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This paper proposes a method for estimating the cluster matrix in the Gaussian mixture

framework via Semi-Definite Programming. Theoretical error bounds are provided and a

(non linear) low dimensional embedding of the data is deduced from the cluster matrix

estimate. The method and its analysis is inspired by the work by Guédon and Vershynin

on community detection in the stochastic block model. The adaptation is non trivial

since the model is different and new Gaussian concentration arguments are needed. Our

second contribution is a newBregman-ADMM type algorithm for solving the semi-definite

program and computing the embedding. This results in an efficient and scalable algorithm

taking only the pairwise distances as input. The performance of the method is illustrated

via Monte Carlo experiments and comparisons with other embeddings from the literature.

Keywords: semi-definite program (SDP), clustering (un-supervised) algorithms, Gaussian mixture (GM) model,

embedding, convex relation

1. INTRODUCTION

Low dimensional embedding is a key to many modern data analytics. Data are better understood
after choosing the best coordinates, i.e., embedding, and extracting the main features. Based on a
compressed description, the data can then be projected, visualized, or clustered more reliably and
efficiently. The goal of the present paper is to present an efficient technique for joint embedding
and clustering, based on pairwise affinity analysis and reliable convex optimization.

Combining the goals of reducing dimensionality and clustering in a principled manner is
challenging and novel, but also draws on ideas from spectral clustering [1, 2], and Semi-Definite
embedding, as in Linial et al. [3]. The main idea behind such methods, is to approximately preserve
the pairwise distances in the dataset, with the goal of discovering, via an appropriate coordinate
change, the correct parameterization of the potentially low dimensional non-linear manifold that
essentially contains the data. An example of non-linear low dimensional embedding, such as
Diffusion Maps, is shown in Figure 1.

Apart from this previous works, standard clustering techniques usually start from already
embedded data as obtained after e.g., PCA processing. Said otherwise embedding and clustering
are often considered as completely separate tasks. Based on embedded data, mainstream clustering
techniques are non-parametric (as K-means, K-means++, etc. [4, 5]) and model based clustering
(as Mixture Models [6]). These approaches often rely on non-convex optimization such as Lloyd’s
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FIGURE 1 | The mapping of a 3D cluster using Diffusion Maps from the Matlab package drtoolbox https://lvdmaaten.github.io/drtoolbox/. (A) Original 3D Cluster,

(B) Mapped data using Diffusion Maps.

algorithm and Expectation-Maximization [7, 8]. However, even
careful implementation of these algorithms leads to some
uncertainty as to whether one has finally obtained a relevant
optimizer. In Mixture Model-based clustering, one also faces the
issue of degeneracy [9]. As a result, a growing body of researched
has emerged lately concerning the study of convex relaxation
for the clustering problem [10, 11], etc. Other approaches such
as ClusterPath [12] have also been proposed (see [13–15]) for
interesting extensions. One drawback of theses approaches is the
presence of many hyperparameters without robust rules to select
them. The present work pursues this recent trend of promoting
convex optimization-based clustering based on low rank cluster
matrix estimation, as a way of ensuring that no spurious local
optimizer is used in the process of clustering-based decision
making in data analytic studies.

Our starting point in this attempt at finding appropriate
embeddings for clustering is the method by Guedon and
Vershynin [16], initially developed for community detection
in the stochastic block model (SBM). In mathematical terms,
the SBM considers a random graph based on a set of vertices
partitioned into clusters and with random edges between vertices,
all edges are independent and the probabilities of edges depend
only on the cluster structure. The usual assumption made in
the SBM is that the probabilities are larger within clusters
than across clusters. The problem of recovering clusters from a
random empirical adjacency matrix has been a topic of extensive
research, triggered by the work of McSherry [17] and which
quickly developed into a beautiful body of impressive results
and achievements (see [18–22]). Guedon and Vershynin recently
showed that the cluster matrix can be estimated via Semi-Definite
Programming (SDP) with an explicit control of the error rate.

From a technical perspective, our contribution is three-fold.

