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Mathematical methods of image inpainting often involve the discretization of a given

continuous model. Typically, this is done by a pointwise discretization. We present

a method that avoids this by modeling known variational approaches using a finite

dimensional spline space. The way we build our algorithm we are able to prove that the

basis of the spline space is stable. Further, due to the compact supports and structure of

the basis the model involves a sparse system matrix allowing a fast and memory efficient

implementation. Besides the analysis of the resulting model, we present a numerical

implementation based on the alternating method of multipliers. We compare the results

numerically with classical TV inpainting and give examples of applications, such as text

removal, restoration, and noise removal.

Keywords: spline interpolation, inpainting, discrete approximation, optimization, variational methods

1. INTRODUCTION

In this paper we study the continuous inpainting problem for digital images. That is, our goal is to
restore parts � of a digital image �′, � ⊂ �′ ⊂ R

d, where the information has been removed,
damaged, or is missing, from the remaining and well-maintained part. Naturally, this is only
possible under suitable modeling assumptions on the image. For continuous images a common and
practical model is that of a function of bounded variation as first studied in the well-known work
of Rudin and Osher [1], and Rudin et al. [2]. For a numerical solution and its implementation,
these models need to be discretized. For digital images, given by a set of pixels on a uniform grid,
those functions and their derivatives are typically discretized using difference schemes for the pixel
values. In this paper we rather use a finite dimensional function space, the space of tensor product
spline functions based on B-splines, see e.g., [3, 4]. The advantage of this approach is that we avoid a
pointwise discretization of the involved functions and derivatives. In addition, the compact support
of the basis of B-splines contributes to an efficient and stable implementation.

In general, the inpainting problem involves recovering missing structure and missing texture.
In this paper we focus on structural inpainting; for texture reconstruction other methods need to
be used or added, see for example [5] and [6]. Also for structural inpainting there exists a variety
of approaches. Examples include PDE-based methods (e.g., [5, 7–10]) and variational approaches
as in [11–15]. Many of these methods can be combined with different models described by various
finite dimensional function spaces [13, 15–18] which is also the approach we will follow in this
paper. We especially want to point out the thesis of Hong [13] and the article of Hong et al. [15]
which study a variational model similar to ours but using spline functions over triangulations. In
our numerical section we also include some examples to compare the performance of our method
with examples given in [13] and [15]. For a short survey of splines in image processing in general,
see [19].
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Naturally, this short summary cannot give a complete account
of all related works. For example the problem of image
completion (see [20] and references therein) is closely related.
For a comprehensive overview to image processing from a
mathematical perspective that also discusses inpainting, the
authors recommend the books of Chan and Shen [21] as well as
Aubert and Kornprobst [22].

Outline and Contribution
We will follow a variational approach by, roughly speaking,
minimizing some functional over an extended inpainting area
U(�) ⊃ � subject to constraints which ensure the reproduction
of the well-maintained part of the image. Typically, the functional
involves the image function u and some of its derivatives. The
constraint, on the other hand, is chosen over some neighborhood
B ⊆ �′ \ � of the inpainting area. We will model the class
of functions for the variational method with tensor product B-
splines together with a focus on total variation (TV) inpainting,
[23], that is

∫

U(�)
|∇u(xxx)| dxxx, (1)

the effective, often used ROF-functional, see [2], which results in
level curves of minimal length. Note that the application to this
model is exemplary and the presented approach can be applied to
other functionals as well.

We begin by giving some basic properties and notation for
the tensor product splines used in this paper in section 2.
Afterwards, in section 3 we show how to model the inpainting
problem with those splines and analyze its properties. Numerical
results are given in section 4. We present an algorithm and its
implementation using a first-order primal-dual algorithm [24],
compare the results of ourmethod to standard TV inpainting and
show some examples of applications.

2. PRELIMINARIES AND NOTATION

In the sequel, we will use the following notations and basic facts
about B-splines and their derivatives. Even if images are usually
considered in 2D, we will present the theory in an arbitrary
number of variables; applications in higher dimensions would,
for example include medical applications such as inpainting in
voxel data provided by computerized tomography. The tensor
product B-splines for inpainting which we will use in section 3
are defined over a rectangle R = ⊗d

j=1[aj, bj], d ∈ N. They are

based on a tensor product knot grid which is given as

T : = ⊗d
j=1{τj,1, . . . , τj,mj+2nj} (2)

with τj,i < τj,i+nj for nj ≤ i ≤ mj + nj. At the boundary, we
request multiple knots

τj,1 = · · · = τj,nj = aj,

τj,mj+nj+1 = · · · = τj,mj+2nj = bj,
(3)

for nj, mj ∈ N, 1 ≤ j ≤ d. We set nnn : = (n1, . . . , nd)
and mmm : = (m1, . . . ,md) for the dimensions and degrees in

the individual coordinates, respectively. The grid width hhh : =

(h1, . . . , hd), defined as hj : = maxk |τj,k − τj,k+1|, is known to
influence the approximation properties of the spline space. For
kkk ∈ K : = ⊗d

j=1{1, . . . ,mj + 2nj − 1} a grid cell is denoted by

Zkkk : = ⊗d
j=1[τj,kj , τj,kj+1].

