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Independent Component Analysis (ICA) method has been used widely and successfully

in functional magnetic resonance imaging (fMRI) data analysis for both single and group

subjects. As an extension of the ICA, tensorial probabilistic ICA (TPICA) is used to

decompose fMRI group data into three modes: subject, temporal and spatial. However,

due to the independent constraint of the spatial components, TPICA is not very efficient

in the presence of overlapping of active regions of different spatial components. Parallel

factor analysis (PARAFAC) is another method used to process three-mode data and can

be solved by alternating least-squares. PARAFAC may converge into some degenerate

solutions if the matrix of one mode is collinear. It is reasonable to find significant collinear

relationships within subject mode of two similar subjects in group fMRI data. Thus, both

TPICA and PARAFAC have unavoidable drawbacks. In this paper, we try to alleviate

both overlapping and collinearity issues by integrating the characters of PARAFAC and

TPICA together by imposing a non-Gaussian penalty term to each spatial component

under the PARAFAC framework. This proposed algorithm can then regulate the spatial

components, as the high non-Gaussianity can possible avoid the degenerate solutions

aroused by collinearity issue, and eliminate the independent constraint of the spatial

components to bypass the overlapping issue. The algorithm outperforms TPICA and

PARAFAC on the simulation data. The results of this algorithm on real fMRI data are also

consistent with other algorithms.

Keywords: fMRI, ICA, TPICA, PARAFAC, non-Gaussian, penalty term, multi-subject data, tensor decompositions

1. INTRODUCTION

ICA is one of the most popular methods to analyze fMRI single or group data especially
when the time courses are not available [1–4], such as the application of autism experiments
[5]. Unlike general linear model (GLM) [6], ICA is a more general and totally data-driven
method to decompose the mixed data into mixing matrix and source signals. One fundamental
prerequisite requirement of ICA is that the distributions of the independent source signals
must be non-Gaussian [7]. So under this assumption, because Gaussian variable has the largest
entropy among all random variables with equal variance, one popular algorithm called fastICA [7]
decomposes the data by projecting the data onto the unmixing directions, such that the projected
data have the maximum non-Gaussianity. Such unmixing directions of the inverse of the mixing
matrix are mutual orthogonal and can be calculated by the Newton algorithm. The projected data
form independent source signals. In the application of fMRI data (temporal × spatial), we usually
call these source signals spatial components.
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Many variants and improvements of ICA have developed in
the past decade [8]. In the application of fMRI, the data usually
have temporal-spatial information. We can use such information
as the reference or constraint to improve the accuracy and
robustness of the spatial components. The temporal information
can be the time courses of design matrix in the experiment
[9, 10]. The spatial information can be the atlas-defined masks
[11, 12] or the cortex based information [13]. In some situation,
the independent constraints are too strong to hold for some
correlated spatial components. Subspace ICA [14–16] divides
the spatial components into several groups and allows certain
correlation of the components within the same groups. Multi-
dimensional ICA [17] or topographic ICA [18] models the
dependence through the spatial structure of the fMRI data, such
as the neighboring voxels. Considering the sparsity character of
the spatial components of the fMRI data, we can add the sparsity
constraint to the fastICA to impose this character of the spatial
components [19].

Besides the above developments of ICA to improve the
accuracy and robustness of spatial components through the
characters of themselves, it is very natural to consider the
presence of the Gaussian noise in the fMRI data. The earlier work
in Hyvärinen [20, 21] used a joint likelihood or the Gaussian
moments to address this issue. Probabilistic ICA(PICA) [22]
is another way to generalize the noise free ICA to incorporate
the Gaussian noise. PICA assumes that the noise covariance is
isotropic so that PICA could use a similar formula comparing
with PPCA [23] to estimate and remove the noise before
decomposing the data.

FMRI data usually contains multiple subjects as a group
data. The heuristic way to process the group data is either
combining the results of each subject or taking the average of all
subjects. Beckmann and Smith [24] developed a three-mode ICA
algorithm named tensorial probabilistic ICA (TPICA), which is
suitable to decompose the group fMRI data into three modes:
subject × temporal × spatial. Basically, as an extension of the
PICA, TPICA not only decomposes fMRI data into the mixing
matrix and spatial components by PICA, but also continues to
decompose the mixing matrix to tensor product of time courses
and subject loadings. In TPICA, the mode of spatial components
has the priority to be processed, while the other two modes are
estimated by one-rank approximations of mixed matrix. Based
on TPICA, we can continue to refine the spatial components
modeling by Gaussian mixture model and divide the tensor
product of mixing matrix into different groups. This work has
been completed in Guo [25] and Guo and Pagnoni [26]. The
solution can be approximated by EM [27].

