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Let X = X ∪ Z be a data set in R
D, where X is the training set and Z the testing one.

Assume that a kernel method produces a dimensionality reduction (DR) mapping F :X →
R
d ( d≪D) that maps the high-dimensional data X to its row-dimensional representation

Y = F(X). The out-of-sample extension of dimensionality reduction problem is to find the

dimensionality reduction of X using the extension of F instead of re-training the whole

data set X. In this paper, utilizing the framework of reproducing kernel Hilbert space

theory, we introduce a least-square approach to extensions of the popular DR mappings

called Diffusion maps (Dmaps). We establish a theoretic analysis for the out-of-sample

DR Dmaps. This analysis also provides a uniform treatment of many popular out-of-

sample algorithms based on kernel methods. We illustrate the validity of the developed

out-of-sample DR algorithms in several examples.

Keywords: out-of-sample extension, dimensionality reduction, reproducing kernel Hilbert space, least-square

method, diffusion maps
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1. INTRODUCTION

Recently, in many scientific and technological areas, we need to analyze and process high-
dimensional data, such as speech signals, images and videos, text documents, stock trade records,
and others. Due to the curse of dimensionality [1, 2], directly analyzing and processing high-
dimensional data are often infeasible. Therefore, dimensionality reduction (DR) (see the books
[3, 4]) becomes a critical step in high-dimensional data processing. DR maps high-dimensional
data into a low-dimensional space so that the data process can be carried out on its low-dimensional
representation. There exist many DR methods in literature. The famous linear method is principle
component analysis (PCA) [5]. However, PCA cannot effectively reduce the dimension for the data
set, which essentially resides on a nonlinear manifold. Therefore, to reduce the dimensions of such
data sets, people employ non-linear DR methods [6–12], among which, the method of Diffusion
Maps (Dmaps) introduced by Coifman and his research group [13, 14] have been proved attractive
and effective. Adopting the ideas of the spectral clustering [15, 16] and Laplacian eigenmaps [17],
Dmaps integrates them into a more conceptual framework—the geometric harmonics.

As a spectral method, Dmaps employs the diffusion kernel to define the similarity on a given data
set X ⊂ R

D. The principal d-dimensional eigenspace (d ≪ D) of the kernel provides the feature
space of X, so that a diffusing mapping Fmaps X to the set Y = F(X), which is called a DR of X.

Note that the mapping F is constructed by the spectral decomposition of the kernel, which is
data-dependent. If the set X is enlarged to X = X∪ Z and we want to make DR of X by Dmaps, we
have to retrain the set X in order to construct a new diffusing mapping. The retraining approach
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is often unpractical if the cardinality of X becomes very large, or
the new data set Z comes as a time-stream.

Out-of-example DR extension method finds the DR of X by
extending the diffusing mapping F onto X. In most cases, we
can assume that the new data set Z has the similar features as
X. Therefore, instead of retraining the whole set X, we realize the
DR of X by extending the mapping F from X to X only.

Lots of papers have introduced various out-of-example
extension algorithms (see [14, 18, 19] and their references).
However, themathematical analysis on out-of-example extension
is not studied sufficiently.

The main purpose of this paper is to give a mathematical
analysis on the out-of-sample DR extension of Dmaps. In Wang
[20], we preliminarily studied out-of-sample DR extensions for
kernel PCA. Since the structure of kernels for Dmaps are different
from kernel PCA, it needs a special analysis. In this paper
we deal with the DR extensions of Dmaps in the framework
of reproducing kernel Hilbert space (RKHS), in which Dmaps
extension can be classified as the least square one.

The paper is organized as follows: In section 2, we introduce
the general out-of-sample extensions in the RKHS framework.
In section 3, we establish the least square out-of-sample DR
extensions of Dmaps. In section 4, we give the mathematical
analysis and algorithms for the Dmaps DR extension. In the last
section, we give several examples for the extension.

