERICAL ALGORITHMS FOR
SEMI-SUPERVISED LEARNING

The approximation theory utilizing the eigen-decomposition
of the Laplace-Beltrami operator is well developed, even
in greater generality than this setting, in Maggioni and
Mhaskar [14], Filbir and Mhaskar [15], Mhaskar [16], Mhaskar
[17], and Ehler et al. [18]. In practice, the correct choice
of ε in the approximate construction of these eigenvalues
and eigenfunctions is a delicate matter that affects greatly
the performance of the kernel based methods based on
these quantities. Some heuristic rules for choosing ε have
been proposed in Lafon [8] and Coifman and Hirn [19].
These rules are not applicable universally; they need to
be chosen according to the data set and the application
under consideration.

In contrast to the traditional literature, where a fixed value of
ε is used for all the eigenvalues and eigenfunctions, we propose
in this paper the construction of a kernel of the form:

Kn(x, t) =
∑

k

(nλ
εjk
k
)−18

εjk
k
(x)8

εjk
k
(t); (9)

That is, we select the eigenvalues and the corresponding
eigenfunctions from different kernels of the form Wε to
construct our kernel. We note again that in contrast to
the traditional method of combining different kernels from
a fixed dictionary, we are constructing a single kernel
using the Mercer components of different kernels from
a dictionary.

Our rule for the selection of the parameter εjk ’s is based on
the well-known quasi-optimality criterion [20] that is one of
the simplest and oldest, but still a quite efficient strategy for
choosing a regularization parameter. According to that strategy,
one selects a suitable value of ε (i.e., regularization parameter)
from a sequence of admissible values {εj}, which usually form a
geometric sequence, i.e., εj = ε0q

j, j = 1, 2, . . . ,M; q < 1. We
propose to employ the quasi-optimality criterion in the context
of the approximation of the eigenvalues of the Laplace-Beltrami
operator. Then by analogy to Tikhonov and Glasko [20] for each
particular kwe calculate the sequence of approximate eigenvalues

λ
εj

k
, j = 1, 2, . . . ,M, and select εjk ∈ {εj} such that the differences

|λ
εj

k
− λ

εj−1

k
| attain their minimal value at j = jk.

Since the size of the grid of εj is difficult to be estimated
beforehand and, at the same time, has a strong influence on the
performance of the method, we propose the following strategy
for the selection of the grid sizeM. We note that the summation
in formula (9) has to be done for indices k for which the
corresponding eigenvalue λk = λ

εjk
k

is non-zero. It is also known

that the first eigenvalue λ
εj
1 = 0. To prevent the other λ

εj

k
from

becoming too close to zero with the decreasing of εj, we propose
to stop continuation of the sequence εj as soon as the value
of λ

εM
2 becomes sufficiently small. So, the maximum grid size

M is the smallest integer for which λ
εM
2 < λ

(thr)
2 , where λ

(thr)
2

is some estimated threshold. Taking the abovementioned into
account, we also replace the formula for the kernel calculation

(9) by the kernel:

Kn(x, t) = 1+

n∑

k=2

(nλ
εjk
k
)−18

εjk
k
(x)8

εjk
k
(t); (10)

The Algorithm 1 below describes the combination of the
approximation (6) with quasi-optimality criterion.

Algorithm 1: Algorithm to generate reproducing kernel from
data

Given data {xi}
n
i=1 ⊂ X.

Introduce the grid for parameter ε: εj = qj, j = 1, . . . ,M.
for (j = 1 :M) do

Compute Lεj as in (2), and eigensystem (φ
εj

k
, λ

εj

k
) k =

1, . . . , n
if λ

εj
2 < λ

(thr)
2 then

break
end if

end for

for (k = 1 : n) do

Find εk = argmin
εj

|λ
εj

k
− λ

εj−1

k
|.

λk : = λ
εk
k
,φk = φ

εk
k

end for

Compute

8
εk
k
(x) =

∑n
j=1W

εk (x, xj)φk(xj)∑n
j=1W

εk (x, xj)− nλk

Form kernel function

Kn(x, t) = 1+

n∑

k=2

1

nλ
εk
k

8
εk
k
(x)8

εk
k
(t) (11)

Algorithm 2 uses the constructed kernel (11) in kernel ridge
regression from labeled data. The regression is performed in
combination with discrepancy based principle for choosing the
regularization parameter α.

4. EXPERIMENTAL RESULTS

4.1. Two Moons Dataset
In this section we consider classification of the twomoons dataset
that can be seen as the case D = 2, d = 1. The software and data
were borrowed from bit.ly/2D3uUCk. For the two moons dataset
we take {xi}

n
i=1 with n = 50, 30, 10 and subsets {xi}

m
i=1 ⊂ {xi}

n
i=1

with m = 2, 4, 6 labeled points. The goal of semi-supervised
data classification problems is to assign correct labels for the
remaining points {xi}

n
i=1 \ {xi}

m
i=1. For every dataset (defined by

the pair (n, m)) we performed 10 trials with randomly chosen
labeled examples.