Parallel Factor Analysis (PARAFAC) is another popular
method that processes three-mode data [28–30] and is becoming
a new approach to process brain information and big data
[31, 32]. Unlike TPICA, three modes are equally processed
in PARAFAC. By the alternating least square (ALS) approach,
one mode is estimated by least-squares from observed fMRI
data while fixing other two modes. The three modes are
iterated and alternated until the algorithm reaches convergence.
PARAFAC does not require the independent constraint of
the mode to achieve the solutions. One important property

of PARAFAC is that the solution is unique under proper
conditions [28]. However because PARAFAC highly relies on the
effective decomposition of least-squares, it may converge to some
degenerate solutions if one mode of the data can not meet the
full rank requirement of the least-squares. Models with perfect
collinearity are not estimable because there is an infinite number
of solutions that could fit the data equally well. While in fMRI
data, it is reasonable to find significant collinear relationships
of the subject loadings mode within two similar subjects. In
addition, PARAFAC also may converge very slowly solved via
ALS [24] due to inaccurate estimation of the number of the spatial
components. Based on these reasons and some experiments, the
authors of TPICA [24] concluded that TPICA is more robust
and accurate than PARAFAC when it comes to estimating the
underlying spatial components.

However, TPICA assumes that the spatial components of
fMRI data are mutual independent. The contradiction is that it
is very common to observe the overlapping of active regions of
different spatial components in the spatial mode. In Stegeman
[33] andHelwig andHong [34], the authors noted that ICA is still
the most effective way to deal with two-mode fMRI data. While
in the three-mode group fMRI data, they argued that if fMRI
data has trilinear structure, PARAFAC can achieve the unique
decomposition under some proper conditions, such as having
corectly determined number of spatial components. Without
the consideration of the independent constraint among spatial
components, PARAFAC can outperform TPICA in the presence
of overlapping of activate regions in the spatial mode.

Both TPICA and PARAFAC have advantages and
disadvantages in processing fMRI data. Although PARAFAC
performs better in overlapping issues, it may suffer from
collinearity issues, which are very common between similar
subjects. Similarly, while TPICA is not affected by collinearity
issue of the subject mode very much, it is not very effective to
solve overlapping issues in three-mode fMRI data. Both of them
cannot process three-mode fMRI data perfectly. However, if
we can combine the advantages of PARAFAC and TPICA and
eliminate their disadvantages, we may figure out a way to process
fMRI group data to avoid both collinearity and overlapping
issues. One typical method is to impose some constraints or
penalty terms on three modes of PARAFAC [35, 36] to avoid the
degenerate solutions. Alternatively we can combine PARAFAC
and ICA by imposing the independent constraints in PARAFAC
[37]. However, in the application of fMRI, one of the main
tasks is to locate the active regions of the spatial components.
We may only need to impose the constraints on each spatial
component of the spatial mode [38]. In papers Martínez-Montes
et al. [39, 40], the authors proposed a new penalty based on the
information entropy for the spatial mode of the constrained
PARAFAC analysis of resting EEG that allowed the identification
in time, frequency and space of those brain networks with
minimum spectral entropy.

In this paper, inspired by the method of penalty based
PARAFAC, via imposing a non-Gaussian penalty term for
the spatial components within the PARAFAC, we propose
an algorithm that combines advantages and eliminates
disadvantages of both TPICA and PARAFAC simultaneously. In
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the case of collinearity issues, the degenerate solution of spatial
components can be alleviated because the non-Gaussian penalty
term can regulate each spatial component to be as non-Gaussian
as possible. Meanwhile, this proposed algorithm can overcome
the overlapping issue because it is still based on the PARAFAC,
which does not need the independent constraint of the spatial
components. Experiments of simulation data under different
situations show that the proposed algorithm improves both
accuracy and robustness compared with TPICA and PARAFAC.
The results of this proposed algorithm on real fMRI data are also
consistent with other methods.

This paper is organized as follows: In section 2, we will
briefly review the related necessary algorithms. Then, we will
propose our own non-Gaussian penalized algorithm in section 3.
We design a series of experiments in section 4. The simulation
and real data results will be presented in section 5. Finally, in
section 6, we will discuss this proposed algorithm and potential
future improvements.

2. MODEL REVIEW

In this section, we briefly describe the related models for
processing group fMRI data. More detailed descriptions can be
found in Guo and Pagnoni [26] and Bro [28], for example.
Suppose that the observed fMRI group data Y consists of N
subjects. Each subject contains V voxel samplings on T time
points. Under the assumption that fMRI data has the trilinear
structure, Y(V × T × N) can be represented as a combination
of three outer products:

Y =

K
∑

k=1

ak ⊗ bk ⊗ ck, (1)

whereK is the number of components and⊗ is the outer product.
Vectors ak ∈ RV is the spatial component, bk ∈ RT is the time
course, and ck ∈ RN is the subject loading. For this three-way
data, PARAFAC is one popular algorithm to decompose the data
Y into three modes.

We can reshape the matrix Y to two dimensions via one mode
[26, 28], such as:

YA = (C⊙ B)At = MAt , (2)

where AV×K = [a1a2 · · · aK], BT×K = [b1b2 · · · bK], CN×K =

[c1c2 · · · cK]. C ⊙ B = ((Bdiag(c1))
t , · · · , (Bdiag(cK))

t)t denotes
Khatri-Rao product of C and B. Using this format, we can deem
A as K independent spatial components of spatial mode andM as
the mixing matrix. Then this equation becomes an ICA problem
which is to decompose fMRI group data into mixing matrix M
and spatial mode A.