2. PRELIMINARY

We first introduce some notions and notations. Let µ be a finite
(positive) measure on a data setX ⊂ R

D. We denoted by L2(X,µ)
the (real) Hilbert space on X, equipped with the inner product

〈f , g〉L2(X,µ) =
∫

X
f (x)g(x)dµ(x), f , g ∈ L2(X,µ).

Then, ‖f ‖L2(X,µ) =
√

〈f , f 〉L2(X,µ). Later, we will abbreviate

L2(X,µ) to L2(X) (or L2) if the measure µ (and the set X) is (are)
not stressed.
Definition 1 A function k :X2 → R is called a Mercer’s kernel if it
satisfies the following conditions:

1. k is symmetric: k(x, y) = k(y, x);

2. k is positive semi-definite;

3. k is bounded on X2, that is, there is an M > 0 such that
|k(x, y)| ≤ M, (x, y) ∈ X2.

In this paper, we only consider Mercer’s kernels. Hence, the term
kernel will stand for Mercer’s one. The kernel distance (associated
with k) between two points x, y ∈ X is defined by

dk(x, y) =
√

k(x, x)+ k(y, y)− 2k(x, y).

A kernel k defines an RKHS Hk, in which the inner product
satisfies [21]

〈f (·), k(x, ·)〉Hk
= f (x), f ∈ Hk, x ∈ X. (1)

Later, we will use H instead of Hk if the kernel k is not stressed.
Recall that k has a dual identity. It derives the identity operator on
H, as shown in 1, and also derives the following compact operator
K on L2(X):

(Kf )(x) = 〈f (·), k(x, ·)〉L2 =
∫

X
k(x, y)f (y)dµ(y), f ∈ L2.

In Wang [20], we proved that if

k(x, y) =
m

∑

j=1

φj(x)φj(y),

where the set {φ1, · · · ,φm} is linearly independent, then the set is
an o.n. basis of H. Therefore, for f , g ∈ H with f =

∑

j cjφj and

g =
∑

j djφj, we have 〈f , g〉Hk
=

∑

j cjdj.

Let the spectral decomposition of k be the following:

k(x, y) =
m

∑

j=1

λjvj(x)vj(y), 0 ≤ m ≤ ∞, (2)

where the eigenvalues are arranged decreasingly, λ1 ≥ · · · ≥
λm > 0, and the eigenfunctions v1, v1, · · · , vm, are normalized
to satisfy

〈vi, vj〉L2(X) = δi,j.

Write γi(x) =
√
λivi(x). Then, {γ1, · · · , γm} is an o.n. basis of

H, which is called the canonic basis of H. We also call k(x, y) =
∑m

j=1 γj(x)γj(y) the canonic decomposition of k. By 2, we have

γj =
1

λj

∫

X
k(x, y)γj(y)dµ(y).

Thus, if f ∈ H have the canonic representation f =
∑m

j=1 cjγj,

then, for any g ∈ H, the inner product 〈f , g〉H has the following
integral form:

〈f , g〉H =
m

∑

j=1

cj

λj

∫

X
g(x)γj(x)dµ(x).

To investigate the out-of-sample DR extension, we first recall
some general results on function extensions. Let X = X ∪ Z.
To stress that a point x ∈ X is also in X, we use x instead of
x. Similarly, we denote by k(x, y) the restriction of k(x, y) on X2.
That is,

k(x, y) = k(x, y), (x, y) ∈ X2.

We also denote by H the RKHS associated with k. Then a
continuous map E :H → H is called an extension if

E(f)(x) = f(x), ∀f ∈ H.

Correspondingly, we define the restriction R :H → H by

R(f )(x) = f (x), ∀f ∈ H, x ∈ X.
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It is obvious that the extensions from X to X are not unique if Z
is not empty. So, we define the set of all extensions of f ∈ H by

Af = {f ∈ H; R(f ) = f},

and call f̂ ∈ Af the least-square extension of f if

‖f̂ ‖H = min
f∈Af

‖f ‖H .