• First, we generalize the Guedon/Vershynin approach in order
to deal with the Gaussian Cluster Model (GCM) and show that
the cluster matrix in the GCM can also be estimated by solving
an SDP. For doing so, we use an affinity matrix as input that

depends only on the pairwise distances between observations.
Contrarily to the adjacency matrix arising in the SBM, our
affinity matrix from the GCM has non independent entries,
thus making the analysis non trivial.

• Our second contribution is to demonstrate in practice that
the estimated cluster matrix yields a natural associated
embedding. Indeed, quite similarly to spectral clustering,
the eigenvectors of the estimated cluster matrix provide a
meaningful embedding. Contrarily to standard embedding
methods such as PCA, Laplacian eigenmaps, Maximum
Variance Unfolding, t-SNE, etc., the embedding does not try
to preserve pairwise distances but rather to estimate the cluster
matrix. The intuition for using the cluster matrix is supported
by Remark 1.6 in Guédon and Vershynin [16] which we
now quote: It may be convenient to view the cluster matrix
as the adjacency matrix of the cluster graph, in which all
vertices within each community are connected and there are
no connections across the communities. This way, the Semi-
Definite program takes a sparse graph as an input, and it returns
an estimate of the cluster graph as an output. The effect of the
program is thus to “densify” the network inside the communities
and “sparsify” it across the communities.

• Our third contribution is to propose a new scalable algorithm
for solving the main Semi-Definite Programming problem
at the heart of Guédon and Vershynin [16] and our
approach to embedding and clustering. Our new method is
based on a linearized version of the Alternating Direction
Method of Multipliers (ADMM) together with a pragmatic
implementation of the constraints, that allows us the avoid
solving the original Semi-Definite Program via interior
point methods.

The paper is organized as follows. The SDP approach for
estimating the cluster matrix, the associated embedding and the
main theoretical results are presented in section 2. The proofs
are postponed to section 2 in the Appendix. The algorithmic
considerations for the resolution of the SDP are discussed in
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the Supplementary Material, where an efficient algorithm is
described as well as a practical method for selecting the unknown
tuning parameter. Section 3 is devoted to the presentation of
simulation results, demonstrating the potential of the proposed
method. Some technical background on Gaussian concentration
and Grothendieck inequality is provided in Appendices.

2. MAIN RESULTS

2.1. Framework: The Gaussian Cluster
Model
The mathematical framework is the following. We assume that
we observe a data set x1, . . . , xn ∈ R

d over a population of size
n. The population is partitioned into K clusters C1, . . . , CK of size
n1, . . . , nK , respectively, i.e., n = n1 + · · · + nK . We assume the
standard Gaussian Cluster Model for the data: the observations
xi are independent with

xi ∼ N (µk,6k) if i ∈ Ck (1)

with µk ∈ R
d the cluster mean and 6k ∈ R

d×d the cluster
covariance matrix. The Gaussian Mixture model specifies the
additional information about the probabilities of belonging to
each cluster and the Gaussian Cluster Model corresponds to
conditioning the Gaussian Mixture Model on the values of the
latent cluster indicator variables [6]1.

The clustering problem aims at recovering the clusters Ck,
1 ≤ k ≤ K, based on the data xi, 1 ≤ i ≤ n, only. For each
i = 1, . . . , n, we will denote by ki the index of the cluster to which
i belongs. The notation i ∼ j will mean that i and j belong to the
same cluster. The cluster matrix Z̄ is the n× nmatrix defined by

Z̄i,j =





1 if i ∼ j

0 otherwise
, 1 ≤ i, j ≤ n. (2)

It determines entirely the clusters and, up to a reordering of the
points, it is a block-diagonal matrix with a block of ones for
each cluster.

Note that the Gaussian Cluster Model slightly differs
from the usual Gaussian mixture model where the data set
consists in independent observations from the Gaussian mixture∑K

k=1 πk N (µk,6k), with (πk)1≤k≤K the mixture distribution.
In the Gaussian mixture model, the cluster sizes (n1, . . . , nk) are
random with multinomial distribution of size n and probability
parameters (π1, . . . ,πK).