It is not trivial to generalize ICA to group subjects analysis,
naturally because different subjects in the group do not share the
same independent components. Temporal concatenation of each
subject data is the most popular way to organize the group data.
Under this scheme, the group data can be easily processed as a
single subject data and solved using same ICA method in each

iteration. Then, we can use some back-reconstruction methods
[4] to rebuild each subject specific modes.

2.1. Tensorial PICA (TPICA)
We can use negentropy to characterize the non-Gaussianity of
spatial components. For a random vector a, negentropy of a is
defined as in Hyvarinen [7]:

J(a) = H(aGauss)−H(a), (3)

where H(a) = −
∫

f (a)logf (a)da is the differential entropy of a,
aGauss is Gaussian variable with zeromean and unit variance. One
of the most important properties of the entropy is that a Gaussian
variable aGauss has the largest entropy than any other variables
with the same variance. Thus, negentropy of one random variable
a is always negative and an indicator the non-Gaussianity of a. It
is not easy to calculate the value of negentropy using formula (3).
In general, we can estimate the negentropy approximately using
this formula [7]:

J(a) ∝ [E{G(a)} − E{G(aGauss)}]
2, (4)

where G is any nonquadratic function.
Without loss of generality, we assume M is a square matrix

after pre-whitening step. FastICA [7] decomposes the data by
projecting the data onto the rows ofM−1 such that the projected
data ak have the maximum negentropy. M−1 is an orthogonal
matrix and can be calculated by Newton algorithm. FastICA is
noise free and needs squared mixing matrix. Probabilistic model
[22] PICA is one way to incorporate the Gaussian noise:

YA = MAT + E, (5)

where E denotes concatenated isotropic Gaussian noise matrix
and time series data at each voxel follows N(0, σ 2I).

Let Ỹ = UK(N3K)
1
2VK be its rank-K singular value

decomposition (SVD). By using the property of equal
variance at both sides, we can obtain the explicit solution
of Equation (5) [22].

M̃ = UK(3K − σ 2IK)
1
2QT , (6)

σ̃ =
1

NT − K
6NT

i=K+1λi, (7)

where λi denotes the diagonals of 3, and Q denotes the rotation
matrix coming from an ICA algorithm.

The TPICA algorithm continues to model M by the Khatri-
Rao product of subject mode C and temporal mode B. At first,
TPICA uses PICA to estimate the spatial mode A and mixing
matrixM. Then, TPICA rebuilds the temporal components B and
subject loadings C from mixing matrix M. If we reshape the ith
columnM as an N × T matrixmi and calculate its SVD:

mi = Um3mV
T
m, (8)

then we can approximate ci ⊙ bi ≈ mi by the rank-
1 approximation of mi. TPICA iterates these two steps by
initializing the input of PICA first and then using the
approximation results for the next step until convergence.
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2.2. PARAFAC
Harshman [29] proposed the PARAFAC method for
decomposing the three-mode data. The goal of PARAFAC
is to minimize the following error:

A,B,C = argminA,B,C ‖ Y −

K
∑

k=1

ak ⊗ bk ⊗ ck ‖
2 . (9)

PARAFAC treats all three modes equally and does not
incorporate any spatial or temporal information. This means that
PARAFAC itself does not restrain the independence of the spatial
components, which is one key constraint in TPICA.

The most attractive feature of PARAFAC is the uniqueness of
its solution under the proper conditions [28]. Regardless of the
scaling, the decomposition of A,B,C is unique if

kA + kB + kC ≥ 2K + 2, (10)

where k is the Kruskal rank or k-rank of the matrix, which is
the largest number k such that every subset of k columns of this
matrix is independent.

Alternating Least Squares (ALS) is the basic method to solve
this problem. Actually, ALS iterates least-square estimation for
one of A,B,C while fixing the other two matrices. The iterative
pseudo code is as following:

A = YAZ(Z
TZ)−1 where Z = C⊙ B,

B = YBZ(Z
TZ)−1 where Z = C⊙ A,

C = YCZ(Z
TZ)−1 where Z = B⊙ A,

(11)

where Y• is the reshape of Y according to the modes.
ALS is a very attractive algorithm for solving PARAFAC

because it ensures an improvement of the solution in each
iteration. It will converge to the global minimum in most well-
behaved problem [28]. A common stopping criterion is to stop
iterations when the relative change between two iterations is less
than a predefined small value.

PARAFAC is sensitive to the estimated number of source
signals and the rank of the matrices of three modes. Some
constraints can be added to PARAFACmodel to avoid degenerate
solutions. In some applications, imposing the related meaningful
constraint can improve the accuracy and interpretation of the
solutions. Without loss of generality [38], if we want to add
one penalization P(A) on the mode A, we can modify the first
equation from formula (11) as:

Ã = argmin(‖ YA − ZAT ‖2 +λP(A)). (12)

In the formula (12), the penalty term is restricted on the whole
matrix A. However, in the application of fMRI data, we only
want to regulate each spatial component which is the column a
of A. We can modify formula (12) to impose penalty on each ai,
column of A.

