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Non-local observations are observations that cannot be allocated one specific spatial

location. Examples are observations that are spatial averages of linear or non-linear

functions of system variables. In conventional data assimilation, such as (ensemble)

Kalman Filters and variational methods information transfer between observations and

model variables is governed by covariance matrices that are either preset or determined

from the dynamical evolution of the system. In many science fields the covariance

structures have limited spatial extent, and this paper discusses what happens when this

spatial extent is smaller then the support of the observation operator that maps state

space to observations space. It is shown that information is carried beyond the physical

information in the prior covariance structures by the non-local observational constraints,

building an information bridge (or information channel) that has not been studied before:

the posterior covariance can have non-zero covariance structures where the prior has

a covariance of zero. It is shown that in standard data-assimilation techniques that

enforce a covariance structure and limit information transfer to that structure the order in

which local and non-local observations are assimilated can have a large influence on the

analysis. Local observations should be assimilated first. This relates directly to localization

used in Ensemble Kalman Filters and Smoothers, but also to variational methods with

a prescribed covariance structure where observations are assimilated in batches. This

suggests that the emphasis on covariance modeling should shift away from the prior

covariance and toward the modeling of the covariances between model and observation

space. Furthermore, it is shown that local observations with non-locally correlated

observation errors behave in the same way as uncorrelated observations that are

non-local. Several theoretical results are illustrated with simple numerical examples. The

significance of the information bridge provided by non-local observations is highlighted

further through discussions of temporally non-local observations, and new ideas on

targeted observations.

Keywords: data assimilation, non-local observations, localization, Bayesian inference, information transfer

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2019.00048
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2019.00048&domain=pdf&date_stamp=2019-09-26
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:peter.vanleeuwen@colostate.edu
https://doi.org/10.3389/fams.2019.00048
https://www.frontiersin.org/articles/10.3389/fams.2019.00048/full
http://loop.frontiersin.org/people/589138/overview


van Leeuwen Non-local Observations

1. INTRODUCTION

The most general form of data assimilation is given by Bayes
Theorem that describes how the probability density function
(pdf) of the state of the system x is updated when observations
y become available:

p(x|y) = p(y|x)
p(y)

p(x) (1)

in which p(x) is the prior pdf of the state, and p(y|x) the likelihood
of the observation given that the state is equal to x. This likelihood
is determined by the measurement process. For instance, when
the measurement error is additive we can write

y = H(x)+ ǫ (2)

This equation maps the given state vector x into observation
space via the observation operator H(..). Since y is given also this
equation determines ǫ, and since the pdf of the observation errors
is knownwe knowwhat the likelihood looks like. It is emphasized
that Bayes Theorem is a point-wise equation for every possible
state vector x.

A non-local observation is typically defined as an observation
that cannot be attributed to one model grid point. The
consequence is that model state space and observation space
should be treated differently. However, Bayes Theorem is still
valid, and general enough to tells us how to assimilate these
non-local observations.

This is different in practical data-assimilation methods for
high-dimensional systems that are governed by local dynamics.
Examples are Ensemble Kalman Filters, in which a small number,
typically O(10 − 100), of ensemble members is used to mimic
a Kalman Filter. Because of the small ensemble size the sample
covariance matrix is noisy, and a technique called localization
is used to set long-range correlations to zero, as they physically
should be, see [1, 2].

Non-local observations can have a support that is larger
than the localization area. With support is meant that part of
state space that is needed to specify the model equivalent of an
observation. When H is linear it is that part of state space that is
not mapped to zero. A larger support is not necessarily a problem
as long as non-local observations are allowed to influence those
model variables with whom they have strong correlations, see
e.g., [3]. Assimilating non-local observations as local ones, e.g., by
using the grid points where they have most influence, can lead to
degradation of the data-assimilation result, as Liu et al. [4] show
and hence it is important to retain their full non-local structure.

There has been an extensive search for efficient covariance
localization methods that allow for non-local observations,
including using off-line climatological ensembles, groups of
ensembles, and augmented ensembles in which the ensemble
members are localized by construction, see e.g., [5–9].

All of these methods try to find the best possible localization
function based on the prior. The main focus of this paper
is not on developing better covariance estimates, but rather
on the influence on the data-assimilation results of non-
local observations in which the support of the observation

operator is larger than the dependency (or, for linear relations,
correlation) length scale in the prior. This can be due to a mis-
specification of the prior localization area, or due to a real prior
covariance influence area that is smaller than the support of the
observation operator. Since the prior is expected to contain the
physical dependencies in the system, this means that a non-local
observation needs information from model variables that are
physically independent. As will be shown after assimilation new
dependencies between the variables involved in the observation
operator are generated, on top of the physical dependencies
already present. Hence, the non-local observations generate
information bridges that are not present in the prior. These
bridges can appear both in space and in time.