The tensor product B-splines of order nnnwith respect to the grid
T are denoted by

Bnnnααα(xxx) =

d
∏

j=1

B
nj
αj (xj), ααα ≤mmm+ nnn, (4)

i.e., ααα ∈ Immm,nnn : = ⊗d
j=1{1, . . . ,mj + nj}. They have the support

Snnnααα : = ⊗d
j=1S

nj
αj , S

nj
αj : = [τj,αj , τj,αj+nj ], (5)

respectively. The spline space S
nnn(T,�) of order nnn restricted to a

domain � ⊂ R
d is spanned by all B-splines Bnnnααα with Snnnααα ∩ � 6= ∅.

The index set of all B-splines relevant for � is defined as I� : =

{ααα ∈ Immm,nnn|S
nnn
ααα ∩� 6= ∅} and their number as #(I�). If � = R, then

IR = Immm,nnn and #(IR) =
∏d

j=1mj + nj.

A tensor product spline of order nnn with respect to T over a
domain � is given by

s(xxx) =
∑

ααα∈I�

gαααB
nnn
ααα(xxx), xxx ∈ �, (6)

with coefficients gααα ∈ R. Let g =
(

gααα
)

ααα∈I�
and B(xxx)T : =

(

Bnnnααα(xxx)
)

ααα∈I�
denote the vector of the coefficients and B-splines,

respectively, then the spline s is given in matrix notation by
s(xxx) = B(xxx)g.

With respect to inpainting methods an important property of
the spline functions is that their derivatives can be expressed in
terms of the coefficients of the spline function itself, that is

∂js(xxx) : =
∂

∂xj
s(xxx) =

∑

ααα∈I�

gααα ∂jB
nnn
ααα(xxx) (7)

where

∂jB
nnn
ααα(xxx) : =

∂

∂xj
Bnnnααα(xxx) = (nj − 1)





B
nnn−εj
ααα (xxx)

|S
nj−1
αj |

−
B
nnn−εj
ααα+εj

(xxx)

|S
nj−1

αj+1|



 (8)

denotes the derivative of the B-splines. Here, εj is the j-th
unit vector.

The ℓp-norm of vectors will be denoted by ‖ · ‖p and the
Lp-norm of functions by ‖ · ‖p,�.

3. MODELING OF INPAINTING PROBLEM

Assume we want to reproduce a rectangular image �′ ⊂ R
d by

a tensor product spline. This can easily be done by choosing a
tensor product grid with multiple knots on the boundary ∂�′

such that �′ is the domain of definition. This method guarantees
that the B-spline basis is stable.
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Theorem 1. For any rectangular domain R = ⊗d
j=1[aj, bj], d ∈

N, and any spline order nnn = (n1, . . . , nd) ∈ N
d, the B-spline

basis {Bnnnααα(xxx)}ααα∈Immm,nnn with respect to knots defined as in (2) and (3) is
stable, that is, there exist constants c,C > 0 such that

c‖g‖p ≤ ‖Bg‖p,� ≤ C‖g‖p, g ∈ R
I� , (9)

The constants are only depending on nnn and d.

Due to the tensor product structure and the multiple knots
on the boundary, this result can be proven analogously to the
classical univariate results for intervals, see, e.g., [25]. For further
information about stability of tensor product B-spline bases see
for example [26]. In addition to stability, multiple knots on the
boundary ofR help us to avoid artifacts at the boundary since they
result in an interpolation at the boundary and, thus, satisfying a
non-homogeneous Dirichlet boundary condition.

We introduce a general version of our interpolation problem
before stating the concrete model for which we give proofs and
examples. It seems worthwhile, however, to mention that it also
works with other models. For arbitrary �′ ⊂ R

d, the inpainting
problem considered here can be described in the following way:
Given two bounded domains � and �′ such that

1. � ⊂ �′ ⊂ R
d,

2. there exists R = ⊗d
j=1[aj, bj] such that � ⊂ R ⊆ �′ and

∂� ∩ ∂R = ∅.

The goal is to reconstruct a function or picture f on � that is
known only on �∗

: = �′ \ � by using tensor product splines
defined over R. The situation is illustrated in Figure 1. Note that
in case of multiple disconnected unknown inpainting areas, as for
example illustrated in the left image of Figure 3, the method can
be applied for each area separately. For easier comparability we
choose R = �′ for all of our examples considered in section 4.

We require that the spline fulfills a side condition on
R∗ : = R \ � ⊂ �∗ and minimizes a functional F over some
neighborhood U(�) including �. The general variational
inpainting model using splines can now be formulated as follows.