Ã = argmin(‖ YA − ZAT ‖2 +λ6K
i=1P(ai)). (13)

Here the positive penalty parameter λ balances the weights of
two terms. More importantly, this penalized PARAFAC will still
hold the property of convergence if we could make sure the
solution of the object function (13) can be improved in each
iteration as well. With the penalty, PARAFAC no longer treats
the modes equally any more. It can incorporate the related
information into one specific mode to improve the quality of the
corresponding components.

3. PROPOSED NON-GAUSSIAN
PENALIZED PARAFAC

In the ICA analysis of fMRI data, the fundamental assumption
is that the components of spatial matrix A follow non-Gaussian
distribution. The core of the fastICA algorithm is to find a
direction to project fMRI data Y so that the projected spatial
component a is as non-Gaussian as possible. In a similar way,
inspired by formula (13), we can impose the non-Gaussian
penalty on each column a of spatial components A to increase
their non-Gaussianities. On the other hand, non-Gaussianity can
be approximated by negentropy. Thus, we can use the reciprocal
of negentropy of aj to form the penalty term P(aj). Therefore, in
order to achieve minimal value of object function (13), aj needs
to be considered as non-Gaussian signal while approaching the
least square estimates. As for the collinearity issue in the subject
component, the possible degenerate solution of ALS could be
avoid by using this penalty term as well.

We can decompose the product of two matrices A and Z to
the summation of k products of their corresponding columns
as follows.

‖ YA − ZAT ‖ +λ6K
i=1P(ai)

= ‖ YA − 6K
i=1,i6=jzia

T
i − zja

T
j ‖ +λ6K

i=1,i6=jP(ai)+ λP(aj)

= ‖ Yj − zja
T
j ‖ +Pj + λP(aj),

(14)
where zj is jth column of Z, Yj = Ya − 6K

i=1,i6=jzia
T
i , and

Pj = λ6K
i=1,i6=jP(ai). The solution of column aj by least-squares

is âj =
YT
j zj

zTj zj
. We can iterate this procedure to estimate matrix

A until it converges. We can have the following lemma with a
similar proof shown in the paper [38].

Lemma 1.Minimization task of function related to aj:

min ‖ Yj − zja
T
j ‖ +Pj + λP(aj) (15)

is equivalent to minimization task of function related to aj:

min ‖ aj − âj ‖ +λ̄P(aj), (16)

where âj is least-squares solution
YT
j zj

zTj zj
and λ̄ = λ

zTz
.
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Proof. Let âj =
YT
j zj

zTj zj
. Then

argminaj ‖ Yj − zja
T
j ‖ +Pj + λP(aj)

= argminaj ‖ (Yj − zjâj)+ zjâj − zja
T
j ‖ +Pj + λP(aj)

= argminaj constant+ zTj zj ‖ aj − âj ‖ +λP(aj)

= argminaj ‖ aj − âj ‖ +λ̄P(aj),

(17)

where λ̄ = λ

zTz
.

To minimize object function (16) is equivalent to increase the
negentropy of each spatial component aj and keep the regulated
component aj not too far away from their initial value âj.
However, we must standardize vector aj before we substitute aj
into the formula of negentropy [7].

Lemma 2.Minimization task of function related to aj

min ‖ aj − âj ‖ (18)

is equivalent to minimization task of function related to aj:

min ‖ āj − ¯̂aj ‖, (19)

where āj =
aj−mean(aj)

std(aj)
, ¯̂aj =

âj−mean(aj)

std(aj)
.

Proof

argminaj ‖ āj − ¯̂aj ‖

= argminaj ‖
aj−mean(aj)

std(aj)
−

âj−mean(aj)

std(aj)
‖

= argminaj ‖ āj − ¯̂aj ‖ ∗ 1
std(aj)

= argminaj ‖ aj − âj ‖ .

(20)

After combing all these equivalent functions, we can convert
object function (12) into the following non-Gaussian
penalized formula:

min ‖ āj − ¯̂aj ‖
2 +λ̄ 1

(E(G(āj)−E(G(v)))2
, (21)

where v is Gaussian signal with zero mean and unit variance,
G is a nonquadratic function, G(u) = 1

p log cosh(pu) and its

derivative g(u) = tanh(pu), where p = 1.
It is difficult to find a closed-form solution of function (21).

Here we use backtracking gradient descent algorithm to find the
local minimum of function (21). The derivative of the object
function (21) for āj is the deepest increasing direction d.

d = 2(āj − ¯̂aj)−
2λ̄g(āj)

V(E(G(āj))− E(G(v)))3
. (22)

Choose the âj as the initial value of aj and move the āj slightly
along the negative direction d by step size α to decrease the
value of object function (21). We may need to shrink the step
size α by γ if necessary using γ ∈ (0, 1). Afterward, we need
to re-standardize the new value of āj and move it again along
with the current new direction d. Iterate this procedure until the
difference between previous d and current d are very close. Here
is the pseudocode of this backtracking line search algorithm:

Choose α > 0, γ ∈ (0, 1).