2.2. Dimensionality Reduction
As proved in Bandeira et al. [23] the data can be projected onto a
space of dimension log(K) while still preserving separation when
the data are assumed to belong to separated ellipsoids. Therefore,
we can consider in the rest of the paper that d is of the order
of log(K). The results of our main theorem below will give the
appropriate scaling of the parameters that will ensure the well
separatedness of the data.

1Extending our study to the setting of Gaussian Mixture Models using the

relationship with the Gaussian Cluster Model based on this conditioning is a

somewhat tedious but not difficult task.

2.3. Embedding Associated With the
Estimated Cluster Matrix
We will define in the next section an estimate Ẑ of the cluster
matrix Z̄. We discuss now how a low dimensional embedding of
the data set can be associated with the estimate Ẑ. The main idea
is to use the fact that the cluster matrix Z̄ defined by (2) has a
very specific eigenstructure: denoting by C1, . . . , CK the index set
of each cluster and by 1Ck ∈ {0, 1}n the indicator vector of cluster
Ck, we have

Z̄ =
K∑

k=1

1Ck1
t
Ck

and we deduce that

• the rank of Z̄ is K,
• the nonzero eigenvalues of Z̄ are |C1|, . . . , |CK | with associated

eigenvectors 1C1/
√
|C1|, . . . , 1CK /

√
|C1|.

We assume in the sequel that the cluster sizes are all different so
that all non-zero eigenvalues have multiplicity one. The clusters
can hence be recovered from the eigenstructure of the matrix Z̄:
the label of the sample point xi is the index of the only eigenvector
whose i-th component is non zero. Indeed, all other eigenvectors
associated with a non-zero eigenvalue have i-th component equal
to zero.

The estimate Ẑ of the matrix Z̄ can be used in practice to
embed the data into the space R

K by associating each data
point xi to the vector consisting of the i-th coordinate of the K
first eigenvectors of Ẑ. Given this embedding, if we can prove
that Ẑ accurately estimates the cluster matrix Z̄, one can then
apply any clustering method of choice to recover the clustering
pattern of the original data. The next section gives a method
for computing an estimator Ẑ of Z̄ using the SDP approach by
Guedon and Vershynin.

2.4. Guedon and Vershynin’s Semi-definite
Program
We now turn to the estimation Ẑ of the cluster matrix using
Guedon and Vershynin’s Semi-Definite Programming based
approach. Whereas, Guédon and Vershynin [16] were interested
in analyzing the Stochastic Block Model for community
detection, we propose a study of the Gaussian Cluster Model
and therefore prove that their approach has a great potential
applicability in embedding of general data sets beyond the
Stochastic Block Model setting.

Based on the data set x1, . . . , xn, we construct the affinity
matrix A by

A =
(
f (‖xi − xj‖2)

)
1≤i,j≤n

(3)

where ‖·‖2 denotes the Euclidean norm onRd and f :[0,+∞) →
[0, 1] a non-increasing affinity function. A popular choice is the
Gaussian affinity

f (h) = e−(h/h0)
2
, h ≥ 0, (4)
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with h0 > 0, and other possibilities are

f (h) = e−(h/h0)
a
, f (h) = (1+ (h/h0))

−a,

f (h) = (1+ eh/h0 )−a · · ·

Before stating the Semi-Definite Program, we introduce some
matrix notations. The usual scalar product between matrices
A,B ∈ R

n×n is denoted by 〈A,B〉 =
∑

1≤i,j≤n AijBij. The

notations 1n ∈ R
n and 1n×n ∈ R

n×n stand for the vector
and matrices with all entries equal to 1. For a symmetric matrix
Z ∈ R

n×n, the notation Z � 0 means that Z the quadratic form
associated to Z is non-negative while the notation Z ≥ 0 means
that all the entries of Z are non-negative.