As an example of the influence of non-local observations on
practical data-assimilation systems, since non-local observations
generate information bridges, so build new covariance structures,
the order in which observations are assimilated becomes
important in serial assimilation when covariance length scales are
imposed, as in standard localization techniques and in variational
methods. This is also true for local observations, but the effect in
the non-local case is much larger.

In this paper we will discuss the implications of these
information bridges, and strategies of how to assimilate non-local
observations. Furthermore, the connection is made to correlated
observation errors where the correlations are non-local in the
sense defined above. Finally, we discuss ways how we can exploit
the appearance of these information bridges to improve data-
assimilation systems.

2. THE ASSIMILATION OF NON-LOCAL
OBSERVATIONS

In the following we will first demonstrate the treatment of non-
local observations in the most general way, via Bayes Theorem,
and how non-local observations generate information bridges in
the posterior. Then we show that the order in which local and
non-local observations are assimilated does not matter, when we
solve the full data-assimilation problem, so building the bridges
first or later is not relevant. This conclusions does not hold
necessarily when approximations to the full data-assimilation
problem are introduced, as we will see in later sections.

2.1. Non-local Observations in Bayes
Theorem
Let us first study how these information bridges are formed
via a simple example. Assume two parts of the state space are
independent under the prior, so p(x1, x2) = p(x1)p(x2), and we
have an observation that combines the two, e.g., y = H(x1, x2, ǫ),
where the observation operatorH(..) can be a non-linear function
of its arguments. Bayes Theorem shows:

p(x1, x2|y) =
p(y|x1, x2)

p(y)
p(x1, x2) =

p(y|x1, x2)
p(y)

p(x1)p(x2) (3)

Since y depends on both x1 and x2 the likelihood cannot be
separated in a function of x1 only times a function of x2 only.
This means that we also cannot separate the posterior pdf in
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this way, and hence x1 and x2 have become dependent under
the posterior. Since Bayes Theorem is the basis of all data-
assimilation schemes, the same is true for (Ensemble) Kalman
Filters/Smoothers, variational methods, or e.g., Particle Filters.

As an example, Figure 1 shows the joint prior pdf of two
independent variables. The pdf is constructed from p(x1, x2) =
p(x1)p(x2) in which p(x1) is bimodal and p(x2) a unimodal
Gaussian. The likelihood is given in Figure 2, related to an
observation y = x1 + x2 + ǫ in which ǫ is Gaussian distributed
with zero mean. Their product is the posterior given in Figure 3.
It is clearly visible that the two variables are highly dependent
under the posterior, purely due to the non-local observation.

We now analyse the following simple system in more detail to
understand what the influence of non-local spatial observations
in linear and linearized data-assimilation methods is. The state is
two-dimensional x = (x1, x2)

T , with diagonal prior covariance

FIGURE 1 | The prior pdf of two independent variables.

FIGURE 2 | The likelihood as function of the state, corresponding to an

observation that is the sum of the two variables. Note that the likelihood is

ambiguous on which values of x1 and x2 are most likely as the observation

only gives the value of a linear combination of them.

matrix B with diagonal elements (b11, b22) and a non-local
observation operatorH = (1 1). A scalar non-local observation
y = Hxtrue + ǫtrue with measurement error variance r is taken.
The subscript true reminds us that the observation is from the
true system, while x denotes the state of our model of the real
world (this can easily be generalized to different parts x1 and x2
of a larger state vector and more, or more complicated, non-local
observations y. The two-dimensional system is chosen here for
ease of presentation).

The Kalman filter update equation for this system reads:

xa = xb + BHT(HBHT + r)−1(y− xb1 − xb2) (4)

with posterior covariance matrix:

P =
(

p11 p12
p21 p22

)

=
(

b11 − b11b11/d −b11b22/d
−b11b22/d b22 − b22b22/d

)

(5)

in which d = b11 + b22 + r.
This simple example illustrates the two points from the

general case above. Firstly, even if the prior variables are
uncorrelated they are correlated in the posterior because of the
non-local observation operator mixes the uncorrelated variables
of the prior. A second point is that the update of each variable is
dependent on the value of the other, even when the two variables
are uncorrelated in the prior. Hence the non-local observation
acts as an information bridge between uncorrelated variables,
both in terms of mean and covariance.

This conclusion remains valid for variational methods like
3DVar as 3DVar implicitly applies the Kalman Filter equations
in an iterative manner.

2.2. Order of Observations
The results from the previous section might suggest that the
order in which local and non-local observations are assimilated is
important: if a non-local observation is assimilated first the next

FIGURE 3 | The posterior pdf. Note that the two variables are highly

correlated due to the non-local observation.
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local observation can influence all variables involved in the non-
local observation operator. On the other hand, when the local
observation is assimilated first this advantage seems to be lost.
However, this is not the case, the order in which we assimilate
observations is irrelevant in the full Bayesian setting (this is
different when localization is used, as explained in section 4).

