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Background: Lung disease quantification via medical image analysis is classically

difficult. We propose a method based on normalized nearest neighborhood distance

classifications for comparing individual CT scan air-trapping distributions (representing

3D segmented parenchyma). Previously, between-image comparisons were precluded

by the variation inherent to parenchyma segmentations, the dimensions of which are

patient- and image-specific by nature.

Method: Nearest neighbor distance estimations are normalized by a theoretical distance

according to the uniform distribution of air trapping. This normalization renders images

(of different sizes, shapes, and/or densities) comparable. The estimated distances for

the k-nearest neighbor describe the proximity of point patterns over the image. Our

approach assumes and requires a defined homogeneous space; therefore, a completion

pretreatment is applied beforehand.

Results: Model robustness is characterized via simulation in order to verify that

the required initial transformations do not bias uniformly sampled results. Additional

simulations were performed to assess the discriminant power of the method for

different point pattern profiles. Simulation results demonstrate that the method

robustly recognizes pattern dissimilarity. Finally, the model is applied on real data for

illustrative purposes.

Conclusion: We demonstrate that a parenchyma-cuboid completion method provides

the means of characterizing air-trapping patterns in a chosen segmentation and,

importantly, comparing such patterns between patients and images.

Keywords: point pattern comparisons, imaging data, k-nearest neighbor curve, B-spline classifiers, CT scan

INTRODUCTION

Many lung diseases involve changes at the alveoli scale, i.e., at around 0.125 mm2. To capture
changes at such a fine scale, CT scans must be of high resolution and thus correspond to an
information-dense situation. In addition, the information that is extracted must characterize the
parenchyma, a zone whose size and shape vary between individuals and that further includes
borders and shapes (e.g., large bronchi and blood vessels) that require separation from the rest of
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the image, which additionally lacks validated landmarks. The
parenchyma is therefore a non-empty, hard-to-delimit space that
is difficult to compare between patients [1].

In terms of disease characterization, granularity patterns
within lung tissue are especially insightful. Each voxel of a CT
scan is associated with an attenuation (density) score, which is
abnormally low on expiration when lung disease leads to air
trapping (as in asthma), or overly large alveoli spaces (as in
emphysema). Attenuation scores are considered as representative
of air trapping when ranging from −900 to −856 Hounsfield
units (HU); those analogous for emphysema are under−900 HU.
Beyond affected-voxel percentages or mean lung densities [2],
studies characterizing low-attenuation lung voxels patterns are
relatively rare.

Considering the current literary corpus, few articles provide
techniques for evaluating lung parenchyma image data [1–
3]. All reported methods require either a total lung volume
or imaging landmarks as a prerequisite to voxel-matching
techniques. Venegas et al. proposed a mathematical simulation
[4] to represent air-trapping patterns characterizing different
phenotypes of asthma (large airway disease vs. small airway
disease). Bodduluri et al. [2] proposed a solution based on
parenchyma (voxel) matching, which is not applicable to
situations encountered by our clinical teams due to between-
patient anatomical variability.

Recent advances have nevertheless enabled intrapatient CT-
data comparisons by using regional patient landmarks (in
combination with Jacobian matrix transformations) to pair
voxels between inspiratory and expiratory scans on a given
patient [1]. To our knowledge, there is currently no solution
for comparing CT scan parenchyma modifications between
patients due to the lack of appropriate landmarks. Surpassing
this step is nevertheless crucial for advancing science. In clinical
contexts, whether or not diseased tissues follow a uniform
pattern or are clumped in space is an important issue [4]. We
therefore propose a solution based on normalization, which
leaves behind the constraints of size and shape by focusing
on voxel distributions. By comparing observed voxel patterns
with normalized distributions, one can quantify the deviation
from normality.

For a given voxel range, the distribution of distances to its
nearest neighbors (i.e., a k-nearest neighbor transformation)
simultaneously characterizes fine-scale granularity as well as
the regional clumping of similarly attenuated voxels. Studying
distributions over space via themoment of the k-nearest neighbor
distribution has been presented by Liitiäinen et al. [5], and we
used this same idea to normalize observed air-trapping spatial
distributions by theoretical ones based on a uniform hypothesis.
This repartition has also been observed by Venegas et al. [4].
In short, the characterization of the observed moment divided
by a theoretical one is dimension and proportion free and all
air-trapping distributions across different patients could thus
be compared.

