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Ordinary differential equation systems (ODEs) are frequently used for dynamical system

modeling in many science fields such as economics, physics, engineering, and systems

biology. A special challenge in systems biology is that ODE systems typically contain

kinetic rate parameters, which are unknown and have to be estimated from data.

However, non-linearity of ODE systems together with noise in the data raise severe

identifiability issues. Hence, Markov Chain Monte Carlo (MCMC) approaches have

been frequently used to estimate posterior distributions of rate parameters. However,

designing a good MCMC sampler for high dimensional and multi-modal parameter

distributions remains a challenging task. Here we performed a systematic comparison

of different MCMC techniques for this purpose using five public domain models. The

comparison included Metropolis-Hastings, parallel tempering MCMC, adaptive MCMC,

and parallel adaptive MCMC. In conclusion, we found specifically parallel adaptive

MCMC to produce superior parameter estimates while benefitting from inclusion of our

suggested informative Bayesian priors for rate parameters and noise variance.

Keywords: Bayesian inference, parameter estimation, ODEmodels, Metropolis-Hastings, adaptiveMCMC, parallel

tempering MCMC, likelihood computation

INTRODUCTION

Ordinary differential equations systems (ODEs) have been widely used for modeling dynamical
systems. Models based on ODEs have applications in many science fields such as economics,
physics, engineering, and systems biology. Together with the initial conditions, the value of
parameters in the ODE system determine the dynamical behavior of the model. A special challenge
in systems biology is that parameters (typically kinetic rate parameters) are often unknown and
have to be estimated from data. Non-trivial challenges in that context comprise non-linearity of
ODE systems together with noise in observable data. In biology, noise is inherent in all natural
processes on molecular level up to whole ecosystems [1]. In addition, observable data is affected by
noise inherent into the applied measurement techniques.

Optimization methods, as e.g., implemented in Copasi [2], PottersWheel [3], and other tools,
are often applied for parameters estimation in systems biology. However, given the typical
non-linearity of ODE models in systems biology, optimization methods will in general only
result into kinetic rate parameters corresponding to some local maximum of the log-likelihood
landscape, requiring e.g., multi-start strategies to address the potential existence of multiple local
maxima. Moreover, ODEs in many applications have parameters that are structurally or practically
non-identifiable [4–6].
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To address this issue some authors have proposed
evolutionary algorithms, see e.g., [7, 8], which belong to
the class of global optimization algorithms. A principle
alternative to optimization techniques are Markov Chain
Monte Carlo (MCMC) methods, which follow a Bayesian
inference paradigm and estimate the full posterior distribution
of kinetic rate parameters. Example applications in systems
biology include models for influenza transmission [9], the effect
of cyclosporine on the Nrf2 pathway [10], and B-and T-cell
dynamics induced by vaccines of Varicella-Zoster Virus [11].
MCMC was introduced in 1953 by Metropolis [12] and later on
generalized by Hastings [13]. The central idea behind MCMC is
to define a convergent Markov chain over the sampling process,
which in the limit guarantees to draw from a true stationary
(possibly high dimensional) statistical distribution. Ergodicity
implies that averages of the samples taken during the iteration
of the algorithm converge to their expected values. However, in
practice it is difficult to assess when convergence has occurred.
Furthermore, the speed of convergence can differ between
different MCMC algorithms. Several algorithmic approaches
have been proposed to enhance convergence speed of the MCMC
sampling process. These approaches include adaptive MCMC
[14] and the use of parallel MCMC chains. The intent of parallel
MCMC chains is to cover a larger portion of the parameter
space at the same time. This may help to address one of the
larger challenges with MCMC algorithms, namely that they
may often have difficulties to pass through a “tunnel” of low
density in a likelihood landscape with several statistical modes.
Notably, there exist variants of parallel MCMC algorithms that
also exchange information about parameters with the intend to
improve mixing [15]. Furthermore, parallel adaptive MCMC
algorithms have been proposed [16, 17].

The primary purpose of this work was to compare different
MCMC approaches for estimating kinetic rate parameters of
ODE systems in systems biology. More specifically, we here
compared standard Metropolis-Hastings (MH) and adaptive
MCMC to parallel tempering and parallel adaptive MCMC.
The main distinction to the work by Ballnus et al. [18] is the
evaluation of larger benchmark models with a wide range of
simulated noise levels and with a particular focus on the quality
of derived parameter estimates. Moreover, in contrast to previous
work we investigated the potential benefit of specifically designed
informative Bayesian priors for kinetic rate parameters.