The easiest way to see this is via Bayes Theorem. Suppose we
have two observations, a non-local observation ynl and a local
observation yl of only x2. We assume their measurement errors
are independent. Bayes Theorem tells us:

p(x|yl, ynl) =
p(yl, ynl|x)
p(yl, ynl)

p(x) = p(yl|x2)
p(yl)

p(ynl|x)
p(ynl)

p(x) (6)

If we assimilate yl first we get:

p(x|yl, ynl) =
p(ynl|x)
p(ynl)

p(x|yl) (7)

and vice versa:

p(x|yl, ynl) =
p(yl|x2)
p(yl)

p(x|ynl) (8)

but the result is the same as the order in a multiplication doesn’t
matter (this is true in theory, in practice differences may arise
due to round-off errors). Since the Kalman Filter/Smoother is a
special case of this when all pdf ’s are Gaussian it is true also for
the Kalman Filter/Smoother, and for variational methods. As we
will see in a later section, care has to be taken when observations
are assimilated sequentially and localization is enforced.

To complete the intuition for the Kalman Filter, if the local
observation yl is assimilated first the mean and covariance of
variable x2 are updated, but x1 remains unchanged. Hence when
the non-local observation is assimilated both the mean and
covariance of x2 have changed, and these changed values are used
when assimilating the non-local observation, so that x1 does feel
the influence of the local observation via the updated x2 and
its updated variance. Typically the updated x2 will be such that
x1+x2 is closer to ynl, and its prior covariance before assimilating
ynl will be smaller. The result is that x1 will be updated stronger
than in the case when x2 has not seen yl first, as proven in the
next section.

3. KALMAN FILTER/SMOOTHER WITH
TEMPORALLY NON-LOCAL
OBSERVATIONS

The above discussed spatially non-local observations. However,
we can easily extend this to temporally non-local observations as
we show here in a simple example that illustrates the point. We
can easily generalize the results below to the vector case.

We study a one-dimensional system with states xn at time n
and an observation y = xm + xn + ǫ. This problem can be
solved by considering a Kalman Smoother, exploring the cross
covariance of the states at time n and m, and is explored in
standard textbooks. The interesting case is when this prior cross

covariance between time n andm is zero, or negligible (for many
systems this would mean thatm >> n).

Similarly to the spatially non-local case we define the state
vector x = (xm, xn)T . The prior covariance of this vector depends
on the model that governs the evolution of the state in absence of
observations. As mentioned, we will study the case that the cross
covariance between these two times is zero in the prior, so the
prior covariance for this state vector x is given by

B =
(

bmm 0
0 bnn

)

(9)

The Kalman Filter update equation reads for this case:

xa = xb + BHT(HBHT + r)−1(y−Hxb)

= xb + BHT(HBHT + r)−1(y− (xm + xn)) (10)

with posterior covariance matrix:

P =
(

bmm − bmmbmm/d −bmmbnn/d
−bmmbnn/d bnn − bnnbnn/d

)

(11)

with d = bmm + bnn + r.
The similarity with the spatial non-local observations is

striking, and indeed the cases are completely identical, with time
taking the place of space. The same conclusions as for the spatial
case hold: even when states at different times are completely
uncorrelated in time under the prior they can be correlated under
the posterior when the observation is related to a function of
the state vectors at both times, providing an information bridge
between the two times.

4. CONSEQUENCES FOR SEQUENTIAL
UPDATING SCHEMES WITH FIXED
COVARIANCE LENGTH SCALES

The results above show that when non-local observations are
assimilated they significantly change the prior covariance length
and/or time-scales during the data-assimilation process. This has
direct consequences for methods that assimilate observations
sequentially and at the same time enforce covariance structures
with certain length scales. An example is a Local Ensemble
Kalman Filter, in which spurious correlations are suppressed
either by Schur-multiplying the prior ensemble covariance with
a local correlation matrix or Schur-multiplying the inverse of
the observation error covariance matrix with a distance function.
This procedure effectively sets covariances equal to zero above
a certain distance between grid points. This localization in
combination with sequential observation updating has to be done
with care, as shown below. Another example is a 3D or 4DVar in
which observations are assimilated in batches.

Assimilation of non-local observations that span length
scales larger than the localization correlation length scale can
potentially lead to suboptimal updates if the observations are
assimilated in the wrong order. This is illustrated below, first
theoretically and then with a simple example.
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4.1. The Influence of Localization
Let us assume we have two variables x1 and x2 that lie outside

each others localization area. A localization area is defined here as
the area in which observations are allowed to influence the grid
point in consideration. Two observations are made, a non-local
observation y1 = x1+x2+ǫ1 and a local observation y2 = x2+ǫ2.
We study the result of the data-assimilation process on variable
x1 where we change the order of assimilation.