Abbreviations: knn, k-nearest neighbor; ARI, adjusted Rand index; HU,

Hounsfield unit; UNDC, uniform neighborhood deviation curve; ULC, uniform

lung completion; URC, uniform resampled cuboid.

Following the k-nearest neighbor (knn) transformation, we
can therefore normalize data by computing the divergence from
the theoretical knn distance expected under uniformity. The
ensuing derived parameters (for example, means and variances
of normalized knn mean distance) provide a novel means of
describing parenchyma granularity.

In this context, data pretreatment is required to obtain a
convenient data form. The pretreatment method must transform
the segmented lung parenchyma space onto a bounded space
(for example, a cuboid). Most importantly, the transformation
must also preserve local voxel distributions. As concerns the
isolation of parenchyma information via segmentation (to which
our data pretreatment is applied), different solutions exist [6].
Most of the time, these segmentation tools are not applicable
to our specific data (because we are dealing with, for example,
only partial lung images). Other efficient segmentation tools use
complex topological solutions and are used for vastly different
segmentation contexts [7, 8]. However, improvement of the
existing lung segmentation methods is not the purpose of this
article. Rather, we are focusing on how to render the granularity
of different segmentations comparable. In this case, care should
be taken to not apply filters for noise (as in Muhammad et al.
[9, 10]), which would likely alter the targeted information.

Quantification of individual parenchyma granularity patterns
and associated changes with time are a potentially powerful,
but poorly studied, means of characterizing lung disease. Our
aim is that this technique will provide a means of further
characterizing chronic airway diseases, as well as phenotyping
patients within diseases. With this aim in mind, our objective in
this paper is to classify equivalent point pattern repartitions in
asthmatic patients.

METHODS

Data Background
The present work uses data generated by the SCANN’AIR
protocol (clinicaltrials.gov: NCT03102749), whose primary
objective required multiple serial CT scan data from patients.
This study received the approval of the local research
ethics committee “Comité de Protection des personnes Sud-
Mediterranee III” (register: 2011-A01396-35) and the agreement
of the French Health Products Safety Agency (ANSM) before
the start of the research. CT-scan parameters are commonly set
for stacking consecutive image slices of given thicknesses for the
reconstruction of 3D volumes. Each measurement generates a
3D model, composed of voxels (the 3D equivalent of a pixel
on a correspondingly 3D grid), with output in the DICOM
format (Digital Imaging and Communications in Medicine).
To limit radiation exposure, the ethics committee overseeing
SCANN’AIR insisted on small scanning areas as opposed to total
lung acquisitions. Thus, for each patient, this paper focuses on
the two transversal small volumes made of 10 consecutive and
jointed slices that were acquired (i.e., the volume of each region
was 520× 520× 10 voxels): one in the superior part of the thorax
at the carina level and the second in the inferior part at the right
atrium level as presented in Figure 1.
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FIGURE 1 | CT scan images from the SCANN’AIR study. Data are two

thoracic slices: one from the upper lung and the other from the lower lung.

The lung parenchyma segmentation method used is based
on Heuberger et al.’s work [11]. Specifically, we employed
a segmentation method based on binary thresholds and
region identification tools to extract the lung parenchyma. An
additional trachea identification and segmentation step is also
computed. Trachea extraction is important in the segmentation
process because it represents a bias in low voxel attenuation
value exploration. The segmentations were reviewed by a
pulmonologist (AB) and a radiologist (SB), who both considered
the actual method as sufficient for the data analysis.

Data Transformation: Completion
In order to compare voxel distributions over the segmented
parenchyma in the air-trapping range ([−900,−856] HU), we
have to normalize the observed mean knn distance. Moreover,
to compute the theoretical moment of the knn distribution, the
segmented parenchyma space requires pretreatment in order to
achieve a bounded, Euclidian space. To achieve the latter and
transform segmented lung parenchyma images into comparable
elements, we chose to include them on a cuboid and then
complete the empty space in said cuboids in such a way as to
not distort granularity patterns. The transformation completes
the segmented lung to the smallest inclusive cuboid. Briefly, this
completion method uses symmetry-through-the-border around
the lung segmentation to create a cuboid without significantly
changing point patterns. The result is a 3D voxel space with
convenient mathematical properties representing the granularity
observed in the lung parenchyma.