Repeat until the value of object function (21) is reduced by new āj ,

where āj =
¯̂aj + α ∗ d

norm(d)
, α = γ ∗ α.

This proposed algorithm can overcome the overlapping issue
because it is still based on the PARAFAC framework, which does
not need the independent constraint of the spatial components.
However, the difference is that under this proposed algorithm
framework, three modes are no longer equally processed
anymore. Spatial mode will be calculated column by column and
each column will be regulated by non-Gaussian penalty.

Now, we are ready to outline the proposed algorithm.

Initialization:

1. Reshape three-dimensional Y to two-dimensional Ya,Yb,Yc.

2. Initialize A,B,C, η1, η2, η3, ǫA, ǫd , ǫY .

Iterative Procedure:

1. B = YbZ(Z
TZ)−1 where Z = C⊙ A

2. C = YcZ(Z
TZ)−1 where Z = B⊙ A

3. First Sub Iterative Procedure. Set column number j = 1.

(Calculate columns aj of A one by one.):

3.1 âj = Yjzj (z
T
j
zj )

−1 where zj is jth column of Z = C⊙ B

3.2 Second Sub Iterative Procedure.

(Non-Gaussian Penalty of aj ):

3.2.1 Calculate aj by backtracking line search.

3.2.2 Calculate η1 =
norm(previous d)−norm(d)

norm(d)
. If η1 > ǫd , return to step

3.2.1. Otherwise continue to step 3.3.

3.3 If j = K, continue to step 3.4. Otherwise set j = j + 1 and return to

step 3.1.

3.4 Calculate η2 =
norm(previous A)−norm(A)

norm(A)
. If η2 > ǫA, set j = 1 and

return to step 3.1. Otherwise continue to step 4.

4. err = Ya − ZAT , Calculate η3 =
norm(previous err)−norm(err)

norm(err)
. If η3 > ǫY ,

return to step 1. Otherwise stop this algorithm.

3.1. Convergence Analysis
This proposed algorithm is composed of three nesting loops.
The first loop is PARAFAC framework. The second loop is to
obtain least-squares solution of each component aj of matrix A.
The third loop is to optimize the current component aj using
the non-Gaussian penalty. Therefore, this algorithm calculates
three relative errors η1, η2, η3 inside each loop to compare with
predefined threshold parameters ǫd, ǫA, ǫY . If all relative errors
ηi, i = 1, 2, 3 are less than predefined parameter ǫi, i = 1, 2, 3, this
algorithm converges to a stable decomposition of fMRI data Y .
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ALS will converge in most well-behaved problem if we can
ensure that the solution can be improved in each iteration [28].
In the third loop, we use backtracking line search to ensure that
the new column aj can reduce the value of the object function
(21). In the first and second iterations, we all apply the alternating
method to optimize each component matrix or each column of
one matrix A via ordinary linear square algorithm. Thus, both
in theoretical analysis and following practical experience, our
proposed algorithm converges to a stable decomposition of Y .

3.2. Parameters Selection
Multiple parameters are needed to be defined properly including
penalty parameter λ, step size parameter α, γ , three threshold
parameters ǫd, ǫA, ǫY , etc. Appropriate values of these paraments
are needed to lead to a successful decomposition. We use the
grid search method to choose the best combination of values of
these parameters.

We set ǫY as 1e − 6, which is same as the
default value of ǫ used in the convergence criterion
of PARAFAC from the N-way toolbox, available at
www.models.life.ku.dk/source/nwaytoolbox/. We define 0.9
as the value of γ because we do not want to shrink the step size
parameter toomuch in each loop. Themost important parameter
among them is the penalty parameter λ because λ is the key to

balance the non-Gaussian penalized weight and the similarity
between initial component âj and improved component aj. Here
are our initial choices for these parameters: λ = [0.5, 1, 5, 10];
α = [0.1, 0.2]; ǫd = [1e− 2, 1e− 3, 1e− 4]; ǫA = [1, 0.9]. Then,
we run the algorithm for each combination of these values on a
simulated data in next section. By comparing the performances
of these combinations in a such grid search way, we define λ as
1, α as 0.1, ǫd as 1e− 3, and ǫA as 1.

4. EXPERIMENTAL DESIGN

We verify the algorithm on both simulation data and real fMRI
group data. For simulation data, we compare the results of four
algorithms (TPICA, PARAFAC, Back Construction Algorithm
[41], and proposed Non-Gaussian Penalized PARAFAC) with the
ground truth design. For the real fMRI group data, we compare
the result of our algorithm with the result in paper [41].

4.1. Simulation Data
We generate four two-dimensional matrices of size 46∗56 to
represent slices of brain voxels. Each matrix simulates one spatial
component (SC) and contains an active region with size 11∗16.
In Figures 1A–D shows these four simulated spatial components
and their active regions. The voxel value of the background is 0.