With these notations, we define Ẑ as a solution of the Semi-
Definite Program

maximize 〈A,Z〉 subject to Z ∈ Mopt (5)

withMopt the set of symmetric matrices Z ∈ R
n×n such that





Z � 0
Z ≥ 0
diag(Z) = 1n
〈Z, 1n×n〉 = λ0

. (6)

Here λ0 ∈ N is the number of non-zero edges in the true
cluster matrix and Guedon and Vershynin state in Guedon and
Vershynin [16] that it can be estimated empirically. For further
reference, note that a semi-definite positive matrix Z with non-
negative entries and unit diagonal must have all entries in [0, 1],
so thatMopt ⊂ [0, 1]n×n.

The heuristic justifying that Ẑ can be seen as an estimate of the
cluster matrix Z̄ is the following Lemma.

Lemma 2.1. Consider the expected affinity matrix

Ā =
(
Ef (‖xi − xj‖2)

)
1≤i,j≤n

. (7)

and assume

p = inf
i∼j

Āi,j > q = sup
i≁j

Āi,j. (8)

Then, the cluster matrix Z̄ defined by Equation (2) is the unique
solution of

maximize 〈Ā,Z〉 subject to Z ∈ Mopt (9)

with λ0 =
∑K

k=1 n
2
k
.

The intuition behind condition (8) is that the average distance (or
more precisely the average affinity) between two points within
a same cluster is smaller than the average distance between two
points from different clusters. This corresponds to the intuitive
notion of clusters. Note that a similar condition appears in
Guédon and Vershynin [16]. In the case of the Gaussian affinity

function (4), we provide in section 2.6 explicit formulas for the
expected affinity matrix that can be used to check condition (8).

The SDP (5) appears as an approximation of the SDP (9) since
the affinity matrix A can be seen as a noisy observation of the
unobserved matrix Ā. Concentration arguments together with
Grothendieck theorem allow to prove that A ≈ Ā in the sense of
the ℓ∞/ℓ1-norm (see Proposition 2.4 below). In turn, this implies

Ẑ ≈ Z̄ in the sense of ℓ1-norm in R
n2 (see Theorem 2.2 below)

so that the SDP program (5) provides a good approximation Ẑ
of the cluster matrix Z̄. Note that in practice, λ0 is unknown and
must be estimated (see comment in section 5.1.5).

Proof of Lemma 2.1: This corresponds to Lemma 7.1 in Guédon
and Vershynin [16].

2.5. Theoretical Error Bounds
Our main result is a non asymptotic upper bound for the
probability that Ẑ differs from Z̄ in ℓ1-distance, that is an upper
bound for

∥∥Ẑ − Z̄
∥∥
1
=

∑

1≤i,j≤n

|̂Zi,j − Z̄i,j|.

Theorem 2.2. Consider the Gaussian Cluster Model (1) and
assume that the affinity function f is ℓ-Lipschitz and that condition
(8) is satisfied. Let

t0 = 8
√
2 log 2KGσℓ/(p− q)

where KG ≤ 1.8 denotes the Grothendieck constant and
σ 2 = 1

n

∑K
k=1 nkρ(6k) with ρ(6k) the largest eigenvalue of the

covariance matrix 6k.
Then, for all t > t0,

P
(∥∥Ẑ − Z̄

∥∥
1

> n2t
)
≤ 2 exp

(
−
(
t − t0

c

)2

n

)
, (10)

c = 16
√
2KGℓσ

p− q
. (11)

Moreover, there exists a subset τ ⊂ {1, . . . , n} with |τ | ≥ n
2 such

that all t > t0,

P
(∥∥∥
(̂
Z − Z̄

)
τ×τ

∥∥∥
1

> nt
)
≤ 2 exp

(
−
(
t − t0

c

)2

n

)
. (12)

Proof: See section A.1 in the Appendix.