Three different data transformations were considered for
completing our segmented lung parenchyma cuboids: random
replacement, dilation of existing tissue borders, or symmetric
completion. Random completion methods would distort

granularity distributions and were thus ruled out. Completion
via dilatation would modify the shape structure via non-uniform
deformation (positively correlated with surface area/complexity)
and was also ruled out. Finally, symmetric completion was
chosen because, under a hypothesis of border regularity, we
can demonstrate that symmetries through the border do not
create clusters (i.e., simulations demonstrate that mirroring
tissue images over their borders does not bunch up image
information). Non-defined voxels were thus “filled” using
symmetric existing values through the “border,” which, in turn, is
defined as a voxel with an empty neighbor on segmented frames.
This symmetric strategy is applied, starting with empty voxels
nearest a border, until cuboid completion (see Algorithm 1). In
the end, a symmetry mask is applied from the opposite corner of
the cuboid in order to smooth the modification.

The cuboid is in high resolution, so we consider the discrete
space as a continuous one. Indeed, the distance between a voxel
and its kth neighbor rapidly increases because the phenomenon
studied is rare and rather homogeneous in the lung. By ignoring
a small number of ordered neighbors (the first neighbor, the
second, up to a weak number of neighbor, the 20th in our case),
the number of possible voxels at the kth neighbor distance that
can have air trapping is large (i.e., the grid of discrete space has a
very fine mesh, comparable to a continuous space). In our case,
we consider then that the discrete space can be approximated by
a continuous space.

KNN DATA CHARACTERIZATION

Data Definition
Following pretreatment, we obtained a set of completed cuboids
representative of low-attenuation parenchyma patterns. These

Algorithm 1:

Let X ∈ R
3 be a set of voxels, CX a part of R

3 which defines
lung parenchyma voxels, BX ⊂ CX is a sub group of voxels
defined by the border of CX . x0 is an element of BX .
Let d

x0
BX

(x, y) be the euclidian distance from a point x in
(CX)

c to another point y in CX through x0, a point included
on the border BX such that x0 lies on the segment [x, y].

d
x0
BX

(x, y) = ‖x, y‖
s.t ‖x, x0‖ = ‖x0, y‖

SBX (x) is the symetric element of x ∈ (CX)
c across the

border:
SBX (x) := argminy ∈ CX

(

d
x0
BX

(x, y)
)

While (empty voxels){
For each voxel{

If(SBX (x)exists)
x = SBX

(x)

}
}
For each voxel take in the reverse side{

x = SBX
(x)

}
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FIGURE 2 | Mean distance to the kth nearest neighbor vs. k for 200 simulations. Curves for the uniform lung completion (ULC) are indicated in gray and are

superimposed on those for the uniform resampled cuboid (URC) in black; they very closely overlap. The five curve positions (from bottom to top) represent the

minimum, 25% quartile, median, 75% quartile, and maximum, respectively, for mean distances between ULC and URC curves over the 200 simulations. The top left

CT scan contains a uniform point repartition inside the segmented lung and is completed on the cube with the method. The top right image is a uniform point

repartition over the data. The bottom right graphic represents the knn difference distribution between the completed and the uniform point pattern distribution.

cuboids are comparable in shape but do not have the same
volume. The data were defined as a set of P modified cuboid
spaces, composed by a vector of xp voxels included in a 3D space:

xp ∈
[

0, ap
]

×
[

0, bp
]

×
[

0, cp
]

⊂ R
3
.

where ap, bp and cp define the size of the smallest completed

cuboid C including the segmented lung parenchyma of the pth

patient xp∈ C and ∂C is defined as the border of C.
Attenuation values are regrouped according to the desired

classes of voxels. The method is specifically interesting for the
following voxel class: Xp = −900 < xp ≤ −856, which defines
air trapping. This class regroups the N = Np number of voxels
for the pth patient. For simplification purposes, the notation p is
hidden until required for patient discretization.

Deviation From a Uniform Dispersion
Pattern
We suppose that the point patterns X are independent and
identically distributed on a Euclidian space representative of a

patient p. The studied point pattern definition is

(Xi)
N
i=1 iid.