METHODS

ODE Models
Three models were selected from the BioModels Database of
the European Bio-informatics Institute [19]. The first selected
model was proposed by Kholodenko [20] and consists of
8 species (i.e., variables) and 22 parameters (model 1). The
model describes positive and negative feedback loops within
the MAPK phosphorylation cascade. Model 2 by Schilling et al.
[21], contains 33 species and 26 parameters. This model is the
representation of the ERK phosphorylation in CFU-E. Model 3
describes Smad signaling and was formulated by Clarke et al.
[22]. It contains 10 species and 13 parameters. Out of these three

models, model 2 is based purely derived from mass action, while
the others use Michaelis-Menten and Hill kinetics.

The purpose of these three models was to compare different
MCMC algorithms on the basis of a known ground truth with the
help of simulated data containing pre-specified levels of noise. In
addition, we used two models, for which experimental data was
available. The fourth model is taken from [23] and describes the
role of receptor endocytosis in the feedback mechanism involved
in the insulin resistance and type 2 diabetes. The model contains
18 parameters and 9 species. Measured data for this model under
nine different experimental conditions can be downloaded from
the repository made available by [24].

The fifth model was proposed by Raia et al. [25]. Their
work presents a signaling pathway of the Hodgkin and Primary
Mediastinal B-Cell Lymphome induced by IL13. The model has
22 parameters and comprises 14 species. Measured data for
this model under four different experimental conditions can be
downloaded from the repository made available by [24].

For convenience, all five models are included into the
supplements of this paper in SMBL format.

Simulation of Data
To compare the performance of different MCMC methods we
simulated data for the first three models based on the known
rate parameters reported in BioModels. Simulations were done by
integrating the respective ODE systems at 17 different time points
t = {0, 0.25, 0.5, 1, 1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, 18, 24, 36, 48, 100}
while taking a steady state of each system as initial condition.
We used Large-scale Bound-constrained Optimization [26] to
estimate a steady state, and we used Sparse Jacobian (LSODES)
as ODE solver [27].

To simulate measured data, we added at each time point to
ODE predictions different levels of noise:

ys(t) = xs(t)+ εsi (1)

εsi = |max
t

xs (t)−min
t

(t)|U (2)

Here ys (t) denotes the noise corrupted data for species s, xs(t),
the original model prediction, and U ∼ N (0, τ ) with τ = {0.001,
0.005, 0.01, 0.05, 0.1, 0.15, 0.25}. Hence, the noise level at each
time point represented 0.1%, 0.5%, . . . , 25% of the value range of
xs. Three replicate measurements were simulated for each species
in this way.

Likelihood Model
We assume experimental data to be given as D = {ys,t,r,c|s =

1, . . . , n, t = 1, . . . ,T, r = 1, . . . ,R, c = 1, . . . ,C}, where n is the
number of species, T the length of time series and R the number
of replicate measurements per time point, and C is the number
of experimental conditions. Under the assumption of Gaussian
measurement noise the log-likelihood of the data given a set of
parameters K can be described as

log
(

p (D|K, σ)
)

∝

C
∑

c=1

n
∑

s=1

T
∑

t=1

R
∑

r=1

(

−

(

ys,t,r,c − xs,c(t)
)2

2σs,t,c2

)

(3)
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FIGURE 1 | Empirical distribution of KM, using Homo sapiens data from

Brenda Database [30]. Source: https://www.brenda-enzymes.org.

where xs,c(t) denotes the prediction made by the integrated ODE
model for the abundance of species s at time t under condition
c, and σ s,t,c

2 is the measurement noise. We denote the vector of
all σ s,t,c

2 as σ . In practice the number of replicate measurements
R for each species is low (typically below 5). Hence, we cannot
assume the empirical variance ss,t,c

2 to be a good estimate for
σs,t,c

2. Therefore, one may impose an inverse gamma distribution
prior for σs,t,c

2:

σs,t,c
2∼IG (α,β)

With this setting the marginal likelihood
∫

p(D|K, σ )p(σ )dσ can
be calculated analytically [see our earlier publication [28] for an
exact derivation], yielding

log
(

p (D|K)
)

=

C
∑

c=1

n
∑

s=1

T
∑

t=1

R
∑

r=1

−

(

α +
1

2

)

log

(

1+
1

2β

(

ys,t,r,c − xs,c(t)
)

2)

(4)

In practice, hyper-parameters α and β can be estimated in an
empirical Bayes sense by fitting an inverse gamma distribution
to empirical variances of all observed species and time points.

An Informative Prior for Kinetic Rate
Parameters
Optionally, for each kinetic rate parameter k ∈ K wemay a-priori
suppose a log-normal distribution, i.e.,

log
(

k
)

∼ N
(

µ, ρ2
)

(5)

where µ, ρ2 are free parameters.

FIGURE 2 | Empirical distribution of all parameters in BioModels

Database [19]. Source: https://www.ebi.ac.uk/biomodels-main/.