Spline Inpainting Model 1. Let Unnn
hhh
(�) be some neighborhood of

� only depending on hhh and nnn with � ⊆ Unnn
hhh
(�) ⊆ R. The spline

inpainting model is given by: Determine s ∈ S
nnn(T,R) by

minimize F(s,∇s, . . . )(xxx) for xxx ∈ Unnn
hhh (�) (10)

subject to s(xxx) = f (xxx) for xxx ∈ R∗. (11)

Remark 1. Since hard constraints can be problematic, especially in
the presence of noise, the minimization problem is often relaxed to

minimize F(s,∇s, . . . )|Unnn
hhh
(�) +

ε

2
‖s− f ‖22,R∗ (12)

for some ε > 0. This relaxed formulation will be discussed briefly
in section 4.

For the explicit modeling or the discretization of the Spline
Inpainting model 1, the concrete functional in the minimization
is, of course, crucial. As already mentioned in section 1, we will
follow one of the first important approaches and focus on TV
inpainting [23] and, therefore, on the ROF-functional [2].

FIGURE 1 | Illustration of domains.

FIGURE 2 | Exemplary test data: cartoon-like images and natural images.

Spline Inpainting Model 2. Let Unnn
hhh
(�) be some neighborhood of

� only depending on hhh and nnn with � ⊆ Unnn
hhh
(�) ⊆ R. The TV

spline inpainting model is given by: Determine s ∈ S
nnn(T,R) by

minimize
∫

Unnn
hhh
(�) |∇s(xxx)| dxxx (13)

subject to s(xxx) = f (xxx) for xxx ∈ R∗, (14)

where |∇s(xxx)| : =

√

∑d
i=1

(

∂is(xxx)
)2
.

Considering discrete problems (e.g., digital images) and, thus,
a discrete set of points, the constraint coincides with an
interpolation of a finite set of points. To apply the interpolation,
usually, a discretization of all involved functions and derivatives
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FIGURE 3 | Considered inpainting area types: Scratches (Left) and randomly

missing pixels (Right).

is necessary. In the next two subsections we show that for the
continuous Spline Inpainting Models 2 only the discretization of
the integral over grid cells Zkkk in a neighborhood of the inpainting
area � is needed. Note that Theorem 2 concerning the constraint
also holds true in case of the general model Spline Inpainting
Model 1. Theorem 3 treats the special functional considered
in (13). Nevertheless, the decomposition in (32) as well as the
representation of the involved spline functions and derivatives
remain the same. Thus, depending on concrete given functional
Theorem 3 and the Discrete Spline Inpainting Model 1 would
have to be adapted. As a simple approach one could use the
squared gradient norm in (13), i.e., |∇s(xxx)|2. This puts a stronger
penalty term on large gradients what can be useful for large
inpainting areas. We will also test this approach in the numerical
section of this work. In case of the often considered Laplace
and biharmonic equations (e.g., [17] and references therein) our
spline approach would reduce to a linear system with respect to
the coefficients of the spline function.

Clearly, there are different possible interpretations of a
discrete image. In our situation, where we evaluate functions at
points in R, those interpretations influence the value of the image
that we assume to be at that points. Since it does not change
the method or modeling, we interpret, for the sake of simplicity,
the discrete values as piecewise constant functions with constant
values over rectangles. This means, for an image f considered
over R = ⊗d

j=1[aj, bj] consisting of µ1 × · · · × µd pixels, the

single pixels are defined as uniform rectangles Pβββ : = ⊗d
j=1[aj +

(βj − 1)pj, aj + βjpj) for pj : = (bj − aj)/µj and 1 ≤ βj ≤ µj. The
value of the image over Pβββ is chosen corresponding to the value

at the center c(Pβββ ) : =
(

aj + (βj −
1
2 )pj

)d

j=1
of this pixel; the j-th

coordinate will be denoted by c(Pβββ )j.

3.1. Constraint
In the reproduction of digital images on R∗, the constraint
(14) corresponds to the interpolation of the pixel values in R∗.
We use the centers of the pixels c(Pβββ ) as those interpolation
points. In the space of tensor product splines an interpolation
problem is solvable if the number of interpolation points is
not greater than the degrees of freedom #(IR) and if there is a
relationship between the interpolation sites and the knots, known
as the Schoenberg–Whitney condition. Since we also need some

degrees of freedom for theminimization problem overU(�), this
forces us to choose a spline space of sufficiently large dimension.

Definition 1. Given a tensor product grid T over R and a set of
discrete points 4 : = {ξξξβββ ∈ R|βββ ∈ Z

d; #(βββ) ≤ #(IR)}, let λβββ be
the point evaluation functionals λβββ (g) : = g(ξξξβββ ), g : 4 → R. A
spline s ∈ S

nnn(T,R) is the spline interpolant of a function g at 4
if

λβββ (s) =
∑

ααα∈IR

gαααB
nnn
ααα(ξξξβββ ) = λβββ (g), ξξξβββ ∈ 4. (15)

For functions defined over R and grids T satisfying (2) and (3)
this interpolation problem is uniquely solvable if the Schoenberg-
Whitney condition (see, e.g., [27]) is satisfied. Since R is a
rectangle, this can be guaranteed by choosing the tensor product
Greville abscissae as interpolation sites, that is, by setting

4Gr : =

{

ξξξγγγ ∈ R
d|ξγγγ ,j : =

1

nj − 1

nj−1
∑

i=1

τj,γj+i, γγγ ∈ IR

}

. (16)

It should be noted that the position of the Greville abscissae
depends on the position of the knots of T, hence, the
interpolation points depend on T. Since the centers of the pixels
in R∗ need to be interpolated, we have to choose a knot grid such
that those are contained in the set of Greville abscissae. In case
of digital images, where each rectangle Pβββ represents a pixel of
the image, we have the following result for the reproduction of all
known image pixel values.