As defined by Liitiäinen et al. [5], we consider only Euclidian
metric spaces when exploring distance granularity between point
patterns within a given voxel class.Wewill proceed by defining (i)
first the notion of “neighborhoods,” then (ii) how neighborhoods
are distributed under uniformity, and finally (iii) how the latter
can be used to classify data.

Defining the Notion of Neighborhoods
Let the first neighbor V [i, 1] of a voxel Xi be defined as:

V [i, 1] = argmin1<j<N,j 6=i

∥

∥Xi − Xj

∥

∥ .

Then, the kth nearest neighbor V
[

i, k
]

is recursively defined as:

V
[

i, k
]

= argmin1<j<N,j 6=i,V[i,1],...,V[i,k−1]
∥

∥Xi − Xj

∥

∥ .
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The distance to the kth neighbor is consequently defined as:

di,k =
∥

∥

∥
Xi − XV[i,k]

∥

∥

∥
.

How Neighborhoods Are Distributed Under
Uniformity
Regarding the uniform distribution, the latter was the easiest
theoretical approximation to calculate for normalizing the
observed kth nearest neighbor distances and to obtain a
comparable distance repartition for each patient. Moreover, a
theoretical approximation exists for the kth distance distribution
for this specific distribution and avoids density estimations.
These advantages lead to reduced calculation times, with
the simultaneous limitation that a bounded Euclidian space
definition is required.

Under a uniform repartition of a point pattern Xi, E
(

dk
α
)

,
the α moment of di,k is distributed as:

E
(

dk
α
)

= V
− α

3
3

Ŵ
(

k+ α
3

)

Ŵ (N)

Ŵ
(

k
)

Ŵ
(

N + α
3

)

∫

C

p (x)1−α/3dx

+
(

D− V
− α

3 −
1
3

3

)

Ŵ
(

k+ α
3 + 1

3

)

Ŵ (N)

Ŵ
(

k
)

Ŵ
(

N + α
3 + 1

3

)

∫

∂C

p (x)1−α/3−1/3dS+ R,

where V3 is the volume of a sphere, p (x) is the point pattern

density over C and D = 1
3

∫ 1
0 aα−2h

(

a−1
)−α/3−1/3−1

h
′ (
a−1

)

da
represents the correction applied to the distance distribution
according to the border definition.

Finally, we have the approximate term R =
O(N− ξ+α

3 logα+5N), where ξ is an approximation of
rounded elements.

According to Liitiäinen et al. [5], because we are in three
dimensions, the h function (which represents how interpoint
distances behave in a bonded space) is defined as

h (r) :=







4
3πr

3

r < 1

2
3πr

3 − 1
3π + πr2 elsewhere.

Using numerical approximation, we obtained the same estimated
value for D ≈ 0.42 as defined by the authors [5].

In our case, p (x) = 1
abc

∫

∂C
p (x)1−α/3−1/3dS = 1

abc

1−α/3−1/3 ∫

∂C
dS

= 2
(

a2 + b2 + c2
) (

abc
)α/3+1/3−1

.

Then, we obtained:

E
(

dk
α
)

≈ V
−α/3
3

Ŵ(k+ α
3 )

Ŵ(k)
N−α/3

(

abc
)α/3 + 2

(

a2 + b2 + c2
)

(

abc
)α/3+1/3−1

(

D− V
−α/3−1/3
3

)

Ŵ
(

k+ α
3+

1
3

)

Ŵ(k)
N−α/3−1/3.

The approximation is possible because N is large; therefore,
Ŵ (N) ≈ Ŵ

(

N + k
)

[5].
The mean and variance of the average nearest neighbor

characterize the neighborhood distribution of each category m.

This results in a unique representation of the voxel pattern. Each
scanner is summarized by the associated knn distance curves.
Dimensionality is thus greatly decreased while simultaneously
preserving information.

Classification Procedures
To further simplify notation:

• dk represents the mean estimated distance d̂k = 1
nk

∑nk
i= 1 di,k.

• d̃k = E

(

dk
1
)

represents the associated theoretical

mean value.

How the data deviate from uniformity is summarized as follows:

• r(k) = d̂k
d̃k

.