To get an estimate of these parameters we used Brenda [29, 30]
and the BioModels database [19]. Brenda contains information
on Michaelis-Menten constants in enzyme reactions. BioModels
comprises kinetic rate parameters of various type. We fitted the
empirical distributions of Michaelis-Menten constants in Brenda
and parameters in BioModels (Figures 1, 2). If a particular
parameter in an ODE system was a Michaelis-Menten constant,
we used the parameter fits from Brenda as estimates for µ, ρ2 in
Equation (5), otherwise we used parameter fits from BioModels.
The R-code for construction of the prior is included in the
Supplementary Material.

Markov Chain Monte Carlo (MCMC)
General
Our aim is perform full Bayesian inference on model parameters
Kgiven data D, i.e., to estimate

p (K|D) =
p(D|K)p(K)

∫

p(D|K)p(K)dK
(6)

The main motivation for full Bayesian inference is to obtain
estimates that appropriately consider uncertainty within a
theoretically sound framework while circumventing non-
linear optimization. Full Bayesian inference therefore addresses
practical and structural non-identifiability of parameters in
ODE systems. In addition, informative priors can be used to
incorporate background knowledge, see last section. The main
challenge with full Bayesian inference is, however, that the
high dimensional integral in Equation (6) is computationally
intractable. In this work thus focus on MCMC based parameter
estimation. Hence, using a Gaussian transition kernel q in
log-parameter space, a candidate parameter set K ′ is accepted
with probability:
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a = min

(

1,
p(D|K ′)p(K ′)

p(D|K)p(K)

)

Notably, the transition kernel q can be univariate or multivariate.
We compared a Metropolis-Hastings (MH) algorithm to parallel
tempering [15], adaptive MCMC and parallel adaptive MCMC
[17]. MH and parallel tempering rely on a univariate transition
kernel. That means first a single parameter out of the set
of all possible rate parameters is randomly selected and then
the transition kernel applied. In contrast, adaptive MCMC
employs a multivariate Gaussian transition kernel in parameter
space, where the covariance matrix is adapted based on the
empirical covariance between sampled parameters. We used the
implementation offered in R-package adaptMCMC here [31],
which employs the algorithm by Vihola et al. [17].

Parallel MCMC
One specific goal of this work was to check whether parallel
MCMC methods offer an advantage for kinetic rate parameter
estimation due to their theoretical ability to explore different
modes of the parameter distribution in parallel. Parallel
tempering follows the idea of a “heated” MCMC chain,
where the log-likelihood, interpreted as “energy,” is divided
by a “temperature” T. Notably, if T becomes large, MCMC
moves become more probable. In consequence, large moves in
parameter space are possible. On the other hand, at low values
of T the MCMC sampler is more likely to reject moves and
thus explore the parameter distribution more locally. In parallel
tempering, several MCMC chains with different temperatures are
run in parallel. Swap operations allow for exchanging elements
between different chains. We used the implementation in R-
package “mcmc” in this work [15].

In contrast to parallel tempering, the parallel adaptive MCMC
implementation offered in R-package adaptive MCMC [31] does
not exchange information between different chains of an adaptive
MCMC. Each chain is run independently.

Parallel tempering and parallel adaptive MCMC were applied
with 1, 5, 10, and 15 chains. Notably, the situation with 1
chain corresponds to a conventional MH algorithm and adaptive
MCMC, respectively.

Convergence
MCMC sampling was done for 1 Million iterations for each
algorithm. One of the main challenges with MCMC methods
in practice is the assessment of their convergence to the true
posterior distribution, i.e., when the situation is reached that the
algorithm starts drawing samples from the target distribution.
Trace plots of the (marginal) log-likelihood (Equations 3 and
4, respectively) are often used to give a hint, but are purely
visual and subjective tools. Hence, we relied on Geweke’s test
[32] to assess convergence of single MCMC chains. Geweke’s test
compares the means of the first (usually 10%) and the last part
(usually 50%) of a Markov chain. If the MCMC has converged
to a stationary distribution, samples in the first and last part
should display the same means, and Geweke’s test statistic (a z-
score) should be close to zero. Correspondingly, a p-value can be
derived under the null hypothesis of convergence, i.e., z = 0.

Geweke’s test can be applied sequentially, if the entire MCMC
chain is divided into m segments, and the z-score is calculated
while leaving out the first segment, the first two segments, etc.
Holm-Bonferroni method [33] was applied to the p-values.

For parallel MCMC methods we applied the Gelman-Rubin
convergence diagnostic [34]. This diagnostic compares the
within-chain variance to the between-chain variance, resulting
into a factor, which indicates lack of convergence, if it is
substantially larger than 1 (here: 1.05).