Theorem 2. Given an image f of size ⊗d
j=1µj, an area R∗ : =

∪βββ∈JR∗Pβββ , JR∗ : = {βββ ∈ Z
d
: 1 ≤ βj ≤ µj, 1 ≤ j ≤ d and c(Pβββ ) ∈

R\�} of known pixel values and an order nnn of a spline space, there
exist a knot grid T and a set of interpolation points 4∗ such that

{c(Pβββ )}βββ∈JR∗ ⊂ 4∗, λγγγ (s) = λγγγ (f ), ξξξγγγ ∈ 4∗, (17)

for s ∈ S
nnn(T,R).

Proof: Due to the tensor product structure, it suffices to consider
a single coordinate direction j for the construction of the grid and
set of interpolation points.

In doing so, we have to distinguish between even and odd
values of nj. We setmj = µj−1 for nj odd andmj = µj otherwise,
and choose

{

τj,nj+kj : = aj + kj · pj nj odd,

τj,nj+kj : = aj + (kj −
1
2 ) · pj nj even

(18)

for 1 ≤ kj ≤ mj and pj : =
bj−aj

µj
. The boundary knots are

determined with proper multiplicity according to (3). Recalling
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(16), the j-th coordinates of the associated Greville abscissae for
odd nj are given by

ξγγγ ,j =



























































aj for γj = 1,

aj +
pj

nj−1

( γj−1
∑

ℓ=1

ℓ

)

for
γj ≥ 2
γj ≤ nj − 1,

aj +
pj

nj−1

( γj−1
∑

ℓ=γj+1−nj

ℓ

)

for
γj ≥ nj
γj ≤ mj + 1,

bj −
pj

nj−1

(mj+nj−γj
∑

ℓ=1

ℓ

)

for
γj ≥ mj + 2
γj ≤ mj + nj − 1,

bj for γj = mj + nj.

(19)

Replacing the terms ℓ of the sums by ℓ − 1/2, results in the
Greville abscissae for even nj, respectively. Therefore, we have

ξγγγ ,j =































aj +
(γj−1)γj
2(nj−1)

pj for
γj ≥ 1
γj ≤ nj − 1,

aj +
(

γj −
nj
2

)

pj for
γj ≥ nj
γj ≤ mj + 1,

bj −
(mj+nj−γj+1)(mj+nj−γj)

2(nj−1)
pj for

γj ≥ mj + 2
γj ≤ mj + nj.

(20)

for odd nj and

ξγγγ ,j =



















































aj for γj = 1,

aj +
(γj−1)2

2(nj−1)
pj for

γj ≥ 2
γj ≤ nj − 1,

aj +
(

γj −
nj+1

2

)

pj for
γj ≥ nj
γj ≤ mj + 1,

bj −
(mj+nj−γj)

2

2(nj−1)
pj for

γj ≥ mj + 2
γj ≤ mj + nj − 1,

bj for γj = mj + nj.

(21)

for even nj, respectively. Now ξγγγ ,j coincides, for nj ≤ γj ≤ mj+1,
with c(Pβββ )j for some 1 ≤ βj ≤ µj; more precisely, with centers
c(Pβββ )j such that

βj ∈
◦

I : =

{

{
nj+1

2 , . . . ,µj −
nj−1

2 } for odd nj

{
nj
2 , . . . ,µj + 1−

nj
2 } for even nj

. (22)

The Greville abscissae of boundary B-splines, that is, of B-splines
with some knots at aj or bj, are not necessarily placed at a center,
but they can be replaced by the center that is closest to them

without loss of the Schoenberg-Whitney condition B
nj
γj (ξj) > 0,

due to property (5).

We now claim: For every βj ∈ {1, . . . ,µj} \
◦

I, there exists γj
such that

−
1

2
pj < ξγγγ ,j − c(Pβββ )j ≤

1

2
pj. (23)

There are four cases to be considered: small and large βj (or γj)
and even or odd order. We prove the claim for small βj or γj and
odd order, the other cases can be verified in the same way. For
γj ∈ {2, . . . , nj − 1} and odd nj we have

ξγγγ ,j − c(Pβββ )j =
( (γj − 1)γj

2(nj − 1)
− βj +

1

2

)

· pj. (24)

Therefore, we need to show that for every βj ∈ {1, . . . , (nj − 1)/2}
there exists a γj ∈ {2, . . . , nj − 1} such that

βj − 1 <
(γj − 1)γj

2(nj − 1)
≤ βj. (25)

Set h(γj) : =
(γj−1)γj
2(nj−1)

. Then we have 0 < h(2) ≤ 1 and
nj−1

2 − 1 <

h(nj − 1) ≤
nj−1

2 . As a consequence, 0 < h(γj) ≤
nj−1

2 for all
γj ∈ {2, . . . , nj − 1}. Clearly, h(γj) is monotonically increasing
and #γj = nj − 2 distributed over (nj − 1)/2 intervals. Further,

h(γj)− h(γj − 1) =
γj−1

nj−1 ≤ 1 and, thus, the claim is valid.