Changes in neighbor distance distributions characterize spatial
patterns for a range of values from 1 to the highest possible
number of neighbors (K), defined as:

rK =
(

d̂1

d̃1
, . . . ,

d̂K

d̃K

)

.

The curve generated by plotting K on the abscissa and rk on the
ordinate axis is called a “uniform neighborhood deviation curve”
or UNDC. Obviously, the neighborhood range considered can be
truncated and does not necessarily start at the first neighbor. A
summary of the method is presented in Supplementary Files.

Classification
Similar UNDCs correspond to similar point patterns. In this
context, previously described curve classification methods, such
as B-splines [12], are well-suited. In our case, neighborhood
variance is an important characteristic of our point patterns
and should also be taken into account. The B-spline method
thus takes on added value as it enables weighting the spline
regression using the observed precision of the distance estimates.
In addition to providing a relevant means of weighting B-
spline parameters, variance can also differentiate otherwise
similar distance repartitions. Variance represents the discrepancy
between the kth nearest points and is used to measure the degree
of dispersion between points.

wK =
{

1

V̂
(

d1
)
, . . . ,

1

V̂
(

dK
)

}

.

The
(

rK
)p=[1,...,P]

sets of UNDCs for all patients are fit by
piecewise polynomial spline functions of order n. The spline
parameters are defined on a given set of m knots between 1 <

t1 ≤ . . . ≤ tm ≤ K. Equivalent knot definitions are important for
enabling comparisons [12] among all P patients. Spline functions
are expressed as linear combinations of B-splines for each patient
as follows:

s
(

j,βp
)

= β
p
0 +

m+n
∑

i=1

βiB
p
i,n(j), j ∈ [1,K] ,
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The spline parameters Bi,n can be obtained with a Cox-de Boor
[13] recurrence formula,

Bi,0(x) :=
{

1
0

if ti ≤ x ≤ ti+1

elsewhere

Bi,n(x) := x−ti
ti+n−ti

Bi,n−1 (x) + ti+n+1−rp

ti+n+1−ti+1
Bi+1,n−1 (x) .

Let
((

rKj

)p
, j
)

j=1,...,K
be a set of K observations of UNDCs,

defined on [1,K]×R. Data are adjusted on the spline reference

matrix Bp =
{

B
p
m+n+1

(

j
)

}

j=1,...,K
using a weighted least

squares regression [14]. The dimension of theBp matrix is K ×
(m+ n+ 1 ) .

β̂p = argminβp





1

K

K
∑

j=1

(

wK
j

)p ((

rKj

)p
− s

(

j,βp
)

)2





=
(

Bp
′
WpBp

)−1
WpBpyp,

The estimated spline parameters β̂p=[1,...,P] obtained for all
patients are then submitted to a cluster analysis [15] in order
to determine, in an unsupervised fashion, naturally occurring
groups of similar UNDCs. In our case, we chose a hierarchical
ascendant classification using Ward’s method (complete linkage
with unweighted pair group method with arithmetic mean
(UPGMA) [16]) as our preferred clusteringmethod. This method
has the advantages of flexibility and dendrogram generation.

Simulation Background
Simulations used to assess the method are based on a single CT
image-specific lung shape extracted from the SCANN’AIR [17]
study. An empty cuboid is built around the lung shape. The
volume in pixels was

[0, 130]× [0, 200]× [0, 10] .

Does the Completion Method Change the
Point Pattern?
In order to assess the stability of the completion method, we
simulated uniform point patterns on the lung with random
numbers of points. Then, we completed these simulations,
termed “uniform lung completions” (ULCs), over the cuboid
using a completion method. Additionally, a cuboid of similar
volume without a lung shape, termed the “uniform resampled
cuboid” (URC), was filled via a uniform resampling of the ULC.

A comparison between the ULC and the URC was performed

(via d̂k) to demonstrate conservation of a uniform distribution by
the completion method.

The resulting distribution curves are compared using a
Kullback–Leibler divergence test. A boxplot of maximum paired
curve differences is also performed to represent deviations

between the d̂k obtained from ULC vs. URC.