FIGURE 1 | Simulation data of spatial components(SC) and time courses(TC). (A) SC 1. (B) SC 2. (C) SC 3-low overlapping. (D) SC3 high overlapping. (E) SC2&3

low overlapping. (F) SC2&3 high overlapping. (G) TC1. (H) TC2. (I) TC3.
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The voxel value at the active region is randomly sampled from
uniform distribution [0,1]. In order to show the different effects
of low and high overlapping SCs, we design two copies of the
third SC. The one in Figure 1C is the low overlapping case of
SC3 and SC2, while the one in Figure 1D is the high overlapping
case of SC3 and SC2. Two overlapping results are demonstrated
visually in Figures 1D,E. If we define the ratio between the shared
region and the active region as the overlapping rate, the rate of
the low one in Figure 1E is 20% and the rate of the high one in
Figure 1F is 70%. SC1, SC2 and one SC3 together form thematrix
A with three spatial components.

We simulate time courses (TC) using the convolution of the
stimulus functions with the hemodynamic response function
(HRF) which is generated by SPM function1 spm_hrf(). We use
block design pattern and a single peaked function as the stimulus
functions for TC2 and TC3, respectively. TC1 is sampled from
time course of real fMRI data [41]. Each TC contains 150 time
points and is shown in Figures 1G–I, respectively. These three
TCs together form the matrix B with three times courses.

In order to verify the advantage of our proposed algorithm in
processing collinearity issue of the subject loading in group ICA,
we provide two subject loading matrices C in Equation (23). C1

is a full rank squared matrix with a low condition number which
represents a low collinearity case, while the condition number of
C2 is much higher, which represents a high collinearity case. Each
matrix represents 10 different subjects.

C1 =
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1 3 3
1 1 3
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. (23)

We also consider the noise effect to evaluate the robustness of the
algorithm. We define the SNR of the data Y as

SNR =
‖(C⊙ B)AT‖F

‖E‖F
, (24)

where E is a matrix with same shape of Y. Each element of E is a
random Gaussian noise. We update noised Y using Y = Y + E.
The mean of E is 0. The standard deviation σ of E has two values:
0.2 and 0.5. Based on the formula (24), the corresponding values
of SNR are about 1.5 and 0.6. Note that a low SNR value means
high noise level.

In Table 1, we design eight different tests against three
indicators: noise level, overlapping level and collinearity. Each
indicator has two contrasting values: low and high. Noise
level is evaluated by SNR of the data Y , overlapping level
is evaluated by overlapping rate of the shared region, and

1SPM.https://www.fil.ion.ucl.ac.uk/spm/

TABLE 1 | Experimental List of Simulation.

Noise level Overlapping level Collinearity level

(SNR) (overlapping rate) (condition number of C)

Experiment A Low (1.5) High (70%) High (117)

Experiment B Low (1.5) High (70%) Low (11)

Experiment C Low (1.5) Low (20%) High (117)

Experiment D Low (1.5) Low (20%) Low (11)

Experiment E High (0.6) High (70%) High (117)

Experiment F High (0.6) High (70%) Low (11)

Experiment G High (0.6) Low (20%) High (117)

Experiment H High (0.6) Low (20%) Low (11)

It contains three indicators: noise level, overlapping level and collinearity level. Each of

them has both low value and high value.

FIGURE 2 | Paradigm used for fMRI experiment. The checkerboards were

showed at the high bar period and hid at the low bar period [41].

level of collinearity is evaluated by the condition number of
subject loading matrix C. In the next section, we will show
the comparison method of these three algorithms and the
experimental results.

4.2. Real fMRI Group Data
We use the data from paper [41] completed at Johns Hopkins
University. Data from nine normal subjects were acquired on a
Philips 1.5T Scanner. Functional scans were acquired with an
echo planar sequence (64× 64, flip angle = 90, TR = 1 s, TE
= 39 ms) over a 6-min period for a total of 360 time points.
A visual paradigm was designed in which an 8 Hz reversing
black and white checkerboard was presented intermittently
in the left and right visual fields. The checkerboards were
shown for 30 s and were resumed after 60 s. Subjects were
focusing on a central cross on the checkerboard during the
entire 6 min. The paradigm is depicted in Figure 2. We only
have partial data of three subjects instead of nine subjects in
this experiment.

5. RESULTS

5.1. Simulation Data
We compare four algorithms including TPICA, PARAFAC,
Back Construction Algorithm [41], and the proposed Non-
Gaussian Penalized PARAFAC. In experiments A-H, we run each
algorithm ten times and compare results of SC with the ground
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truth SC in Figure 1 using congruence coefficient ρ [42], where

ρ =
aTb

√

(aTa)(bTb)
, given column vectors a, b. (25)

Here the value ρ can be used to measure the similarity between
the restored component and the truth component. Table 2 shows
the means and variances of ρ of spatial sources and Table 3

shows the means and variances of ρ of time courses of each
algorithm in each experiment. Figure 3 draws the content of
Table 2 in the format of error bars. Then we can compare these
four algorithms intuitively.