As follows from the experiments, the accuracy of the
classification is improving with the growth of the number of
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Algorithm 2: Algorithm for kernel ridge regression with the
constructed kernel (11)

Given data {xi}
n
i=1 ∈ X, {xi, yi}

m
i=1 are the labeled examples;

y = {y}mi=1.
Form kernel using Algorithm 1

Introduce the grid for parameter α: αk = pk, k = 1, 2, . . . ,N
Calculate Gram matrix K̂m consisting of the sub-matrix
{Kn(xi, xj)}

m
i,j=1 (11) in labeled points

for k = 1 :N do

Calculate Cαk as

Cαk = (αkI + K̂m)
−1y,

end for

Find the αmin such that ‖K̂mCαk − y‖ is minimized.
The decision-making function is

f ∗n (x) =

m∑

i=1

(Cαmin )iKn(x, xi).

FIGURE 1 | Classification of “two moons” dataset with extrapolation region.

The values of parameters are m=2, ǫ0 = 1, q=0.9, λ
(thr)
2 = 10−6.

unlabeled points. In particular, for n = 50, to label all points
without error, it is enough to take only one labeled point for each
of two classes (m = 2). At the same time, if the set of unlabeled
points is not big enough, then for increasing the accuracy of
prediction we should take more labeled points. The result of the
classification for the two moons dataset withm = 2 as well as the
corresponding plot of selected ε are shown in Figures 1, 2. The
big crosses correspond to the labeled data and other points are
colored according to the constructed predictors. The parameters’

values werem=2, ǫ0 = 1, q=0.9, λ
(thr)
2 = 10−6.

Note that “two moons” dataset from Figure 1 has been
also used for testing the performance of a manifold learning
algorithm realized as a multi-parameter regularization [21]. The
comparison of Table 1 with Table 6 of Lu and Pereverzyev [21]
shows that on the dataset from Figure 1 the Algorithms 1–2
based on the kernel (11) outperform the algorithm from Lu and

FIGURE 2 | Plot of adaptively chosen ε for two-moon dataset. The values of

parameters are m=2, ǫ0 = 1, q=0.9, λ
(thr)
2 = 10−6.

TABLE 1 | Results of testing for two moons dataset.

n: m Error

50 2 0%

50 4 0%

50 6 0%

30 2 17%

30 4 8%

30 6 0%

10 2 38%

10 4 10%

10 6 2%

Pereverzyev [21], where the graph Laplacian has been used as the
second penalization operator, and much more unlabeled points
have been involved in the construction of the classifiers. For
example, to achieve zero classification error on the dataset from
Figure 1 the algorithm [21] needs to know at least 10 labeled
and 190 unlabeled points, while theAlgorithms 1–2 allow perfect
classification using only 2 labeled and 50 unlabeled points.

In our next experiment, we follow [10] and embed the two
moons dataset in R

100 by adding 98-dimensional zero-mean
Gaussian random vectors with standard deviation σ . Then the
Algorithms 1–2 have been applied to the transformed data set,
which means that in (1) the symbol ‖ · ‖ is staying for R

100-
norm. The results of the experiment with only two labeled points,
m = 2, are presented in Table 2. The performance displayed in
this table is comparable to the one reported in Bertozzi et al. [10],
but the above performance has been achieved with minimal
admissible number of labeled points, i.e., m = 2, while in
Bertozzi et al. [10] the tests have been performed with n = 2000,
m = 60. Note that according to Theorem 1 the use of large
number n of unlabeled points allows better approximation of
the eigenvalues and eigenfunctions of the corresponding Laplace-
Beltrami operators andmay potentially improve the performance
of the Algorithms 1–2. At the same time, the realization of
these algorithms for large number n, such as n = 2000,
may become more computationally intensive as compared to

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 April 2019 | Volume 5 | Article 21

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Mhaskar et al. Data Based Construction of Kernels

TABLE 2 | Results of testing for two moons dataset embedded in R
100, n = 200,

m = 2.

σ Average error of 10 trials

0 0

10−4 0.15%

10−3 0.05%

10−2 0.25%

5× 10−2 45.5%

10−1 48.5%

FIGURE 3 | Testing dataset of two non-intersecting circles.

FIGURE 4 | Testing dataset of two intersecting circles.

Bertozzi et al. [10]. Therefore, a comparison of our results with
those in Bertozzi et al. [10] is not so straightforward.

4.2. Two Circles Datasets
In this section, we consider two “two-circles” datasets. Each circle
has unit radius and contains 100 points so that n = 200. These
datasets are depicted at Figures 3, 4, respectively.