Evaluating the rk Ratio
In order to assess the power of the method, sensitivity
and sensibility were computed for different UNDCs from

(non-uniform) theoretical point pattern distributions (different
profiles of H1; see Figures 4, 5). The two following hypotheses
are used to assess the discriminant capacity of the UNDCs:

HO: point patterns are uniformly distributed on the lung and
then completed over the space.
H1: point patterns are distributed according to non-uniform
distributions (we will test multiple parameter combinations).

Alternative H1 hypotheses are based on a 3D multimodal
Gaussian probability density function. Construction of this
density function is performed by combining several Gaussian
3D kernel distributions in order to create clusters. The variance
of the latter can be selected so as to create variation in pattern
densities. These 3D density functions are then normalized in
order to obtain a 3D probability density equal to 1 inside the lung
shape (H1).

For a given H1, the number of points sampled was 5% above
that present in the extracted lung shape. We used a n = 500
simulation sample size to model density distributions. Different
combinations of number of 3D kernels and associated variance
were used (thus generating a range ofH1 hypotheses): 3 Gaussian
probability kernels with variances σ of 10, 15, 40, 70, and 100; 5
kernels with a variance of 20; and 10 kernels with a variance of 10.

The air-trapping sampling solution is based on a sampling
with specific probabilities according to the number of kernels
and their corresponding variance. Each voxel x has the following
probability to be trapped, defined by the kernel center ci, i =
{1, 2, 3} in our case,

P (x = 1) ∝
3
∑

i=1

1

σ
√
2π

e
− 1

2

( ‖x,ci‖
σ

)2

.

Let us define
(

rKH0

)

n
as the n samples of the multivariate

distribution RKH0
describing the UNDCs from the 1st to the Kth

neighbor, as previously defined:

RKH0
=
(

d̂H0k

d̃k

)K

k=1

.

Let us define
(

rKH1

)

n
as the n samples of the multivariate

distribution RKH1
describing the UNDCs from the 1st to the Kth

neighbor, as previously defined:

RKH1
=
(

d̂H1k

d̃k

)K

k=1

.

A density plot is constructed for each hypothesis. Because
the K neighbors are independent, sensitivity and sensibility
probabilities are computed as means over K as:

α = 1

K

K
∑

k=1

[

P
(

RKH0
> 0.95

)]

andβ = 1

K

K
∑

k=1

[

P
(

RKH1
> α

)]

.
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Similarity Measures for k-Means Clusters
An adjusted Rand index (ARI) is used to quantify the similarity
between two clusterings [18], with an ARI = 1 representing
complete agreement. This was used to compare classification
results between different alternative hypothesis profiles. Results
are provided for each comparison.

Real-World Application
The work is based on the SCANN’AIR study. The 20
first neighbors are not considered for the distribution
characterization. This cutoff is performed to avoid grid-imposed

constraints, resulting in repartitions of voxels at very small
neighborhoods. Beyond the first 20 neighbors, the possibility of
observing another voxel in a given range evens out, and the space
is considered Euclidian and no longer discrete.

RESULTS

Completion Method Assessment
For 200 simulations of ULCs vs. URCs, we obtained a Kullback–
Leibler divergence [19] value of 0.01, which means that we could
not detect a difference between curves (Figure 2). The maximal

FIGURE 3 | Uniform neighborhood deviation curve (UNDC) ratios according to a clustered or heterogeneous point pattern. Three kernels define the density of the

simulated air trapping. The low associated variance simulates a rather clustered repartition of air trapping. The density repartition of the Rk curves is presented for

500 simulations.

FIGURE 4 | UNDC ratios according to a homogeneous point pattern. Three kernels define the density of the simulated air trapping. The relatively high associated

variance simulates homogeneous air trapping throughout the image. The density repartition of the Rk curves is presented for 500 simulations.
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TABLE 1 | Concordance between classification results and simulated hypothesis.

ARI TRUE vs. C N = 3 V = 40 N = 3 V = 70 N = 3 V = 100 N = 5 V = 20 N = 10 V = 10

N = 3 V = 15 0.96 1 1 0.74 0.31

N = 3 V = 40 0.22 0.24 0.28 0.92

N = 3V = 70 0.02 0.60 1

N = 3V = 100 0.70 1

N = 5V = 20 0.57

difference boxplot is slightly positive because the completion
method regroups points on concave spaces, creating a systematic
bias. This particularity mechanically decreases the distance
between knn patterns and is negligibly <0.025 for distances >1.
Furthermore, the region impacted by this problem is negligible
in size.