In Figure 3, the results of four algorithms in each
experiment are showed in one separate subfigure. The
horizontal axis shows four algorithms in the order of
TPICA, PARAFAC, Back Construction Algorithm, and the
proposed algorithm from left to right with the color of
green, blue, red, and magenta, respectively. The vertical axis
represents the value of ρ. Four vertical error bars represent
the intervals of one standard deviation away from the
means of ρ.

From Figure 3, it is clear to see that all the assumptions in
the previous sections are verified in these eight experiments.
(1) The proposed algorithm is the best one compared with
TPICA and PARAFAC in all eight experiments. Not only is the
mean value of proposed algorithm the highest, but the standard
deviation of the proposed algorithm is also the smallest. A
higher mean value means a better decomposition, and a lower
standard deviation indicates a more stabilized algorithm. Thus,
this proposed algorithm overcomes both the collinearity and
overlapping issues in this simulation. (2) High noise level can
cut down the performances of all algorithms. Experiments (a)–
(d) with high level of noise are generally better than experiments
(e)–(h) with low level of noise. If the noise level is set to
be even higher, it would be very difficult for any algorithm
to decompose the data into meaningful components. (3) High
collinearity level can dramatically reduce the performance of
PARAFAC. Experiments (c) and (g) are typical cases with high
collinearity level and low overlapping level. We can see that,
in these two experiments, PARAFAC permorms the worst and
is not very stable. Adding a non-Gaussian penalty term on the
spatial mode can conquer this intrinsic drawback of PARAFAC.
(4) High overlapping level can decrease the performance of
TPICA although it is still a quite robust algorithm. Experiments
(b) and (f) are testing on high overlapping and low collinearity
level. TPICA works clearly the worst this time, especially in
experiment (d). The independent requirements of ICA hinder
any modifications based on itself to deal with the overlapping
issue. Thus, we need to modify the algorithm based on PARAFAC
in order to avoid this issue.

Figures 4–6 show the decomposition results of the first run
of experiments A, B, and C. These figures again verify the
above conclusions visually. The time courses in Figures 4–6 are
standardized by subtracting their means and divided by their
standard deviations. Figure 4 shows the results in the case of
low noise, high overlapping and high collinearity. We see that
the active regions of SC2 and SC3 of TPICA can not detach

TABLE 2 | Experimental Results of the mean and std of ρ of spatial sources in all

four algorithms.

TPICA PARAFAC Back

construction

Non-Gaussian

penalized

PARAFAC

Mean(Std) of Congruence Coefficient ρ of Spatial Sources

A 0.9643 (0.0101) 0.8920 (0.0648) 0.8882 (0.0103) 0.9837 (0.0033)

B 0.9630 (0.0103) 0.9981 (0.0001) 0.8870 (0.0092) 0.9982 (0.0001)

C 0.9970 (0.0005) 0.9369 (0.0499) 0.9523 (0.0587) 0.9905 (0.0087)

D 0.9969 (0.0004) 0.9981 (0.0001) 0.9503 (0.0592) 0.9982 (0.0001)

E 0.9581 (0.0079) 0.9264 (0.0669) 0.8620 (0.0512) 0.9756 (0.0060)

F 0.9570 (0.0088) 0.9884 (0.0006) 0.8708 (0.0204) 0.9897 (0.0005)

G 0.9886 (0.0006) 0.9084 (0.0797) 0.9121 (0.0830) 0.9721 (0.0220)

H 0.9860 (0.0009) 0.9880 (0.0006) 0.9523 (0.0055) 0.9895 (0.0005)

This table shows the proposed Non-Gaussian Penalized PARAFAC performs best in all

eight experiments and is the most robust one in general.

TABLE 3 | Experimental Results of the mean and std of ρ of time courses in all

four algorithms.

TPICA PARAFAC Back

construction

Non-Gaussian

penalized

PARAFAC

Mean (Std) of Congruence Coefficient ρ of Time Courses

A 0.9619 (0.0230) 0.8982 (0.0685) 0.8198 (0.0068) 0.9923 (0.0013)

B 0.9540 (0.0256) 0.9999 (0.0000) 0.8169 (0.0079) 0.9999 (0.0000)

C 0.9971 (0.0010) 0.9460 (0.0537) 0.8346 (0.0721) 0.9893 (0.0247)

D 0.9973 (0.0009) 0.9999 (0.0000) 0.8252 (0.0829) 0.9999 (0.0000)

E 0.9646 (0.0240) 0.9387 (0.0662) 0.7996 (0.0711) 0.9837 (0.0242)

F 0.9693 (0.0210) 0.9994 (0.0001) 0.8126 (0.0082) 0.9994 (0.0001)

G 0.9968 (0.0010) 0.9322 (0.0568) 0.7964 (0.1098) 0.9626 (0.0543)

H 0.9962 (0.0012) 0.9994 (0.0001) 0.8565 (0.0060) 0.9995 (0.0000)

This table shows the proposed Non-Gaussian Penalized PARAFAC performs best in all

eight experiments and is the most robust one in general.

from each other very well. One active region of SC includes
a light shaded region from another SC. Figure 5 shows the
results in the case of low noise, high overlapping and low
collinearity. We can see that TPICA performs worst under this
situation. The results of time course in TPICA are not very
consistent with the truth values and the spatial components
in TPICA still have obvious shaded regions around the truth
components. Figure 6 shows the results in the case of low noise,
low overlapping and high collinearity. This time both TPICA and
the proposed algorithm outperform PARAFAC. PARAFAC leads
to the degenerate solutions. The first spatial component in the
results of PARAFAC is totally meaningless.