It is evident that the least-square extension of a function is
unique.We denote byT :H → H the operator of the least-square
extension.

In Wang [20], we already prove the following:

1. Let {v1, · · · , vd} be the canonic basis of H and σ1 ≥ σ2 ≥
· · · ≥ σd > 0 be the eigenvalues of the kernel k(x, y). Then
the least-square extension of vj is

v̂j(x)(= T(vj)(x)) =
1

σj

∫

X
k(x, y)vj(y)dµ(y), x ∈ X, 1 ≤ j ≤ d.

(3)
Therefore, for any f =

∑d
j=1 cjvj ∈ H,

f̂ (x)(= T(f)(x)) =
d

∑

j=1

cj
1

σj

∫

X
k(x, y)vj(y)dµ(y).

2. Let Ĥ = T(H) and T∗
:H → H be the joint operator of T.

Then P = TT∗ is an orthogonal projection from H to Ĥ.

3. Let k̂(x, y) be the kernel of the RKHS Ĥ. Then k0(x, y) =
k(x, y) − k̂(x, y) is a Mercer’s kernel such that k0(x, y) =
0, (x, y) ∈ X2 \ X2. Denote by H0 the RKHS associated with
k0. Then, H = Ĥ

⊕

H0 and Ĥ ⊥ H0.

4. If k(x, y) is a Gramian-type DR kernel [20], and
[v1(X), · · · , vd(X)]T gives the DR of X, then
[v̂1(X), · · · , v̂d(X)]T provides the least-square
out-of-sample DR extension on X.

FIGURE 1 | S-curve, Swiss Roll, Punched Sphere, and 3D-Cluster.

3. LEAST-SQUARE OUT-OF-SAMPLE DR
EXTENSIONS FOR DMAPS

The kernels of Dmaps are constructed based on the Gaussian
kernel

w(x, y) = exp

(

−‖x− y‖2
ǫ

)

, (x, y) ∈ X2, ǫ > 0.

The function

S(x) =
∫

X
w(x, y)dµ(y)

defines a mass density on X, and M =
∫

X S(x)dµ(x) is the total
mass of X.
There are two important forms of the kernels of Dmaps: The
Graph-Laplacian diffusion kernel and the Laplace-Beltrami one.

3.1. Dmaps With the Graph-Laplacian
Kernel
Wefirst discuss the least-square out-of-sample DR Extensions for
the Dmaps with the Graph-Laplacian (GL) kernel. Normalizing
the Gaussian kernel by S(x), we obtain the following Graph-
Laplacian diffusion kernel [4, 13]:

g(x, y) = w(x, y)
√

S(x)S(y)
.

This kernel relates to the data set X equipped with an undirected
(weighted) graph. It is known that 1 is the greatest eigenvalue of

g(x, y) and its corresponding normalized eigenfunction is

√

S(x)
M .

Let Hg be the RKHS associated with the kernel g and
{φ0, · · · ,φm} be its canonic basis, which suggest the following
spectral decomposition of g(x, y):

g(x, y) =
m

∑

j=0

λjvj(x)vj(y),

where 1 = λ0 ≥ λ1 ≥ · · · ≥ λm > 0 and vj(x) = φj(x)/
√

λj.

Because φ0 =
√

S(x)
M provides only the mass information of the

data set, it should not reside on the feature space. Hence, we
define the feature space as the RKHS associated with the kernel
∑m

j=1 φj(x)φj(y), where φ0 is removed.

Definition 2. The mapping 8 :X → R
m
:8(x) =

[φ1(x), · · · ,φm(x)]T is called the diffusion mapping and the
data set8(X) ⊂ R

m is called a DR of X.
Remark. In Wang [20], we already pointed out that each
orthogonal transformation of the set8(X) can also be considered
as a DR of X. Hence, any non-canonical o.n. basis of the feature
space also provides a DR mapping.