Theorem 2.2 has a simple consequence in terms of estimation
error rate. After computing Ẑ, it is natural to estimate the cluster
graph Z̄ by a random graph obtained by putting an edge between
vertices i and j if Ẑi,j > 1/2 and no edge otherwise. Then the
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proportion πn of errors in the prediction of the n(n− 1)/2 edges
is given by

πn : = 2

n(n− 1)

∑

1≤i<j≤n

|1{̂Zij>1/2} − Z̄ij|

≤ 2

n(n− 1)

∑

1≤i<j≤n

2 |̂Zij − Z̄ij|

= 2

n(n− 1)

∥∥Ẑ − Z̄
∥∥
1
.

The following corollary provides a simple bound for the
asymptotic error.

Corollary 2.3. We have almost surely

lim sup
n→∞

n−2
∥∥Ẑ − Z̄

∥∥
1
≤ t0 =

8
√
2 log 2KGσℓ

p− q
.

In the case when the cluster means are pairwise different and
fixed while the cluster variances converge to 0, i.e., σ → 0, it is
easily seen that the right hand side of the above inequality behaves
as O(σ ) so that the error rate converges to 0. This reflects the fact
that when all clusters concentrates around their means, clustering
becomes trivial.

While our proof of Theorem 2.2 follows the ideas from
Guédon and Vershynin [16], we need to introduce new tools to
justify the approximation A ≈ Ā in ℓ∞/ℓ1-norm. Indeed, unlike
in the stochastic block model, the entries of the affinity matrix
(3) are not independent.We use Gaussian concentrationmeasure
arguments to obtain the following concentration inequality. The
ℓ∞/ℓ1 norm of a matrixM ∈ R

n×n is defined by

‖M‖∞→1 = sup
‖u‖∞≤1

‖Mu‖1 = max
u, v∈{−1,1}n

n∑

i,j=1

uivjMi,j. (13)

Proposition 2.4. Consider the Gaussian cluster model (1) and
assume the affinity function f is ℓ-Lipschitz. Then, for any t >

2
√
2 log 2 ℓ σ ,

P
( ∥∥A− Ā

∥∥
∞→1

> t n2
)

≤ 2 exp


−

(
t − 2

√
2 log 2ℓσ

)2

32ℓ2σ 2
n


 . (14)

Proof: See section A.2 in the Appendix.

Theorem 2.2 assumes that λ0 is known. It is worth noting that
λ0 corresponds to the number of edges in the cluster graph
and that we can derive from the proof of Theorem 2.2 how the
algorithm behaves when the cluster sizes are unknown, i.e., when
the unknown parameter λ0 is replaced with a different value λ.
The intuition is given in Remark 1.6 in Guédon and Vershynin
[16]: if λ < λ0, the solution Ẑ will estimate a certain subgraph of
the cluster graph with at most λ0−λmissing edges; if λ > λ0, the
solution Ẑ will estimate a certain supergraph of the cluster graph
with at most λ − λ0 extra-edges.

2.6. Explicit Formula for Ā
In order to check condition (8), explicit formulas for the mean
affinity matrix are useful. The next proposition solves the case of
the Gaussian affinity function.

Proposition 2.5. Assume that A is built using the Gaussian affinity
function (4).

• Let i and j be in the same cluster Ck. Then,

Āi,j =
d∏

l=1

(
1+ 4(σk,l/h0)

2
)−1/2

with (σ 2
k,l
)1≤l≤d the eigenvalues of 6k.

• Let i and j be in different clusters Ck and Ck′ . Then,

Āi,j =
d∏

l=1

exp

(
−〈µk − µk′ , vk,k′ ,l〉2

h20 + 2σ 2
k,k′,l

)

(
1+ 2(σk,k′,l/h0)

2
)−1/2

with (σ 2
k,k′,l)1≤l≤d and (vk,k′,l)1≤l≤d respectively the eigenvalues

and eigenvectors of 6k + 6k′ .

Proof: See section A.3 in the Appendix.