5.2. Real fMRI Group Data
We embed our algorithm into the GIFT package2. The final
results of the algorithm are summarized in Figure 7, which

2GIFT. http://mialab.mrn.org/software/gift/index.html
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FIGURE 3 | Error Bars of the Experimental Results. The colors of TPICA, PARAFAC, Back Construction Algorithm, proposed Non-Gaussian Penalized PARAFAC from

left to right are green, blue, red, and magenta. The vertical axis represents the mean of ρ. The vertical colorful bar represents one std away from the mean value. (A)

Experiment A. (B) Experiment B. (C) Experiment C. (D) Experiment D. (E) Experiment E. (F) Experiment F. (G) Experiment G. (H) Experiment H.

is generated by GIFT. The threshold value is 2.0 and the
slice range is -52:4:8. The activated spatial map shows right
visual cortex (blue), left visual cortex (red); a transiently task-
related component (TTR, green) in bilateral occipital/parietal
cortex. These results are consistent with the results in Calhoun
et al. [41], while here we only use three subjects instead
of nine.

The head part of Figure 7 shows three time courses of the
below components. The blue one is the time course of right
visual cortex and the red one is the time course of left visual
cortex. The peaked and flat periods of two time courses are
equivalent to the paradigm in Figure 2 used to control the
showing and disappear of the checkerboards in the left and right
visual fields.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 August 2019 | Volume 5 | Article 40

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Liang et al. Analysis for fMRI Data

FIGURE 4 | Experiment A in the case of low noise, high overlapping and high collinearity. (A) TPICA. (B) PARAFAC. (C) Proposed Non-Gaussian penalized PARAFAC.

6. DISCUSSION

In this paper, we successfully alleviate both overlapping and

collinearity issues aroused by ICA and PARAFAC by adding

a non-Gaussian penalty term to the spatial mode calculation

of the PARAFAC. This algorithm can also be deemed as the
combination of the characters of ICA and PARAFAC.

The strategy of the fastICA is to project fMRI data onto
several orthogonal directions to maximize the non-Gaussianity
of the projected data, which are the spatial components.
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FIGURE 5 | Experiment B in the case of low noise, high overlapping and low collinearity. It shows TPICA suffers from the overlapping issue. (A) TPICA. (B) PARAFAC.

(C) Proposed Non-Gaussian penalized PARAFAC.

So the assumption of non-Gaussianity is the key character
of the spatial components to identify and extract them.
The potential degenerate solutions of PARAFAC can be
regulated toward the directions (22) of high non-Gaussianity
to maximize the proposed object function (21). By this
non-Gaussian penalty term, the degenerate solutions could
be improved to a good solutions. On the other hand,
in the overlapping situation, mutual orthogonal directions
calculated by ICA cannot distinguish the correlated spatial
components very well. This proposed algorithm is still based

on the PARAFAC framework, which does not need the
independent constraint of the spatial components. Thus,
it can separate the correlated components better than the
ICA method.

This proposed algorithm uses the result of fastICA as the
initial input. In this way, the algorithm can converge faster
and run more robustly than random initial values. Additionally,
this better result obtained by this proposed algorithm cannot
achieved by either TPICA or PARAFAC no matter how small the
tolerance value of the convergence is, how large the maximum
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FIGURE 6 | Experiment C in the case of low noise, low overlapping and high collinearity. It shows PARAFAC suffers from high collinearity issue. (A) TPICA. (B)

PARAFAC. (C) Proposed Non-Gaussian penalized PARAFAC.

iteration time is, and how exact the initial value is. In other words,
the improvement of our proposed algorithm is because of the
intrinsic modification of the penalty term and cannot be achieved
by parameters setting of the other two algorithms. PARAFAC
is not robust even when we use the results of TPICA as the
initial value.

However, this proposed algorithm is more time consuming
than other algorithms due to the calculations of the
penalty term and the tensor product. In the future, we can
apply the modified PARAFAC using Hadamard products
instead of Khatri-Rao products for large-scale problems
to overcome this issue [43, 44]. The spatial smoothness
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FIGURE 7 | Result of the real fMRI data.

and the dependency between spatial and temporal are not
considered in this paper, since these two topics are not the
primary concerns in designing this algorithm though they
are both very interesting topics and can be a problem for
further consideration.
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