Having this property at hand, we replace those ξγγγ ,j by
c(Pβββ )j that are closest to the center, to guarantee that all
centers are contained in the set of interpolation points. For

β ∈ {1, . . . ,µj} \
◦

I set

Ĩ : =
{

γj ∈ {1, . . . ,mj + nj} : ξγγγ ,j = min
γ̃j

{argminξγ̃γγ ,j
|ξγ̃γγ ,j − c(Pβββ )j|}

}

(26)

and

ξ̃γγγ ,j : = argminc(Pβββ )j
|ξγ̃γγ ,j − c(Pβββ )j| for γj ∈ Ĩ. (27)

The set

4j : =
{

ξγγγ ,j : γj ∈ {1, . . . ,mj + nj} \ Ĩ
}

∪
{

ξ̃γγγ ,j : γj ∈ Ĩ
}

(28)

gives us the j-th coordinate of 4, the set of possible interpolation
points. Finally, the set 4∗ of interpolation points is determined
by restriction of 4 to R∗, that is ξξξγγγ ∈ 4∗

: = 4 ∩ R∗. By
construction, c(Pβββ ) ∈ 4∗ for βββ ∈ JR∗ and there exists a spline
interpolant s ∈ S

nnn(T,R) for f at 4∗.

In the sequel, 4 and 4∗ always will refer to the sets of
interpolation sites determined in the way described in the
proof of Theorem 2. For applications we also want to describe
the constraints in matrix notation. For the coefficients g =
(

gααα
)

ααα∈IR
∈ R

#(IR), we get

s4∗ = B4∗g = f4∗ (29)

with

f4∗ =
(

f (ξβββ )
)

βββ∈4∗ ∈ R
#(4∗), (30)

B4∗ =

[

Bnnnααα(ξβββ ) :
ξβββ ∈ 4∗

ααα ∈ IR

]

∈ R
#(4∗)×#(IR). (31)

3.2. Minimization
Depending on �, there are still some degrees of freedom left for
minimization; their number is given by #(4 \ 4∗). We define
Unnn
T(�) as the union of all supports of B-splines corresponding

to ξααα ∈ 4 \ 4∗, that is

Unnn
T(�) : =

⋃

ααα∈IR\I4∗

Snnnααα . (32)

The index set of all cells in Unnn
T(�) is denoted by K� : = {kkk ∈

K|Zkkk ⊂ Unnn
T(�)}.
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Proposition 3. Given T and � ⊂ R. For Unnn
T(�) defined as in

(32), the minimization problem (13) reduces to

min
g

∑

kkk∈K�

∫

Zkkk

|
(

Bj(xxx)g
)d

j=1
| dxxx, (33)

where g =
(

gααα
)

ααα∈I�
, gααα ∈ R, and

[Bj(xxx)]T : =
(

∂jB
nnn
ααα(xxx)

)

ααα∈IR
∈ R

#(IR). (34)

Remark 2. It is worthwhile to point out that the derivatives
∂jB

nnn
ααα(xxx) are just weighted differences of B-splines of lower order,

the explicit formula being given in section 2. This fact is of crucial
importance for the efficient implementation of the method as it
leads to sparse difference matrices.

Proof of Proposition 3: The result follows by applying (7) and

(32). The first one directly gives us ∇s(x) =
(

Bj(xxx)g
)d

j=1
with

unknown coefficients g. The area of integration Unnn
T(�) consists

of a union of grid cells and, thus, the integral can be split up into
those grid cells Zkkk for kkk ∈ K�.

Typically, for digital images the integration and the derivatives
need to be discretized, as already mentioned in section 1. In our
case, we only need to discretize the integral and the way the
problem is modeled helps with that, too: the discretization of the
integrals can be done simply and efficiently by using a Gaussian
quadrature formula for the grid cells Zkkk for kkk ∈ K�. The tensor
product structure allows us to use the univariate Gauss-Legendre
quadrature formula in each coordinate direction. Let2 ⊂ Unnn

T(�)
be the set of the nodes of the Gauss-Legendre quadrature and wθθθ

be the corresponding weights. We get

∑

kkk∈K�

∫

Zkkk

|
(

Bj(xxx)g
)d

j=1
| dxxx ≈

∑

θθθ

wθθθ

∥

∥

(

Bj(θθθ)g
)d

j=1

∥

∥

2
, (35)

where ‖ · ‖2 denotes the Euclidean norm.

Discrete Spline Inpainting Model 1. Using Proposition 3 and 2
[or (29)] the discrete form of TV Spline Inpainting Model 2 is given
by: Determine s ∈ S

nnn(T,R) by

minimizegααα
∑

θθθ∈2 wθθθ ‖Bθθθg‖2

subject to B4∗g = f4∗

where Bθθθ : =
(

Bj(θθθ)
)d

j=1
∈ R

d×#(IR).