FIGURE 5 | Classification of “two non-intersecting circles” dataset. The values

of parameters are n = 200,m = 2, M = 70,p = 0.5,q = 0.9.

FIGURE 6 | Classification of “two intersecting circles” dataset. The values of

parameters are n = 200,m = 20, M = 70,p = 0.5,q = 0.9.

TABLE 3 | Results of testing for “two intersecting circles” dataset.

m Average error of 50 trials

2 49.5%

4 26.5%

8 21.24%

10 16.58%

12 15.5%

Below we consider classification of these datasets by the
proposed method. As can be seen from Figure 5, for non-
intersecting circles only m = 2 labeled points are enough for a
correct classification of the given set.

Figure 6 shows the classification results for m = 20 labeled
points at the intersected circles. The big crosses correspond to
the labeled data and other points are colored according to the
constructed predictors. The error percentage for different m is
shown in Table 3. It can be seen that the classification error
decreases with the growth of the numberm of labeled points. The
fact that not all points are correctly classified can be explained by
the non-smoothness of the considered manifold.
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FIGURE 7 | Classification of “three moons” dataset. The values of parameters

are n = 300,m = 3,M = 60,p = 0.5,q=0.9.

FIGURE 8 | Logarithmic plot of adaptively chosen ε for three-moon dataset.

The values of parameters are n = 300, m = 3,M = 60,p = 0.5,q=0.9.

4.3. Multiple Classification. Three Moons
Dataset
Three moons dataset has been simulated from three half-circles
by adding a gaussian noise with mean zero and deviation 0.14.
Each half-circle contains 100 points so that n = 300. Figure 7
shows the classification results for m = 3 labeled points with
other parameters M = 60; q = 0.9. The logarithmic plot of εk
suggested by Algorithm 1 is shown at Figure 8. The big crosses
correspond to the labeled data and other points are colored
according to the constructed predictors. It can be seen that for
m = 3 (just one labeled point per circle) the classification is
performed correctly.

4.4. Automatic Gender Identification
We also investigate the application of the proposed classification
approach to the problem of automatic gender identification [22].
Having the audio recording of some speaker, the task is to
determine the speaker’s gender: male or female.

The gender classification task is usually performed on frame-
by-frame basis as follows. The speech signal is divided onto the
segments (frames) of 20 ms (160 samples for sampling frequency
8,000 Hz). For every such frame a set of voice parameters is

FIGURE 9 | The distribution of 128 considered vectors for male (blue color)

and female (red color) speakers. The four labeled points are marked.

FIGURE 10 | The results of the vectors’ classification. Blue and red colors

correspond to male and female speakers, respectively. The values of

parameters are n = 128,m = 4,M = 30,p = 0.5,q=0.9.

FIGURE 11 | The example of decisions for frames of an audio recording of a

male speaker.

calculated. It is necessary to use such parameters that provide
distinct description of male and female voices. We used two-
dimensional (d = 2) parameters vector consisting of pitch
period T0 [22] and difference of the first two line spectral
frequencies (LSF) d = ω2 − ω1 [for the definition, properties
and computation of line spectral frequencies, see e.g., [23]].
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FIGURE 12 | The example of decisions for frames of an audio recording of a

female speaker.

For the training we used 240 audio recordings with
total duration of 14 minutes. Male and female speakers of
English and Russian languages were participating. The total
number of the considered parameter vectors was 8,084 for
male speakers and 8,436 for female speakers. To make the
problem computationally tractable, we selected 128 “typical”
parameter vectors both for male and female parts which were
determined by k-means algorithm [24]. In the experiments
l = 2 points both for “male” and “female” manifolds were
labeled. Parameter ε was selected according to the proposed
adaptive strategy. The value 1 of decision-making function was
assigned to male speakers and the value −1 was assigned to
female speakers.

The distribution of test parameters vectors and the
results of their classification is shown in Figures 9,
10, respectively.

Then the independent testing was performed on a set of 257
audio recordings including English, German, Hindi, Hungarian,

Japanese, Russian, and Spanish speakers (all of these speakers did
not take part in the training database). The decision male/female

for an audio recording was made by majority of the decisions
among all its frames. As the result of this independent testing,
the classification errors for male and female speakers were 12.6
and 6.5%, respectively.

The examples of the decisions for frames of an audio recording
are shown in Figures 11, 12 for male and female speakers,
respectively. Each record was divided onto frames of 20 ms.
On every frame the vector of features was calculated and then
classified by the proposed approach. It can be seen that in the case
of male speaker the most of the decision-making function values
are grouped near value “1.” It provides correct classification of
this record as “male.” Similarly, most of the decision-making
function values for a female recording are grouped around are
grouped around value “−1.”

The obtained results are promising and encourage to test the
proposed approach on a larger variety of signals.
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