As concerns the completion of non-defined regions, either
the neighboring regions were compact enough to support the
density conservation hypothesis or discontinuity rendered the
hypothesis false. For example, if considering a missing region
similar to a hole (often identified as blood vessels), symmetric
completion can modify distributions moving toward the center
of the area via symmetry vector overlap. Another example is
the point or peak shape position (i.e., an isolated “dot” or
“peninsula” of lung parenchyma surrounded by space requiring
completion), for which the distribution is repeated like “orange
slices” until completion.

Similarity indices that compare voxels by voxels or gray-level
distributions on a grid could not be applied because our method
completes non-existing data. Moreover, the completed space
is very varied in shape, making assessment of the completion
method difficult. Comparison between the original data and
the transformed is to our knowledge not possible, especially
regarding spatial distributions.

One must note that the symmetric mathematical
transformation method used for completion is surjective
because of the non-regularity of the border. The corresponding
non-reversibility of the symmetric transformation hinders direct
assessments of howwell-granularity distributions were conserved
across borders. To overcome this limitation, we demonstrate
the relative conservation of granularity distributions during
completion using uniform resampling of segmented lung
parenchyma slices.

However, overall voxel distribution between completed
regions and not completed ones is similar. For that
purpose, the sum of the absolute difference density
histogram is computed showing a slice difference with
a median of 0.05 and an interquartile [Q25%, Q75%] of
[0.03, 0.07], based on the subsample. Some examples
of the distribution conservation are presented in the
Supplementary Files.

These results demonstrate, on average, a relative conservation
in distribution that cannot be demonstrated using similarity
indices. In addition, differences in knn repartition indicated
conservation of the uniform distribution. Furthermore,
completed regions with non-smooth borders involve only a

small portion of the overall non-defined spaces. Segmented lung
parenchymas have a regular border almost everywhere. We were
not able to demonstrate that the symmetric method preserved
the spatial distributions, but given the simulation results, this
method did not create new patterns on resampled uniform
completed cuboids.

Evaluation of the rk Ratio
For each alternative H1 hypothesis, H0 and H1 UNDCs were
portrayed on the same plot (right side of Figures 3, 4, as well
as further examples in Supplementary Files). We observed that
the density repartitions of the RKH1

curves were widest when large
variances were used. This can be explained by the superposition
of kernel centers.

As concerns the distribution of RKH0
, we observed the same

structural bias identified by Liitiäinen et al. [5]. As expected, this
ratio is not aligned with 1. Approximations of the theoretical knn
distribution are biased and cannot be avoided in our data. The
latter is explained by the shape of the borders and the underlying
theoretical approximations.

In order to assess the discriminant capacity of these
transformations, we computed the type 2 error (β). Over all
simulations, the latter is increased by 0.03 only.

Similarity Measures for k-Means Clusters
ARI results are presented in Table 1. We observed that ARIs
are able to detect differences between point patterns only when
the latter are quite different in density; small density differences
between cuboids result in high ARI scores. This was expected
because certain simulations result in similar point patterns,
especially when kernel centers were close together.

Results on Real-World Data
The method was applied to the SCANNAIR’ dataset, which
includes CT scans from asthmatic patients (see Figure 1). We
searched for three groups using a Ward’s clustering algorithm.
Representative CT slices and the UNDCs for each group are
presented in Figure 5.

Results are based on the exploration of the air-trapping
attenuation range: [−900,−850] HU. We consider four knots
based on the 31, 71, 111, and 151 nearest neighbors modeled by a
3◦ spline. During a methacholine bronchoconstriction challenge,
each subject was characterized by the upper left parenchyma
observed at the maximal methacholine dose given.