As an interesting consequence of Proposition 2.5, when the
variance matrices from the Gaussian Cluster Model (1) are all
equal and isotropic, that is 6k = σ 2Id for all k = 1, . . . ,K with
σ 2 > 0, then the constants p and q from Equation (8) are given by

p =
(
1+ 4σ 2/h20

)−d/2

and

q =
(
1+ 4σ 2/h20

)−d/2

FIGURE 2 | Original affinity matrix vs. Guedon Vershynin Cluster matrix.
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FIGURE 3 | The affinity matrix obtained after embedding using different methods from the Matlab package drtoolbox https://lvdmaaten.github.io/drtoolbox/.

(A) Original affinity matrix vs. affinity matrix after PCA embedding. (B) Original affinity matrix vs. affinity matrix after MDS embedding. (C) Original affinity matrix vs.

affinity matrix after Factor Analysis embedding. (D) Original affinity matrix vs. affinity matrix after t-SNE embedding. (E) Original affinity matrix vs. affinity matrix after

Sammon embedding. (F) Original affinity matrix vs. affinity matrix after LLE embedding.

× min
1≤k 6=k′≤K

exp
{
−‖µk′ − µk‖2/(h20 + 4σ 2)

}
.

Condition (8) is therefore satisfied (whatever the choice of h0 >

0) as soon as the cluster means (µk)1≤k≤K are pairwise distinct
which is a minimal identifiability condition. But of course the
difference p − q is an increasing function of the noise σ 2 and
the bounds in Theorem 2.2 become looser for larger noise.

3. SIMULATION RESULTS

In all the experiments, the parameter h0 in (4) was chosen as

h0 = .5 ∗max(diag(Xt ∗ X))1/2.

The hyper-parameter λ was chosen so as to minimize the mean
squared error between the estimated cluster matrix and the
empirical affinity matrix.

3.1. Computing the Actual Clustering From
the Eigenvector Coordinates
As for spectral clustering, the components of the most significant
eigenvectors, i.e., the eigenvectors associated with the largest
eigenvalues, are the coordinates of the embedded data. Given
these embedded data, as advised in Vu [24], the actual clustering
can be computed using a minimum spanning tree method and
removing the largest edges.

3.2. Comparison With Standard
Embeddings on a 3D Cluster Example
Simulations have been conducted to assess the quality of the
proposed embedding. In this subsection, we used the Matlab
package drtoolbox2 proposed by Laurens Van Maatten on a

2https://lvdmaaten.github.io/drtoolbox/

sample drawn from a 10 dimensional Gaussian Mixture Model
with four components and equal proportions. In Figure 2, we
show the original affinity matrix together with the estimated
cluster matrix. In Figure 3, we compare the affinity matrix
of data with the affinity matrix of the mapped data using
various embeddings proposed in the drtoolbox package. This toy
experiment shows that the embedding described in this paper can
cluster as the same time as it embeds into a small dimensional
subspace. This is not very surprising since our embedding
is tailored for the joint clustering-dimensionality reduction
purpose whereasmost of the known existing embeddingmethods
aren’t. Given the fact that clustered data are ubiquitous in
real world data analysis due to the omnipresence of stratified
populations, taking the clustering purpose into account might be
a considerable advantage.

3.3. Monte Carlo Experiments
In this section, we present some simulation experiments assessing
the performance of the Guedon-Vershynin embedding for
Gaussian Cluster Models.

3.3.1. Setup

Our experiments were performed on problems of successive
sample size 100, 200, . . . , 1,000 and number of clusters equal
to 2, 5, and 10. The dimension of the Gaussian Mixture Model
was set to 100. For each experiment, we performed 100 Monte
Carlo repeats. All the results in this section show the average
over the Monte Carlo experiments. Our Gaussian Cluster Model
was built as follows: for a model with K clusters, we set the
kth component of each center to 10/3, 20/3, . . . , 50/3 for each
cluster k = 1, . . . ,K. Then, the data are obtained by adding a
unit variance i.i.d. Gaussian vector to the center of the cluster it
belongs to. All clusters were taken to have equal size.
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FIGURE 4 | Estimation error ‖Z̄ − Ẑ‖1.

FIGURE 5 | Estimation error ‖Z̄ − Ẑ‖1.