To study the out-of-sample extension, as what was done in the
preceding section, we assume X = X ∪ Z and denote by g(x, y)
the Graph-Laplacian kernel on X, that is,

g(x, y) = w(x, y)
√

S(x)S(y)
,
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where S(x) is the mass density on X, and

w(x, y) = w(x, y), (x, y) ∈ X2,

Assume that spectral decomposition of g is given by

g(x, y) =
d

∑

j=0

σjvj(x)vj(y). (4)

Then the RKHS Hg associated with g has the canonic basis
{ϕ0,ϕ1, · · · ,ϕd}:

g(x, y) =
d

∑

j=0

ϕj(x)ϕj(y),

where ϕj = √
σjvj. Because S(x) 6= S(x), in general,

g(x, y) 6= g(x, y), (x, y) ∈ X2.

Hence, we cannot directly apply the extension technique in the
preceding section to g. Our main purpose in this subsection is to
introduce the extension from Hg to Hg .

Denote by Hw and Hw the RKHSs associated with the kernels
w and w, respectively. Because w(x, y) = w(x, y) for (x, y) ∈ X2,
the extension technique in the preceding section can be applied.

Let uj(x) =
√
S(x)ϕj(x) and uj(x) =

√
S(x)φj(x). Then we

have

w(x, y) =
d

∑

j=0

uj(x)uj(y), w(x, y) =
m

∑

j=0

uj(x)uj(y).

Lemma 3 The least-square extension operator T :Hw → Hw has
the following representation:

T(uj)(x) =
1

σj

∫

X
w(x, y)

uj(y)

S(y)
dµ(y), j = 0, 1, · · · , d. (5)

FIGURE 2 | GL out-of-sample extension for DR of S-Curve.

FIGURE 3 | GL out-of-sample extension for DR of Punched Sphere.
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Proof. Because {uj}dj=0 is not a canonic o.n. basis of Hw, we

cannot directly apply the extension formula 3. Recall that the
formula 3 can also be written as T(f)(x) = 〈f, k(x, ·)〉H. (In the
considered case, the kernel w replaces k.) Note that

〈uj,w(x, ·)〉Hw = uj(x) =
√

S(x)ϕj(x) =
√

S(x)
1

σj

∫

X
g(x, y)ϕj(y)

dµ(y) = 1

σj

∫

X
w(x, y)

uj(y)

S(y)
dµ(y),

which implies that, for any f ∈ Hw, we have

〈f, uj〉Hw = 1

σj

∫

X
f(y)

uj(y)

S(y)
dµ(y).

Therefore, the formula T(uj)(x) = 〈w(x, ·), uj〉Hw yields 5.�
We now write ûj = T(uj) and define

ŵ(x, y) =
d

∑

j=0

ûj(x)ûj(y).

Then the RKHS Hŵ associated with the kernel ŵ is the extension
of Hw.

The function S(x) induces the followingmultiplicator fromHg

to Hw:

SS(f )(x) =
√

S(x)f (x), x ∈ X.

FIGURE 4 | GL out-of-sample extension for DR of 3D Cluster.

FIGURE 5 | GL out-of-sample extension for DR of Swiss Roll.
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Similarly, the function S(x) induces the following multiplicator
from Hg to Hw:

SS(f)(x) =
√

S(x)f(x), x ∈ X.

It is clear that the operator SS (SS) is an isometric mapping.
With the aid of SS and SS, we define the least-square extension
T from Hg to Hg by

T = (SS)
−1 ◦ T ◦SS. (6)

The following diagram shows the strategy of the out-of-sample
extension using Graph-Laplacian diffusion mapping.

Hg Hg

Hw Hw

-
T = (SS)

−1 ◦ T ◦SS

-

T

?
SS ?

SS

We now derive the integral representation of the operator T .

FIGURE 6 | LB out-of-sample extension for DR of S-Curve.