When we assimilate the non-local observation y1 first, we find
the update:

x̂1 = x1 +
b11

b11 + b22 + r1
(y1 − (x1 + x2)) (12)

b̂11 = b11 −
b211

b11 + b22 + r1
(13)

As shown in the previous sections, this assimilation generates a
cross covariance between x1 and x2 as

b̂12 = − b11b22

b11 + b22 + r1
(14)

When we now assimilate observation y2 the fixed covariance
length scale, from localization or otherwise, we will remove the

cross covariance b̂12 before y2 is assimilated, and hence x1 is not

updated further, so xa1 = x̂1 and ba11 = b̂11 and ba12 = 0.
The story is different when we first assimilate y2 and then y1.

In this case we find that x1 is not updated by y2, but x2 and its

variance are. Let’s denote these updated variables by x̂2 and b̂22.
We then find for the update of x1 by the non-local observation y1:

xa1 = x1 +
b11

b11 + b̂22 + r1
(y1 − (x1 + x̂2)) (15)

ba11 = b11 −
b211

b11 + b̂22 + r1
(16)

ba12 = − b11b̂22

b11 + b̂22 + r1
(17)

We can now substitute the ˆ values in these expressions. We
start with the posterior variance ba11. We find, after some algebra:

ba11 = b11 −
b211

b11 + b22 + r1
(1+ d) (18)

in which d = b222/
[

(b22 + r2)(b11 + b22 + r1)− b222
]

. The first
and second terms in the expression above appear when we would
assimilate y1 first, and the third term proportional to d is an
extra reduction of the variance of x1 due to the fact that we first
assimilated y2. That reduction is absent when we first assimilate
y1 and then assimilate y2 due to the localization procedure as
shown above.

This third term can be as large as the second term. We can
quantify this with the following example, in which we assume the

prior variances of x1 and x2 are the same, hence b22 = b11 = b.

In that case d becomes d̂ defined by:

d̂ = 1

(2+ r1/b)(1+ r2/b)− 1
(19)

This is the extra reduction due to assimilating y1 after y2, relative
to the reduction due to assimilating y1 alone. In Figure 4 the size
of this term is shown as function of r1/b and r2/b. As expected
the size increases when the observation errors are smaller than
the prior variances.

Let us now look at the posterior mean, for which we find:

xa1 = x1 +
b11

b11 + b22 + r1
(y1 − (x1 + x2))

− b11

b11 + b22 + r1

b22

b22 + r2
(y2 − x2)

+ d b11

b11 + b22 + r1

(

(y1 − (x1 + x2))

− b22

b22 + r2
(y2 − x2)

)

(20)

The first line is the contribution purely from the non-local
observation. It appears when we first assimilate the non-local
observation and then the local observation, and is equal to
Equation (12). However, first assimilating y2 and then the non-
local observation y1 leads to the appearance of two extra terms.
The term related to y2 − x2 is a direct contribution of the
innovation of the local observation at x2 (as can be seen from
x̂2 = x2 + b22/(b22 + r)(y2 − x2)), and can be traced back to
the fact that x2 has changed due to assimilation of y2 first. The
other term is related to the change in the variance of x2 due to the
assimilation of y2.

FIGURE 4 | Extra reduction of the posterior variance when the non-local

observation is assimilated after the local observations compared to

assimilating the observations the other way around (the factor d̂ in Equation

19). This is purely due to the fixed covariance length scales used in the prior.
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To understand the importance of these two extra terms we
again assume b11 = b22 = b, to find:

xa1 = x1 +
1

2+ r1/b

[

(y1 − (x1 + x2))−
1

1+ r2/b
(y2 − x2)

+d

(

(y1 − (x1 + x2))−
1

1+ r2/b
(y2 − x2)

)]

(21)

where d = 1/
[

(2+ r1/b)(1+ r2/b)− 1
]

. Of course, the value of
xa1 depends on the actual values for the observations and the prior
means. To obtain an order of magnitude estimate we assume that
the innovation y1 − (x1 + x2) is of order

√
2b+ r1. and similarly

y2 − x2 ≈
√
b+ r2. Since the signs of the different contributions

depend on the actual signs of y1−(x1+x2) and y2−x2 we proceed
as follows. We rewrite the expression for xa1 as:

xa1 = x1 +
1

2+ r1/b

[

(y1 − (x1 + x2))(1+ d)

− 1

1+ r2/b
(y2 − x2)(1+ d)

]

(22)

Hence the ratio of the first extra term d(y1 − (x1 + x2)) to the
contribution only from y1 is proportional to d, and is given in
Figure 4. The ratio of the rest to the contribution only from
y1 is given in Figure 5. Note that we used the approximations
for y2 − x2 and y1 − (x1 + x2) above, which means that this
ratio becomes

1+ d
√

(1+ r2/b)(2+ r1/b)
(23)

The sign of this contribution is unclear, as mentioned above, so
we have to either add to or subtract this figure from Figure 4.

The importance of Figures 4, 5 is that they show that when
the observation errors are small compared to the prior variance
the update could be more than 100% too small when localization
is used if one first assimilates the non-local observation y1,
followed by assimilating y2. Hence non-local observations should
be assimilated after local observations.