This approach is also suitable for other types of Spline Inpainting
Models 1, as long as the functionals depend on the function
and its derivatives and it can be applied as soon as the explicit
functional is given.

4. NUMERICAL IMPLEMENTATION AND
EXPERIMENTS

Define the convex operators F : R
d×#(2) → R and G : R

#(I�) →

R with

F(x1, . . . , x#(2)) =

#(2)
∑

k=1

‖xk‖2, (36)

G(g) =

{

0 B4∗g = f4∗ ,

∞ otherwise,
(37)

and the linear operator K : R
#(I�) → R

2×#(2) with K(g) =

(wθθθBθθθg)θθθ∈2. Using this, the Discrete Spline Inpainting Model
1 can be reformulated as an optimization problem in the
following way:

Optimization Problem 1. Our Spline Inpainting Model 1 is
equivalent to the unconstrained problem

minimize F(Kg)+ G(g).

This formulation is suitable for the first-order primal-dual
algorithm presented in [24]. Therefore, the λ-proximity
operators proxλF∗ , proxλG need to be calculated. Note that the

convex conjugate function F∗ : R
d×#(2) → R is given by

F∗(y1, . . . , y#(2)) =

{

0 ‖yk‖2 ≤ 1, ∀k ≤ #(2)

∞ otherwise
. (38)

Both, F∗ and G are indicator functions and, thus, the proximity
operators are equivalent to the projections:

prox
λF∗

(y1, . . . , y#(2)) =

(

y1

max(1, ‖y1‖2)
, . . . ,

y#(2)

max(1, ‖y#2‖2)

)

,

(39)

prox
λG

(g) = g− B+
4∗ (B4∗g− f4∗ ), (40)

where B+
4∗ is the pseudoinverse of the rectangular matrix B4∗ .

We remark that both operators are independent of λ. In our
experiments, we use theMATLAB implementation of the primal-
dual solver due to Gabriel Peyre [28] and apply the tests to several
cartoon-like images and natural images in different sizes; some
are shown in Figure 2.

We consider two different scenarios for the inpainting
region �. In one scenario, the image is damaged by one
or several “scratches” of variable width; in the second case
we consider randomly missing pixels similar to “salt-and-
pepper” noise. Figure 3 gives an example for both types (in
comparison to Figure 2 the contrast is changed to emphasize the
inpainting area).

In the next subsection we discuss the optimal spline order
for the inpainting problem as well as reasonable strategies
to guess a starting value for the primal-dual algorithm. We
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compare our results with the standard TV inpainting using,
again, an implementation by Gabriel Peyre [28]. Afterwards, we
demonstrate the benefits of our method by two examples: Text
removal and salt-and-pepper denoising.

4.1. Numerical Evaluation
4.1.1. Starting Guess
Both implementations, spline inpainting and standard TV
inpainting, are iterative methods. Thus, they rely on a suitable
initial value to return a good solution after a reasonable number
of iterations. We tried several strategies among which two stood
out and will be detailed in what follows. In a first strategy
we choose random uniformly distributed values in [0, 255] (for
standard grayscale images). Note that standard TV inpainting
directly iterates on the pixel values of the inpainting area
while our spline approach works on the spline coefficients as
its variables. Thus, although both algorithms use uniformly
distributed values, the starting guess strategies differ slightly. For
our second strategy, we calculate the mean value ωmean of the
image outside the inpainting area. In contrast to that, standard
TV sets the pixels inside the inpainting area to ωmean. Our spline
approach uses the starting values g = proxλG(ωmean1), where
1 is a vector of ones. Since splines form a partition of unity,
the coefficient vector ωmean1 generates a constant image with
value ωmean. Using proxλG, this vector is projected onto the
interpolation space.

Figure 4 illustrates the peak signal-to-noise ratio (PSNR) for
both starting strategies using 300 experiments on several images
(128 × 128 pixels) and inpainting areas after 100 iterations.
We use two types of inpainting areas: on the one hand 3% of
the pixels are randomly set to zero (left), on the other hand 3
scratches with a 4 pixel width are used (right). The mean PSNR
is calculated for cartoon-like images (top) and natural images
(bottom) separately.

We see that the mean value starting guess performs better for
all combinations of image and noise type. However, the effect
seems to be stronger for a small spline order. Also, random
missing pixel noise is more influenced by the starting guess
strategy than scratch inpainting. In Figure 5 a visual comparison
of both reconstructions is given. The “Lena” image shown in
Figure 3 with randomly missing pixels is inpainted with splines
of order 2; first with random starting guess and a second time
with mean value. The obtained PSNR values are 26.21 and
31.80, respectively.

4.1.2. Spline Order
Figure 4 already makes clear that a higher spline order yields
a better reconstruction. We analyze this in more details in the
next experiment. Again, we calculate the mean PSNR over 300
runs using 128 × 128 pixel images. This time, we plot the PSNR
against the percentage of unknown pixels (random inpainting
area) or scratch width (scratch inpainting area) for both image
types. Figure 6 shows the obtained PSNR for different spline
orders and standard TV as comparison. For both algorithms, we
use the optimal starting guess just discussed.