3.3.2. Selection of λ

The value of λ was selected so as to minimize the Frobenius
distance between Ẑ and A. Model based selection rules will be
discussed in a follow up paper.

3.3.3. Results

Figures 4, 5 show the estimation error ‖Z̄− Ẑ‖1 between the true
and the estimated cluster matrix. These results illustrate Theorem
2.2 as they show that the error grows as a function of sample size.

Moreover, the growth is quadratic as predicted by the theory of
section 2, and more precisely Equation (10).

4. CONCLUSIONS

The goal of the present paper was to propose an analysis of
Guedon and Vershynin’s Semi-Definite Programming approach
to the estimation of the cluster matrix and show how this
matrix can be used to produce an embedding for preconditioning
standard clustering procedures. The procedure is suitable
for very high dimensional data because it is based on
pairwise distances only. Moreover, increasing the dimension
will improve the robustness of the procedure when the
Law of Large Numbers will apply along dimensions, hence
forcing the affinity matrix to converge to a deterministic
limit and thus making the estimator less sensitive to its low
dimensional fluctuations.

Another feature of the method is that it may apply to a large
number of mixtures type, even when the component’s densities
are not log-concave, as do a lot of embeddings as applied to data
concentrated on complicated manifolds. Further studies will be
performed in this exciting direction.

Future work is also needed for proving that the proposed
embedding is provably efficient when combined with various
clustering techniques. One of the main reason why this should
be a difficult problem is that the approximation bound proved
in the present paper is not so easy to leverage for controlling
the perturbation of the eigenspaces of Z. More precise use of
the inherent randomness of the perturbation, in the spirit of
Vu [24], might be necessary in order to go a little further in
this direction.

AUTHOR CONTRIBUTIONS

SC and CD contributed the theoretical analysis and the proofs.
SC and AF contributed the code and simulation experiments for
the initial version of this work. SC contributed the new algorithm
and the corresponding simulation experiments.

ACKNOWLEDGMENTS

The results presented in this paper have appeared previously as
Chapter 3 of the third author’s Ph.D. thesis [25].

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2019.00041/full#supplementary-material

REFERENCES

1. Von Luxburg U. A tutorial on spectral clustering. Stat Comput. (2007) 17:395–

416.

2. Bandeira AS. Ten Lectures and Forty-Two Open Problems in the Mathematics

of Data Science (2015).

3. Linial N, London E, Rabinovich Y. The geometry of graphs and some of its

algorithmic applications. Combinatorica. (1995) 15:215–45.

4. Jain AK. Data clustering: 50 years beyond k-means. Pattern Recogn Lett. (2010)

31:651–66. doi: 10.1016/j.patrec.2009.09.011

5. Friedman J, Hastie T, Tibshirani R. The Elements of Statistical Learning, Vol.

1. Springer Series in Statistics. New York, NY: Springer Verlag (2001).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 October 2019 | Volume 5 | Article 41

https://www.frontiersin.org/articles/10.3389/fams.2019.00041/full#supplementary-material
https://doi.org/10.1016/j.patrec.2009.09.011
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Chrétien et al. Low Dimensional Embedding via SDP

6. McLachlan G, Peel D. Finite Mixture Models. John Wiley & Sons (2004).

7. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete

data via the EM algorithm. J R Stat Soc B. (1977) 39:1–38.

8. Chrétien S, Hero AO. On EM algorithms and their proximal generalizations.

ESAIM Probabil Stat. (2008) 12:308–26.

9. Biernacki C, Chrétien S. (2003). Degeneracy in the maximum

likelihood estimation of univariate gaussian mixtures with EM.

Stat Probabil Lett. 61:373–82. doi: 10.1016/S0167-7152(02)0

0396-6

10. Awasthi P, Bandeira AS, Charikar M, Krishnaswamy R, Villar S, Ward R.

Relax, no need to round: integrality of clustering formulations. In: Proceedings

of the 2015 Conference on Innovations in Theoretical Computer Science (ACM)

(2015). p. 191–200.