When the update is not sequential, but instead local and
non-local observations are assimilated in one go, we obtain
the same result we would obtain by first assimilating the local
observation and then the non-local observation. The reason is
simple: assimilating the non-local observation means that all grid
points in the domain of the non-local observation are allowed to
see all other gridpoints in that domain, and hence information
from local observations is shared too.

It is emphasized again that the above conclusions are not
restricted to Ensemble Kalman Filters and Smoothers. Any
scheme that assimilates observations sequentially, or in batches,
should ensure that non-local observations in which the support
of the observation operator is larger than the correlation length
scales used in the covariance models should be assimilated after
the local observations.

4.2. An Assimilation Example
To illustrate the effect explained in the previous section the
following numerical experiment is conducted. We run a 40-
dimensional model, the Lorenz 1996 model, with an evolution

FIGURE 5 | Second contribution of assimilation local observation y2 first, as

given as the ratio in Equation (23). This figure should be added to or

subtracted from Figure 4.

equation for each state component given by:

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F + βi (24)

The forcing F = 8 is a standard value ensuring chaotic dynamics.
The system is periodic.We use a Runge-Kutta 4 schemewith time
step 1t = 0.01. The βi are random variables denoting model
errors, white in time and βi ∼ N(0,Q) in space, in which Q1/2

is a tridiagonal matrix with 0.1 on the diagonal and 0.025 on
the subdiagonals.

The model is spun up from a random state in which
each xi ∼ N(0, 10−4), is independent from the other state
components. The spin up time is 10,000 time steps. Then a true
model evolution is generated for 10,000 time steps, starting at
time zero. Observations are created from this true run every
1tobs time steps, with observation errors drawn from N(0,R)
in which R is diagonal. Both 1tobs and R are varied in the
experiments below. Local observations are taken from positions
[5, 10, 15, 20, 25, 30, 35] and a non-local observation is taken
asHx = x0 + x5.

An LETKF is used with a Gaspari-Cohn localization function
on R−1 with cut-off radius of 5 gridpoints, which means that
observation error variances are multiplied by a factor >10 after 3
grid points, so they have little influence compared to observations
close to the updated grid point. This localization is kept constant
to illustrate the effects; it might be tuned in real situations. The
ensemble consist of 10 members, initialized from the true state at
time zero with random perturbations drawn from N(0, I). When
assimilating the non-local observation the localization is only
applied outside the domain of the non-local observation.

We run two sets of experiments, one set in which all the local
observations are assimilated first at an analysis time, followed
by assimilating the non-local observation, and one in which
the non-local observation is assimilated first, followed by all
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other observations. We looked at the difference of these two
assimilation runs for different values of the observation period
1tobs and different values of the observation error variances in R.
All observation error values for local and non-local observations
are the same.

Figure 6 shows the posterior RMSE averaged over all
assimilation times of the state component x0 as function of the
chosen observation error standard deviation. The different lines
correspond to the different observation periods, ranging from 10,
via 20 to 50 time steps, in colors black, blue, and red, respectively.
The solid lines denote the results when the non-local observation
is assimilated last, and the dashed lines show results when the
non-local observation is assimilated first. All results are averaged
over 10 model runs, and the resulting uncertainty is of the order
of 0.1. Increasing the average to 100 model runs did not differ the
numbers within these error bounds.

As can be seen from the figure, assimilating the non-local
observation last leads to a systematically lower RMSE for all
observation periods and for all observation error sizes. These
results confirm the theory in the previous section.

We also performed several experiments in which the
observation error in the non-local observation was higher or
lower than that in the local observations for the experiment with
1tobs = 20 time steps. As an example of the results, increasing
the non-local observation error from 0.1 to 0.3 increased the
RMSE in x0 from 0.23 to 0.24 when the non-local observation is
assimilated last, but from 0.70 to 0.81 when it is assimilated first.
This shows that the impact of a larger non-local observation error
is less when the non-local observation is assimilated last because
of the benefit of the more accurate state x5. When the non-local
observation is assimilated first this update of x5 is not noticed by
the data-assimilation system.

FIGURE 6 | RMSE of state component x0 which is part of a non-local

observation, as function of observation error. The black (squares), blue (dots),

and red (triangles) lines denote observation periods of 10, 20, and 50 time

steps. The solid lines are for cases in which the non-local observation is

assimilated last, dashed lines when non-local observation is assimilated first.

Note the logarithmic horizontal scale. The figure shows that assimilating the

non-local observation after local observations is beneficial.

In another example we decreased the observation error of the
non-local observation from 0.3 to 0.1. In this case the RMSE of x0
remained at 0.47 when the non-local observation is assimilated
last, and decreased from 1.60 to 1.50 when it is assimilated first.
As expected, the influence is much smaller in the former case as
the state at x5 is now less accurate. Hence, also these experiments
demonstrate that the theory developed above is useful.

Finally, the results are independent of the dimension of the
system; a 1,000-dimensional Lorenz 1996 model yields results
that are very similar and with differences smaller than the
uncertainty estimate of 0.1. This is because the analysis is local,
and the non-local observation spans just part of the state space.