FIGURE 7 | LB out-of-sample extension for DR of Punched Sphere.
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Lemma 4 Let the canonic decomposition of g be given by 4 and

f =
∑d

j=0 cjϕj ∈ Hg. Then

T (f)(x) =
d

∑

j=0

cjφ̂j(x) =
d

∑

j=0

cj

σj

∫

X

w(x, y)
√

S(x)S(y)
ϕj(y)dµ(y). (7)

Its adjoint operator T ∗
:Hg → Hg is given by

T
∗(h)(x) = h(x)

√

S(x)

S(x)
, h ∈ Hg . (8)

FIGURE 8 | LB out-of-sample extension for DR of 3D Cluster.

FIGURE 9 | LB out-of-sample extension for DR of Swiss Roll.
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Proof. Write φ̂j = T (ϕj). By 6, we have φ̂j(x) = T(uj)(x)√
S(x)

. By

Lemma 3, we obtain

φ̂j(x) =
1

σj

∫

X

w(x, y)
√

S(x)S(y)
ϕj(y)dµ(y), (9)

which yields 7. Recall that
w(x,y)√
S(x)S(y)

= g(x, y)
√

S(y)
S(y)

. For any

h ∈ Hg , by 〈h, g(·, y)〉Hg = h(y), we have

〈h,T (f)〉Hg =
d

∑

j=0

cj

σj

∫

X
h(y)

√

S(y)

S(y)
ϕj(y)dµ(y) =

〈

√

S(·)
S(·)h(·), f

〉

Hg

,

which yields 8.�
We now give the main theorem in this subsection.

FIGURE 10 | Comparisons of DRs of training data and the testing data,

respectively, for S-curve.

Theorem 5 Let T be the operator defined in 6. Define ĝ(x, y) =
∑d

j=0 φ̂j(x)φ̂j(y), where φ̂j = T (ϕj), and let Hĝ be the RKHS

associated with ĝ. Then,

(i) T ∗T = I on Hg.

(ii) {φ̂0, · · · , φ̂d} is an orthonormal system in Hg , so that Hĝ

is a subspace of Hg and P = T T ∗ is an orthogonal

projection from Hg to Hĝ . Therefore, we have P(φ̂j) = φ̂j

and T ∗(φ̂j) = ϕj.

(iii) The function g0(x, y) = g(x, y)− ĝ(x, y) is a Mercer’s kernel.
The RKHS Hg0 associated with g0 is (m − d) dimensional.
Besides, Hg = Hĝ

⊕

Hg0 and Hĝ ⊥ Hg0 .

(iv) For any function f ∈ Hg0 , f (x) = 0, x ∈ X.

Proof. Recall that {ϕ0,ϕ1, · · · ,ϕd} is an on. basis of Hg. By 8 and
9, we have

T
∗
T (ϕj)(x) = φ̂j(x)

√

S(x)

S(x)
= ϕj(x), j = 0, 1, · · · , d,

which yields T ∗T (ϕj) = ϕj. Hence, T ∗T = I on Hg. The proof
of (i) is completed.
Note that

〈φ̂i, φ̂j〉Hg = 〈ϕi, T ∗
T (ϕj)〉Hg = 〈ϕi,ϕj〉Hg = δi,j,

which indicates that {φ̂0(x), · · · , φ̂d(x)} is an orthonormal system
in Hg and Hĝ is a subspace of Hg . Because P

2 = P and P(φ̂j) =
φ̂j, j = 0, 1, · · · , d, P is an orthogonal projection from Hg̃ to Hĝ ,
which proves (ii).
It is clear that (iii) is a direct consequence of (ii). Finally, we have

FIGURE 11 | Comparisons of DRs of training data and the testing data, respectively, for Punched Sphere.
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P(f ) = 0 for f ∈ Hg0 , which yields T ∗(f ) = 0. Therefore,
f (x) = 0, x ∈ X. The proof of (iv) is completed,�

By Definition 2, the mapping 8 :8(x) = [ϕ1(x), · · · ,ϕd(x)]T
is a diffusion mapping from X to R

d and the set 8(X) is a DR of
X. We now give the following definition.
Definition 6 Let T be the operator defined in 6 and φ̂j = T (ϕj).