11. Mixon DG, Villar S, Ward R. Clustering subgaussian mixtures by semidefinite

programming. arXiv preprint arXiv:1602.06612 (2016).

12. Hocking TD, Joulin A, Bach F, Vert JP. Clusterpath an algorithm for clustering

using convex fusion penalties. In: 28th International Conference on Machine

Learning (2011). p. 1.

13. Tan KM, Witten D. Statistical properties of convex clustering. Electron J Stat.

(2015) 9:2324–47.

14. Radchenko P,Mukherjee G. Consistent clustering using an ℓ_1 fusion penalty.

arXiv preprint arXiv:1412.0753 (2014).

15. Wang B, Zhang Y, Sun W, Fang Y. Sparse convex clustering. arXiv preprint

arXiv:1601.04586 (2016).

16. Guédon O, Vershynin R. Community detection in sparse networks

via grothendieck’s inequality. Probabil Theory Relat Fields. (2015)

165:1025–49.

17. McSherry F. Spectral partitioning of random graphs. In: Proceedings 2001

IEEE International Conference on Cluster Computing (IEEE) (2001). p. 529–37.

18. Abbe E, Bandeira AS, Hall G. Exact recovery in the stochastic block model.

arXiv preprint arXiv:1405.3267 (2014).

19. Heimlicher S, Lelarge M, Massoulié L. Community detection in

the labelled stochastic block model. arXiv preprint arXiv:1209.

2910 (2012).

20. Mossel E, Neeman J, Sly A. Stochastic block models and reconstruction. arXiv

preprint arXiv:1202.1499 (2012).

21. Mossel E, Neeman J, Sly A. Reconstruction and estimation in the

planted partition model. Probabil Theory Relat Fields. (2015) 162:431–61.

doi: 10.1007/s00440-014-0576-6

22. Mossel E, Neeman J, Sly A. A proof of the block model threshold conjecture.

Combinatorica (2018.) 38:665–708.

23. Bandeira AS, Mixon DG, Recht B. Compressive classification and the rare

eclipse problem. In: Compressed Sensing and Its Applications. Springer (2017).

p. 197–220.

24. Vu V. Singular vectors under random perturbation. Random Struct Algorthm.

(2011) 39:526–38.

25. Faivre A. Analyse d’image hyperspectrale (PhD thesis). Université de

Bourgogne, Franche-Comté, France (2018).

26. Tropp JA. Column subset selection, matrix factorization, and eigenvalue

optimization. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium

on Discrete Algorithms (Society for Industrial and Applied Mathematics)

(2009). p. 978–86.

27. Wang H, Banerjee A. Bregman alternating direction method of

multipliers. In: Advances in Neural Information Processing Systems (2014).

p. 2816–24.

28. Boucheron S, Lugosi G, Massart P. Concentration Inequalities: A

Nonasymptotic Theory of Independence. Oxford: Oxford University Press

(2013).

Conflict of Interest Statement: AF was employed by company DigitalSurf.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Chrétien, Dombry and Faivre. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 October 2019 | Volume 5 | Article 41

https://doi.org/10.1016/S0167-7152(02)00396-6
https://doi.org/10.1007/s00440-014-0576-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	The Guedon-Vershynin Semi-definite Programming Approach to Low Dimensional Embedding for Unsupervised Clustering
	1. Introduction
	2. Main Results
	2.1. Framework: The Gaussian Cluster Model
	2.2. Dimensionality Reduction
	2.3. Embedding Associated With the Estimated Cluster Matrix
	2.4. Guedon and Vershynin's Semi-definite Program
	2.5. Theoretical Error Bounds
	2.6. Explicit Formula for 

	3. Simulation Results
	3.1. Computing the Actual Clustering From the Eigenvector Coordinates
	3.2. Comparison With Standard Embeddings on a 3D Cluster Example
	3.3. Monte Carlo Experiments
	3.3.1. Setup
	3.3.2. Selection of λ
	3.3.3. Results


	4. Conclusions
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