5. CORRELATED OBSERVATION ERRORS

Although observations errors are typically assumed to be
uncorrelated in data-assimilation systems, they in fact are often
correlated, and the correlation length scales can even be longer
than the correlation length scales in the prior. Correlated
observation errors can either arise from the measurement
instrument, e.g., via correlated electrical noise in satellite
observations, but also from the mismatch between what the
observations and the model represent. The latter are called
representation errors and typically arise when the observations
have smaller length scales than themodel can resolve. See e.g., full
explanations of representation errors in Hodyss and Nichols [10]
and Van Leeuwen [11], and a recent review by Janjić et al. [12].

The latter, representation errors, typically do not lead to non-
local correlation structures in the model domain as the origin of
these errors is sub grid scale. The discussion here focusses on
correlation between observation errors of observations that are
farther apart than the localization radius or than the imposed
correlation length scales in variational methods. As we will see,
there is a strong connection to non-local observations.

5.1. A Simple Example
Let us look at a simple example of two grid points that are
farther apart than the imposed localization radius, or than
physical correlation length scales. Both are observed, and the
observation errors of these two observations are correlated. The
observation operator H = I, the identity matrix. The covariance
matrices read:

B =
(

b11 0
0 b22

)

and R =
(

r11 r12
r21 r22

)

(25)

The inverse in the Kalman gain is a full matrix:

(HBHT + R)−1 = 1

D

(

b22 + r22 −r12
−r21 b11 + r11

)

(26)

in which D is the absolute value of the determinant, given by
D = (b11 + r11)(b22 + r22)− r12r21. The factor BH

T is diagonal,
as H is the identity matrix. Because of the non-zero off-diagonal
elements in the resulting Kalman gain the state component x1 is
updated as:

xa1 = xb1 +
1

D
b11(b22 + r22)(y1 − x1)−

1

D
b11r12(y2 − x2) (27)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 September 2019 | Volume 5 | Article 48

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


van Leeuwen Non-local Observations

To make sense of this equation we rewrite it, after some
algebra, as:

xa1 = xb1+
b11

b11 + r11

[

(y1 − x1)+
ρ1ρ2(y1 − x1)− ρ2(y2 − x2)

1− ρ1ρ2

]

(28)
in which

ρ1 =
r12

b11 + r11
and ρ2 =

r12

b22 + r22
(29)

This equation shows us several interesting phenomena. The first
term in the brackets denotes the update of x1 when we would
only use observation y1. The other term has to do with using
observation y2 while its errors are correlated with that of y1.
Interestingly, the update by y1 gets enhanced by a term with
factor ρ1ρ2/(1 − ρ1ρ2), which is positive. This update is also
changed by y2, with a sign depending on r12 and y2 − x2. To
understand where these terms come from we can rewrite the
expression above further as:

xa1 = xb1 +
b11

b11 + r11

[

1

1− ρ1ρ2
(y1 − x1)−

ρ2

1− ρ1ρ2
(y2 − x2)

]

(30)
We now see that the influence of the correlated observation
errors is to change the denominator of the factor that multiplies
the innovation y1 − x1. That denominator becomes smaller
because of the cross correlations, so the innovation will lead to
a larger update.

The influence of the second innovation is not that
straightforward. Let’s take the situation that the errors in
the two observations are positively correlated, so ρ2 > 0. Now
assume that y1 − x1 is positive. Then, as expected, the K11

element of the gain is positive, so the update to x1 is positive.
Indeed, we want to move the state closer to the observation y1.
On the other hand, we know that x1 is an unbiased estimate
of the truth, so this does suggest that the realization of the
observation error of y1 is positive. Let’s also assume that y2 − x2
is positive. As also x2 is assumed unbiased this suggests that
the observation error in y2 is positive too. The filter knows that
these two errors are correlated via the specification of R. Because
both innovations indicate that the actual observation error is
positive it will incorporate the contribution from y2 − x2 with a
negative sign to avoid a too large positive update of x1. If, on the
other hand, y2 − x2 would have been negative the filter has no
indication that the actual observation error positive or negative,
so y2 − x2 would be allowed to add positively to x1. However,
note that innovation will act negatively on the update of x2. The
Kalman Filter is a clever device, designed to ensure an unbiased
posterior for both x1 and x2.

A similar story holds for x2 as the problem is symmetric.
This shows that neglecting long-range correlations in observation
errors can lead to suboptimal results with analysis errors that
are too large. Similar results have been found for locally
correlated observations, e.g., [13, 14], and recent discussions on
the interplay between HBHT and R in Miyoshi et al. [15] and
Evensen and Eikrem [16].

5.2. The Connection to Non-local
Observations
An interesting connection can be made with recent ideas to
transform observations such that their errors are uncorrelated.
The interest for such a transform stems from the fact that many
data-assimilation algorithm implementations either assume
uncorrelated observation errors or run much more efficiently
when these errors are uncorrelated. Let us assume such a
transformation is performed on our two observations. There are
infinitely many transformations that do this, and let us assume
here that the eigenvectors of R are used.