Then the set 8̂(X) = [φ̂1(X), · · · , φ̂d(X)]T ⊂ R
d is called the

least-square out-of-sample DR extension of the Dmaps with the
Graph-Laplacian kernel.

A DR extension on X is called exact if it is
equal to a DR of X as defined in Definition 2 (see
[20]). The following corollary is a direct consequence
of Theorem 5.

Corollary 7 The least-square out-of-sample DR extension given
by T from Hg to Hg is exact if and only if dim(Hg) = dim(Hg),
or equivalently, Hg0 = {0}.

3.2. Dmaps With the Laplace-Beltrami
Kernel
The discussion on the out-of-sample DR extension of Dmaps
with the Laplace-Beltrami (BL) kernel is similar to that in the
previous subsection. Hence, in this subsection, we only outline
the main results, skipping the details. We start the discussion
from the asymmetrically normalized kernel

m(x, y) = 1

S(x)
w(x, y),

FIGURE 12 | Comparisons of DRs of training data and the testing data, respectively, for 3D Cluster.

FIGURE 13 | Comparisons of DRs of training data and the testing data, respectively, for Swiss Roll.
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which defines a random walk on the data set X such that m(x, y)
is the probability of the walk from the node x to the node y after a
unit time. From the viewpoint of the random walk, we naturally
modify the Gaussian kernel w(x, y) to the following:

a(x, y) = w(x, y)

S(x)S(y)
.

Then, we normalize it to

b(x, y) = a(x, y)
√

P(x)P(y)
= w(x, y)

√

R(x)R(y)
,

where

P(x) =
∫

X
a(x, y)dµ(y), R(x) = S2(x)P(x).

We call b(x, y) the Laplace-Beltrami kernel of Dmaps, which
relates to the data set X sampled from a manifold in R

D. The
greatest eigenvalue of b(x, y) is also 1, which corresponds to the

normalized eigenfunction

√

P(x)
L , where

L =
∫

X
P(x)dµ(x).

FIGURE 14 | LB out-of-sample extension for different sizes of the test sets of S-curve (I).

FIGURE 15 | LB out-of-sample extension for different sizes of the test sets of S-curve (II).
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Let Hb be the RKHS associated with b and assume that the
spectral decomposition of b is

b(x, y) =
m

∑

j=0

βjqj(x)qj(y) =
m

∑

j=0

ψj(x)ψj(y),

where 1 = β0 ≥ β1 ≥ · · · ≥ βm > 0 and ψj(x) =
√

βjqj(x).
Similar to the discussion in the previous subsection, since ψ0 =
√

P(x)
L does not contains any feature of the data set, we exclude it

from the feature space.
Definition 8 The mapping 9 :X → R

m
:9(x) =

[ψ1(x), · · · ,ψm(x)]
T is called the Laplace-Beltrami diffusion

mapping and the data set 9(X) ⊂ R
m is called a DR of X

associated with Laplace-Beltrami Dmaps.
We new assume again X = X ∪ Z and denote by

b(x, y) the Laplace-Beltrami kernel on X. Assume that spectral
decomposition of b is

b(x, y) =
d

∑

j=0

γjqj(x)qj(y). (10)

Then the RKHS Hb associated with b has the canonic basis
{ω0,ω1, · · · ,ωd}, where ωj = √

γjqj.
Define the multiplicator from Hb to Hw by

SR(f )(x) =
√

R(x)f (x), x ∈ X,

and the multiplicator from Hb to Hw by

SR(f)(x) =
√

R(x)f(x), x ∈ X.