The first group (shown in green in Figure 5) consists of
patients with high divergence from uniformity: point patterns
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FIGURE 5 | Clinical application. Upper left: The dendrogram resulting from hierarchical ascendant classification using Ward’s method (complete linkage with UPGMA

[16]) on spline parameters. Upper right: knn ratio value vs. k curves color-coded according to the hierarchical ascendant classification (red = a likely uniform

repartition, with air trapping distributed all over the parenchyma, black = an average distribution neither uniform nor in clusters, green = high divergence from

uniformity—point patterns are gathered in clusters). The CT scan images presented are number-colored according to dendrogram results.

are gathered in clusters. The second group represents patients
with a likely uniform repartition, with air trapping distributed
all over the parenchyma (shown in red in Figure 5). The last
group is composed of patients with an average distribution
neither uniform nor in clusters (shown in black). UNDC
groups are well-defined and distinguished different patterns over
the parenchyma.

DISCUSSION

Completion
In this study, we started with segmented lung parenchyma from

partial lung imaging data and then constructed comparable

cuboids for the purpose of comparing lung parenchyma

granularity or texture between images. The resulting program is
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publicly available at https://github.com/YannCabon/ChymaSeg
and represents our proposals to overcome two general problems:
(1) the segmentation possibilities for partial images and (2) the
non-existence of 3D cuboid completion algorithms.

Even if the completion is not uniform on the parenchyma,
the proposed solution preserves local distributions.
Obviously, completion by symmetry modifies the overall
distribution of the parenchyma, but simulation demonstrated
that the distribution characterization is not impacted
by this bias. This can be explained by the fact that
all segmented parenchymas are transformed in the
same way.

We considered that observing a nearest neighbor <20 could
not respect the Euclidean metric because there are not enough
possibilities on a grid system for observing other points.
However, at farther and farther neighborhoods, more and more
possibilities for observation exist. That is why we do not use the
20 first nearest neighbors, thus avoiding grid constraints.

Finally, completion can also be envisioned using other
geometrical spaces, such as spheres or ellipsoids; however, the
cuboid seems to be the easiest solution for obtaining a fully
defined space.

knn Assessment
We propose a method for clustering point patterns articulated
around two transformations: (1) a completion method required
before calculating and (2) UNDCs. The major advantage
of UNDCs is that they are comparable within and between
images/patients. Subsequent advantages include greatly
reducing the dimension of the image data while simultaneously
quantifying heretofore non-measured lung parameters. Though
a slight systematic bias has been demonstrated within the knn
method, the latter is known, negligible, normally distributed, and
constant and does not affect comparisons between curves.

A given UNDC curve characterizes how voxel patterns differ
from uniformity across a range of distances. rK values close to 1.0
indicate more-uniform distributions and therefore an absence of
clusters or total air trapping. In our sample dataset, our smallest
rK values, near 0.6, indicate relatively large-scale clustering, i.e.,
localized disease within a single lobe. rK values between 0.6
and 1.0 correspond to a gradient of more or less fragmented
voxel landscapes.

The relationship between k and distance is necessarily smooth,
and classification according to B-spline parameters is therefore
appropriate. This forced smoothness precludes discontinuities
on a single curve. Nevertheless, when comparing different lung
sections, we found that within-patient UNDC curves can greatly
vary in the y-intercept and the slope. This suggests that regional
heterogeneity is a lung parameter that should not be ignored or
glossed over by averaging (for example), andmerits further study.

There are certain methodological choices and limitations that
the reader should be aware of regarding (1) the completion
methods and (2) the limits in neighbor distance definitions.

1) The stability of completion method results under the
theoretical H0 hypothesis (uniformity of the point pattern
distribution) has been verified. However, there is no certitude
that the completion method will not result in non-conservation
of parenchyma point patterns if other non-uniform H0

hypotheses were used. However, because the method used is
symmetric through the border, the density can be considered as
locally equivalent.

2) Usable minimal k values are chosen according to image
resolution and the inherent qualities of a grid. We consider
that excluding low k values (e.g., k = 1 to 19, as presented
herein) is important for avoiding distance overestimations within
a rigid voxel grid structure. Usable maximal k values are chosen
according to the common number of observations within point
patterns across the dataset and computer limits. Indeed, because
calculations include gamma functions, aiming for a k beyond 170
is impractical.

In conclusion, the presented method uses non-supervised
classification on B-spline knn curve ratios to enable granularity
characterization between image comparisons of individual
patients. This smooth-curve classification is robust to data shape
and repartition, thus providing a framework in which between-
image comparisons can be performed. Other methods fall short
of this possibility.
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