Decomposing R gives R = U6UT in which the columns of U
contain the eigenvectors and 6 is a diagonal matrix with on the
diagonal the eigenvalues

λ1,2 =
1

2

(

Tr(R)±
√

Tr(R)2 − 4 detR
)

(31)

If we transform the observation vector as ŷ = UTy this new
vector has covariance matrix 6, and hence the errors in the
components of ŷ are uncorrelated. The interesting observation
is now that the components of ŷ are non-local observations
with uncorrelated errors. Hence, our analysis of the influence of
non-local observations applies directly to this case.

As a simple example, assume r11 = r22 = r and r12 =
r21 = ρr (this could be worked out for the general case, but the
expressions become complicated and serve no specific purpose
for this paper). In that case λ1,2 = r(1 ± ρ) and the eigenvectors
are (1, 1)T/

√
2 and (1,−1)T/

√
2. This leads to transformed

observations ŷ1 = (x1 + x2)/
√
2 and ŷ2 = (x1 − x2) /

√
2.

Using the Kalman Filter update equation for variable x1
we find:

xa1 = x1 +
1√
2D

[

b11(b22 + λ2)

(

ŷ1 −
1√
2
(x1 + x2)

)

+b11(b22 + λ1)

(

ŷ2 −
1√
2
(x1 − x2)

)]

(32)

in which D =
[

(b11 + b22 + 2λ1)(b11 + b22 + 2λ2)−
(b11 − b22)

2
]

/4 which turns out to be the same D as found for
the correlated observation errors. This is not surprising as with
y also H and R have been transformed, and hence HBHT + R

has transformed in the same way. This means we can always
extract a similar factor from the denominator of the Kalman
update. Hence, we have transformed the problem from local
observations with non-locally correlated errors to non-local
observations with uncorrelated errors.

To show that this is the same as the original problems we now
rewrite this analysis for the observations with correlated errors,
so in terms of y, and collect terms y1 − x1 and y2 − x2 to find:

xa1 = x1 +
1

D
b11(b22 + r)

(

y1 − x1
)

− 1

D
b11ρr

(

y2 − x2
)

(33)

With r22 = r and r12 = ρr we recover the analysis equation for
the correlated observation error case.

Hence we have shown that assimilating correlated
observations with correlation length scales larger than physical
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length scales is the same as assimilating the corresponding
non-local uncorrelated observations (this result has resemblance
to but is different from that of Nadeem and Potthast [17],
who discuss transforming all observations, local and non-local
such that they all become local observations. They then do the
localization and data assimilation in this space, and transform
back to physical space. This, of course, will lead to correlated
errors in the transformed non-local observations).

It will not come as a surprise that if observations are
assimilated sequentially and localization, or a fixed covariance
length scale, is used the order of assimilation matters, and non-
locally correlated observations should be assimilated after local
observations. Finally, it is mentioned that the story is similar for
non-local observation error correlations in time.

6. EXPLOITING NON-LOCAL
OBSERVATIONS

As mentioned above, to avoid cutting off non-local
observation information during sequential assimilation it
is best to assimilate the non-local observation after the
local observations. However, an alternative strategy is to
change the localization area if that is possible. Before the
non-local observation is assimilated the localization area
should remain as is. As soon as the non-local observation
is assimilated we have created significant non-zero
correlations along the domain of the non-local observation
operator. This means that we can include this area in the
localization domain.

To illustrate this idea the same experiments from section
4 have been repeated applying the procedure outlined above
for 1tobs = 10, and used the real observation error of the
observation at x5 in location x0. This means that effectively
there is no localization between these two grid points. This is an
extreme case, but does illustrate the point we want to make. The
results are depicted in Figure 7.

They show that changing the localization area after
assimilating the non-local observation does help. In theory,
for two variables, this should give the same result as assimilating
the non-local observation after the local observation. That this is
not the case here is because grid point 5 is also updated slightly
by grid point 10, and that reduces the variance at x1 further
when the non-local observation is assimilated last, while that
information is not available when the non-local observation is
assimilated first. The conclusion is that changing the localization
area after assimilating a non-local observation is beneficial for
the data-assimilation result.