The operator SR (SR) is an isometric mapping. We now define
the least-square extensionM from Hb to Hb by

M = (SR)
−1 ◦ T ◦SR. (11)

The integral representation of M is give by the following
lemma:
Lemma 9 Let {ω0,ω1, · · · ,ωd} be the canonic basis of b. Write
ψ̂j = M(ωj). Then

ψ̂j(x) =
1

γj

∫

X

w(x, y)
√

R(x)R(y)
ωj(y)dµ(y). (12)

Particularly, for f =
∑d

j=0 cjωj ∈ Hb, we have

M(f)(x) =
d

∑

j=0

cjψ̂j(x) =
d

∑

j=0

cj

γj

∫

X

w(x, y)
√

R(x)R(y)
ωj(y)dµ(y).

Its adjoint operatorM∗
:Hb → Hb is given by

M
∗(h)(x) = h(x)

√

P(x)

P(x)
, h ∈ Hb.

Since the proof is similar to that for Lemma 4, we skip it here.

Theorem 10 LetM be the operator defined in 11. Define b̂(x, y) =
∑d

j=0 ψ̂j(x)ψ̂j(y), where ψ̂j = M(ωj), and let H
b̂
be the RKHS

associated with b̂. Then,

1. M∗M = I on Hb.

2. {ψ̂0, · · · , ψ̂d} is an orthonormal system in Hb, so that H
b̂

is a subspace of Hb and Q = MM∗ is an orthogonal
projection from Hb to H

b̂
. Therefore, we have Q(ψ̂j) = ψ̂j

andM∗(ψ̂j) = ωj.

3. The function b0(x, y) = b(x, y) − b̂(x, y) is a Mercer’s kernel.
The RKHS Hb0 associated with b0 is (m − d) dimensional.
Besides, Hb = H

b̂

⊕

Hb0 and Hb̂
⊥ Hb0 .

4. For any function f ∈ Hb0 , f (x) = 0, x ∈ X.

We skip the proof of Theorem 10 because it is
similar to that for Theorem 5. We now give the
following definition:
Definition 11 Let M be the operator defined in 11 and ψ̂j =
M(ωj). Then the set 9̂(X) = [ψ̂1(X), · · · , ψ̂d(X)]

T ⊂ R
d is called

the least-square out-of-sample DR extension of the Dmaps with
the Laplace-Beltrami kernel.
Corollary 12 The least-square out-of-sample DR extension given
byM from Hb to Hb is exact if and only if dim(Hb) = dim(Hb),
or equivalently, Hb0 = {0}.

3.3. Algorithms for Out-of-Sample DR
Extension of Dmaps
In this subsection, we present the algorithm for out-of-sample
DR extension of Dmaps. The algorithm contains two parts.
In the first part, we construct the DR for X by 4 and
10. In the second part, we extend the DR to the set X,
by 9 and 12.

In the algorithm, we represent the data sets X, Z, and X =
X∪Z as theD×N,D×M, andD×(N+M) matrices, respectively,
so that X = [X,Z]. We assume the measure dµ(x) = dx. Write
X = [x1, · · · , xN], Z = [z1, · · · , zM], and X = [x1, · · · , x(N+M)],
where xj = xj, 1 ≤ j ≤ N and xj = zj−N ,N + 1 ≤
j ≤ N + M. Then we represent all kernels by matrices and
all functions by vectors. For example, w is now represented by
the N × N matrix with wi,j = exp(−‖xi − xj‖2/ǫ). To treat
GL-map and LB-map in a uniform way, we write Si =

∑

j wi,j

and define

di =
{√

Si, for GL-map
√

Si
∑

j(wi,j/Sj), for LB-map

Then we set either kernel on X as the N × N matrix k with

ki,j =
wi,j

didj
.