We can clearly see that a higher spline order in all cases
performs a better reconstruction. However, the difference is not

FIGURE 4 | Obtained PSNR values using random starting guess (white) or

mean value (black). (Left): random inpainting area (3% of the pixels); (Right):

scratches (3 scratches, 4 pixels width); top: cartoon-like images; bottom:

natural images.

FIGURE 5 | Reconstruction of Lena (see Figure 3) using splines of order 2

with random starting guess (left) and mean value strategy (right).

as strong for small inpainting areas, such as the randomlymissing
pixels. Moreover, the effect dimishes when going from order
3 to 4 which yield nearly similar results. Note that all spline
orders clearly outperform standard TV inpainting. Thus, we
recommend to use at least splines of order 3.

Figure 7 gives an example how the reconstruction quality can
increase if a higher order spline is used on natural images. The
scratched image was reconstructed using splines of order 2 and 3
obtaining a PSNR of 33.83 and 38.93. As a comparison, the PSNR
in case of standard TV is 30.67.

The runtime of our algorithm is shown in Figure 8. For all
performed experiments the time in seconds is plotted against
the size of the inpainting area in pixels. We ran the algorithm
on Windows 10 with 2.81 Ghz and 8 GB Ram using Matlab
R2018b. The graph shows a linear behavior for all spline orders
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FIGURE 6 | Obtained PSNR values for different spline orders and standard TV.

Left: random inpainting area; right: scratches; top: cartoon-like images;

bottom: natural images.

with growth depending on this order. However, for order 3 or
higher the system matrix is created using the B-spline recursion
formulae. This increases the runtime by a constant factor. Note
that we implemented the algorithm in this way to be flexible in
the spline order. When the order is fixed a direct creation of the
system matrix can be used and, thus, the overall runtime can
be reduced.

4.2. Numerical Examples: Inpainting Area
In this subsection we numerically demonstrate the
reconstruction quality of our method for different images
and varying inpainting areas. We follow the numerical setup of
[13, Figure 3.1] for text removal and [15, Figures 5.5, 5.6] for
hole filling and highly incomplete data. An exact comparison
is not possible since the detailed setup in [13, 15] is not exactly
specified, but the visual comparison shows similar reconstruction
quality. However, our method does not need a triangulation
of the image which does require a lot of extra memory [15].
We use images of size 256 × 256 pixels for all experiments in
this subsection.

Our first example is the removal of unwanted text in images.
In Figure 9 we compare the performance of TV reconstruction
and our spline approach of order 2 and 4 for an image covered
by text. This inpainting example is especially hard to solve since
the text covers many different regions of the image and crosses
edges. TV inpainting is not designed to cover such situations.
Using splines of order 2 we obtain an PSNR of 26.26. Increasing
the spline order to 4 improves the PSNR to 32.79. The PSNR of
standard TV inpainting is 26.69.

FIGURE 7 | Inpainting scratches: damaged image (top, left), reconstruction

using standard TV inpainting (top, right), and reconstruction using spline

inpainting of order 2 and 3 (bottom).

FIGURE 8 | Runtime of the algorithm for different spline orders plotted against

the inpainting area in pixels.

Next, we consider the hole filling problem, i.e., a large
inpainting area in the image. Naturally, this problem is
considerably more difficult when the inpainting area crosses
edges of the image as compared to the case when it does not.
We give an example of both these scenarios. Moreover, we also
combine our spline approach with a slightly different functional
by using a squared TV penalization, i.e., (13) using squared
absolute value. This functional should be more suitable for
large inpainting areas. In Figure 10 a monochromatic region
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FIGURE 9 | Removing text from Lena: text image (top, left), TV inpainting (top,

right), and spline inpainting using order 2 and 4 (bottom).

in the peppers image is missing. We use splines of order 3
for inpainting. We obtain an PSNR of 27.97 using normal
TV regularization and 41.93 using the squared penalty term.
Standard TV inpainting achieves a PSNR of 26.40. An example
of a more difficult scenario is given in Figure 11 where parts of
the phantom image have to be reconstructed. However, using our
spline approach the reconstruction quality increases significantly.
While standard TV inpainting only achieves a PSNR of 27, we
obtain a PSNR of 32.62 with order 4 splines and even 36.29 using
the squared functional. These two examples clearly demonstrate
the advantages of our spline approach.

As a last experiment we consider the problem of highly
incomplete data. We simulated the cases of 80% missing data
(following [15, Figure 5.6]) and 95%missing data. The results are
shown in Figures 12, 13. We use splines of order 3 and again
also test the squared TV functional. For 80% missing data we
achieve PSNR values of 25.41 (spline inpainting) and 24.34 (spine
inpainting with squared TV). Standard TV inpainting results in a
PSNR of 24.89. However, the squared functional gets more stable
when we increase the number of missing pixels. For 95% missing
data we obtain PSNR values of 16.29 (standard TV), 17.81 (spline
inpainting), and 18.76 (spline inpainting with squared TV). We
assume that in all cases a spline order of 4 or higher may even
obtain better results. However, as runtime and memory usage
scale (linear) with the number of unknown pixels, computational
costs for higher orders can increase significantly.