Another way to explore the features of non-local observations
in data assimilation is as follows. Assume we have an area of
interest that is poorly observed, and not easily observed locally.
We assume that we do not have and cannot obtain accurate local
observations in that area, but a non-local observation is possible.
Section 4, and specifically Equation (18) shows that is make sense
to ensure that the support of this non-local observation contains
a well-observed area. In this way the area of interest will benefit
from the accurate information from the well-observed area via

FIGURE 7 | RMSE of state component x0 which is part of a non-local

observation, as function of observation error for 1obs = 10. Cases in which

the non-local observation is assimilated last (red, dots), when non-local

observation is assimilated first (blue, squares), and when the non-local

observation is assimilated first and localization area is adapted with localization

effectively removed between x5 and x0 (black, triangles).

the information bridge. Another way of phrasing what happens
is that by having an accurately observed area in the support
of the non-local observation its information is redistributed
more toward Another possibility along the same lines is when
we already have a non-local observation containing the area of
interest in its support. The accuracy in the area of interest can
be enhanced by performing extra local observations in an easy to
observe area, that is in the support of the non-local observation.
Hence again we exploit the information bridge, this time by
adding a local observation in a well-chosen position. This idea
provides a new way to perform targeted observations that has not
been explored as yet, as far as this author knows. This could also
be exploited in time, or even in space and time.

Finally, one might think that it is possible to enhance the
accuracy of the update in an area of interest by artificially
introducing correlated observation errors between observations
in that area and observations in another well-observed area. Since
correlated observation errors can be transformed to non-local
observations a similar information bridge can be build that might
be beneficial.

To study this in detail we use the example from section 5.1.
Assume that we have two observations with uncorrelated errors,
and we add a fully correlated random perturbation with zero
mean to them, so y1 = Hx1 + ǫ1 + ǫ and y2 = Hx2 + ǫ2 + ǫ

in which ǫ1 and ǫ2 are uncorrelated, and ǫ ∼ N(0, r), the same
value for each observation. Hence this ǫ term contains the fully
correlated part of the observation error that we added to the
observations artificially. This leads to a correlated observational
error covariance given by:

R =
(

r11 + r r
r r22 + r

)

(34)
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Using this in the Kalman gain we find for the gain of
observation y1:

1

D
b11(b22 + r22 + r)

= b11(b22 + r22 + r)
∣

∣(b11 + r11 + r)(b22 + r22 + r)− r2
∣

∣

= b11

(b11 + r11)

(b22 + r22 + r)(b11 + r11)
∣

∣(b11 + r11 + r)(b22 + r22 + r)− r2
∣

∣

= b11

(b11 + r11)

(b22 + r22 + r)(b11 + r11)
∣

∣(b22 + r22 + r)(b11 + r11)+ r(b22 + r22)
∣

∣

(35)

The first ratio is the Kalman gain without the correlated
observation error contribution. This is multiplied by the
factor when the correlated observation error is included. We
immediately see that this factor is smaller then 1, so reducing the
Kalman gain. This shows that adding extra correlated observation
errors to observations that are farther apart then the covariance
structures in the prior will not lead to better updates: in fact the
updates will deteriorate (As an aside, this would be different if we
would have access to ǫ1 and ǫ2, in which case ǫ could be a linear
combination of these two, and the Kalman gain could be made
larger than the gain for just assimilating y1. Unfortunately, we
are given y1 and y2, not their error realizations).

7. CONCLUSIONS AND DISCUSSION

In this paper we studied the information transfer in data-
assimilation systems when non-local observations are
assimilated. Non-local observations are defined here as
observations with a observation operator support that
is larger then the covariance length scales. This pertains
to both spatial and temporal non-locality. It is found
that these observations connect parts of the domain that
were not connected in the prior, building an information
bridge that is longer than the physics and statistics in the
prior predict. Hence the notion that information from
observations is spread around via the correlation length
scales in B is only part of the story as non-local observations
can spread information over larger distances. Indeed, one
should look at the full BHT factor of the gain, and realize
that the observation operator can change the covariance
structures.This suggests that the emphasis on covariance
modeling should shift away from the prior covariance and
toward the modeling of the covariances between model and
observation space.

We showed how non-local observation information
is transferred to the posterior in Bayes Theorem and
hence in fully non-linear and in linear and linearized
data-assimilation schemes, such as (Ensemble) Kalman
Filters and variational methods. Then we elaborated on
the interaction of localized covariances, as typically used

in the geosciences, and the sequential assimilation of
observations. It was shown that it is beneficial to assimilate
non-local observations after local observations in order to
maximize information flow from observations in the data-
assimilation system. This was quantified both analytically
and numerically.

Furthermore, it was shown that observations with
non-locally correlated observation errors can be
transformed to non-local observations with uncorrelated
observation errors, demonstrating the equivalence of
the two.

In an attempt to explore the information flow by non-
local observations we showed that non-local observations
do not have to be assimilated after local observations
if localization areas are extended along the support of
the non-local observation operator after the non-local
observations are assimilated, both analytically and with a
numerical example.

Furthermore, it was shown that targeted non-local
observations can be used to bring the information from
accurate observations to other parts of the system.
It was also shown that it is not beneficial to add
correlated observation errors to distant observations
to set up an information bridge as that will always
be detrimental.

These initial explorations of non-local observations might
guide the development of real data-assimilation applications
where observations are assimilated sequentially and non-local
observations and/or non-locally correlated observation errors
are used. The main message might be that one should
not optimize for the covariance structures in the prior, but
optimize the covariance structures between observations and
model variables.
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