The pseudo-code is given in Algorithm 1.
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Algorithm 1: Out-of-Sample DR Extension for Dmaps

Require: Training data set X = [x1, x2, · · · , xN]; testing data set
Z = [z1, x2, · · · , zM]; kernel parameter ǫ for creating the
diffusion kernel W(x, y) = exp(‖x − y‖2/ǫ); and optional
threshold η > 0 for constructing sparse kernel forms of GL
or LB.

Ensure: Out-of-sample DR extension Y for X using Dmaps.

Part I. Create DR of X.
1: Construct the Gaussian kernel

wi,j =
{

W(xi, xj), W(xi, xj) ≥ η

0, W(xi, xj) < η

2: Compute the mass functions on X: Si =
∑

j wi,j.

3: if kernel form = GL then di =
√
Si;

4: else di = Si

√

∑

j(wi,j/Sj).

5: end if

6: Construct the kernel k for Dmaps on X: ki,j = wi,j/(didj).

7: Make the spectral decomposition of k: k = UT6U = 8T8,
where8 =

√
6U ∈ R

(d+1)×N .
8: Let Y be the matrix obtained by removing the first row of8.

⊲ The column set of Y is the DR of X.

Part II. Make out-of-sample DR extension on X =
X ∪ Z.

9: Compute the mass functions on X: Si =
∑

j wi,j.

10: if kernel form = GL then di =
√
Si;

11: else di = Si
√

∑

j(wi,j/Sj).

12: end if

13: Extend w to w and k to k on X.
14: SetD = diag(d1, · · · , dN) and DX = diag(d1, · · · , dN).
15: Compute YX = YD−1DX.
16: Set 6d = diag(σ1, · · · , σd), DZ = diag(dN+1, · · · , dN+M),

and wZ = [wi,j]
N,N+M
i=1,j=N+1.

17: Compute YZ = 6−1
d

YD−1wZD
−1
Z .

18: Set Y = [YX,YZ].

4. ILLUSTRATIVE EXAMPLES

In this section, we give several illustrative examples to show
the validity of the Dmaps out-of-sample extensions. We employ
four benchmark artificial data sets, S-curve, Swiss roll, punched
sphere, and 3D cluster, in our samples. The graphs of these four
data sets are give in Figure 1.

4.1. Out-of-Sample Extension by
Graph-Laplacian Mapping
We first show the examples for the out-of-sample extensions
provided by Graph-Laplacian mapping for the four benchmark
figures. We set the size of each of these data sets by |X| =
2, 048. When the out-of-example algorithm is applied, we
choose the size of the training data set to be |X| = 1, 843,
which is 90% of the all samples, and choose the size of the
testing set |Z| = 205, which is 10% of all samples. The
parameters for the Graph-Laplacian kernel are set as follows:
For obtaining the sparse kernel, we choose 25 nearest neighbors
for every node, and assign the diffusion parameter ǫ = 1
for S-curve, Punched Sphere, and 3D Cluster, while assign
ǫ = ∞ for Swiss Roll. We compare the DR result of the
whole set X obtained by out-of-example extension with that
obtained without out-of-example extension in the Figures 2–
5. The figures show that the DRs obtained by out-of-sample
extensions are satisfactory.

4.2. Out-of-Sample Extension by
Laplace-Beltrami Mapping
We now show the examples for the out-of-sample extensions
provided by Laplace-Beltrami mapping for the same four
benchmark figures. We set the same sizes for |X|,|X|, and |Z|,
respectively. The parameters for the Laplace-Beltrami kernel are
also set the same as for Graph-Laplacian kernel. The results of the
comparisons are give in Figures 6–9.

To give more detailed comparisons, in Figures 10–13, we
show the DRs of the training data and the testing data obtained
by out-of-extensions and without extensions, respectively, for
LB mapping.

It is a common sense that if we reduce the size of the training
set while increase the size for the testing set, the out-of-sample
extension will introduce larger errors for DR. Figures 14–15
show that, in a relative large scope, say, the size of the testing set
is no greater than the size of the training set. the out-of-sample
extension still produces the acceptable results.
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