We observe from these experiments that for a large number of
missing data, a low spline order may no longer increase the PSNR
value. Thus, it is even more important to choose a spline order 3
or higher in these cases. Furthermore, more advanced functionals
can improve the results.

FIGURE 10 | Hole filling (smooth area): damaged image (top, left),

reconstruction using standard TV inpainting (top, right) and reconstruction

using spline inpainting of order 3 with TV norm (bottom, left), and squared TV

norm (bottom, right).

FIGURE 11 | Hole filling (including edges): damaged image (top, left),

reconstruction using standard TV inpainting (top, right) and reconstruction

using spline inpainting of order 4 with TV norm (bottom, left), and squared TV

norm (bottom, right).

4.3. Numerical Examples: Noisy Data
As a last example, we consider an image that is corrupted
by salt-and-pepper noise, i.e., some pixels are randomly set
to the minimal or maximal value. Since this noise deletes
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FIGURE 12 | Inpainting for 80% missing pixels: damaged image (top, left),

standard TV inpainting (top, right) and spline inpainting of order 3 with TV norm

(bottom, left), and squared TV norm (bottom, right).

FIGURE 13 | Inpainting for 95% missing pixels: damaged image (top, left),

standard TV inpainting (top, right) and spline inpainting of order 3 with TV norm

(bottom, left), and squared TV norm (bottom, right).

all information about the original pixel value, we can model
the reconstruction as inpainting problem where the inpainting
region is given by all pixels with minimal or maximal value. This
coincides with our random inpainting area model.

FIGURE 14 | Cartoon-like image corrupted by Gaussian and salt-and-pepper

noise (Left) and its reconstruction using spline inpainting with order 3 (Right).

FIGURE 15 | PSNR value obtained by spline inpainting with order 3 and

different parameters ε. The PSNR of the Gaussian noisy image is plotted

as comparison.

So far, we discussed noiseless data outside the inpainting
domain. Therefore, the operator G was chosen such that only
interpolating solutions were allowed. However, when dealing
with noisy images it is not unlikely that the image is corrupted
by several types of noise. Hence, we now use the relaxed model
(12). We can still use the primal-dual algorithm, but now with
the operator G(g) = ε

2‖B4∗g− f4∗‖22 and its proximity operator

prox
λG

(g) = (I+λεBT
4∗B4∗ )+(g+ λεBT

4∗ f4∗ ), (41)

where I is the identity matrix. Note that we cannot use the
relaxed model (12) to denoise the image far away from the
inpainting domain since the TV minimization is only performed
in a surrounding of the unknown pixels. Hence, for a good
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reconstruction we need to choose a higher spline order such that
the spline support enlarges. Moreover, a large constant ε should
be chosen, otherwise the solution of the relaxed model (12) is
nearly constant. A simultaneous denoising may be obtained by
expanding the TV term in model (12) to the complete image.
However, this will drastically increase the number of Gauss-
Legendre points used for the quadrature formula and, thus,
increase the computational complexity.

Figure 14 shows the result of spline inpainting with order
3 using the relaxed model on an image that was corrupted
by Gaussian and salt-and-pepper noise. The parameter ε is
chosen such that the best PSNR is obtained. This is illustrated in
Figure 15where the PSNR for different choices of ε is shown.We
notice that for too small as well as too large ε the reconstruction
quality decreases. Figure 14 shows the reconstruction for ε = 2.3
which leads to an PSNR of 26.03. As a comparison, the PSNR of
the noisy image is 18.33 in case of Gaussian and salt-and-pepper
noise, and 25.30 if only Gaussian noise is considered, i.e., this is
the PSNR outside the inpainting region.

5. CONCLUSION

We presented a new approach to model the discrete inpainting
problem using TV regularization and splines. The spline order
can be chosen adapted to the underlying image and inpainting
area. The advantages of this method were demonstrated in
numerical experiments. Especially, when the images are complex
and/or the inpainting domains are large, the reconstruction
quality can highly profit from the new concepts by choosing a
higher spline order. But also for cartoon-like images and low

spline orders the method returns reasonable results. As a slight

disadvantage, the new methods requires precalculation of the
spline basis, Greville abscissae and Gauss-Legendre points what
increases the runtime of the algorithm.

Although the method increases the reconstruction quality,
it is still based on TV minimization and, thus, cannot
overcome the known issues of TV inpainting completely.
Depending on the given situation other variations of the Spline
Inpainting Models 1 should be used. As already mentioned
in section 3.2, this can be useful if the considered functionals
depend on the function and its derivatives. Moreover, we want
to extend the method on more general domains. Depending
on the image, it might not be necessary to interpolate every
pixel which could be exploited by the use of non-uniform
knots (and interpolation points) and/or the combination with
hierarchical splines.
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