Convergence diagnostics are applied to individual parameters
in each model. Typically, these are then inspected manually, and
accordingly it is decided whether more iterations are needed. For
obvious reasons, such an approach is infeasible in the context of
a systematic algorithm comparison, which we performed here.
Hence, we determined the optimal number of burn-in iterations
by identifying the first iteration, where Geweke’s test and the
Gelman-Rubin statistic (in case of parallel chains) indicated
convergence. Geweke’s test can indicate a different burin-in
period for each parameter. To reach a consensus we relied our
analysis on the longest burn-in among all parameters, which is
in agreement to Ballnus et al. [18]. As usual, results from the
MCMCburn-in phase were discarded and statistics of parameters
computed only from the remaining iterations after thinning by
every 100th iteration.

Effective Sample Size
In addition to convergence we investigated the number of
samples drawn by the sampling process while adjusting for
autocorrelation. The effective sample size (ESS) is given by:

ESS = T
σ 2

ρ

where T denotes the number of drawn samples, and σ 2 and
ρ their variance and autocorrelation, respectively. The ESS
was calculated via the implementation provided in R-package
coda [35].

Evaluation of Estimated Parameters
MCMC samples can be analyzed in different ways to draw
conclusions about the posterior distribution of estimated model
parameters. Here we asked, which fraction of true parameters of
a particular model were falling into the 95% Bayesian credible
interval of MCMC samples. This measure was used to evaluate
the quality of parameter estimates.

RESULTS

Convergence Diagnostics
In agreement with several authors [36–38], we initially compared
different MCMC algorithms without any informative priors,
i.e., neither for the noise variance (Equation 4) nor for
rate parameters (Equation 5). That means in this particular
comparison only the empirical variance of measurements
over three replicates was used as an estimate for the true
noise variance.

Figure 3 exemplifies the trace of the log-likelihood over 1
MillionMCMC iterations for one of our models at lowest relative

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 November 2019 | Volume 5 | Article 55

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Valderrama-Bahamóndez and Fröhlich MCMC Techniques for Parameters Estimation

noise level 0.1%. Actual calculation times are shown in Figure 4,
demonstrating that our employed parallel adaptive MCMC
implementation is usually slower than parallel tempering,
because the “adaptMCMC” package is pure R-code, whereas

FIGURE 3 | Example of the log-likelihood trace for model 1 and noise variance

1%.

the “mcmc” package relies on a C implementation of the
MCMC algorithm.

We next analyzed all algorithms with respect to convergence
via the Geweke test (single chain MCMC) and Gelman-
Rubin statistic (multi-chain MCMC), respectively (Table 1).
Accordingly, convergence could be assessed in all cases
for parallel tempering and single adaptive MCMC, but
not for multi-chain adaptive MCMC. No systematic
dependency between noise level and convergence failure could
be observed.

It is important to highlight here that all convergence tests have
their limitations. In particular, the Gelman-Rubin diagnostic may
simply fail to identify convergence due to the multi-modality of
the posterior distribution [39]. Similarly, the Geweke test tries to
verify a necessary but not sufficient condition for convergence.
Thus, the test can only provide hints, whether convergence has
likely failed, but not when it has been achieved.

Influence of Informative Priors on Convergence
Next, we investigated whether there was an influence of
informative prior distributions for noise variance (Equation
4) and rate parameters (Equation 5) on convergence. Since
informative priors should be of particular use in situations
with higher measurement noise, we only performed this
comparison for noise levels 5, 10, 15, and 25%. Moreover,

FIGURE 4 | Empirical calculation times for 1 million iterations with different MCMC algorithms based on the implementations used in this paper. For models 1–3

boxplots depict the distribution due to repeats with different simulated noise levels. Time execution for models 4 and 5 is represented with barplots. Models were run

on a 24 core Intel Xeon E5-2697 machine with 128 GB RAM.
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TABLE 1 | Cases in which no convergence was observed according to Geweke’s (single chains) and Gelman-Rubin’s test (parallel tempering).

Algorithm Noise level and number of parameters failing convergence

Model 1 Model 2 Model 3 Model 4 Model 5

Metropolis-Hastings 0.1 (1) 0.5 (2)

Parallel tempering

Single adaptive

Adaptive−5 chains 0.1 (2, chains: 1, 2),

0.5 (1, chain: 3),

1 (1, chain: 2)

Adaptive−10 chains 25 (1, chain: 5) 1 (1, chain:2) 5 (3, chains: 6, 10)

Adaptive−15 chains 0.1 (1, chain: 7),

0.5 (2, chain: 14),

1 (1, chain: 5)

0.1 (1, chain: 10),

1 (1, chain: 5)

25 (2, chain: 12)

The bold numbers indicate the corresponding noise level. In brackets, the number of parameters with failed convergence diagnostic are shown. For models 4 and 5 no convergence

failures was observed.

TABLE 2 | Influence of informative priors on convergence for single chain MCMC algorithms.

Algorithm Prior Noise level and number of parameters failing convergence

Model 1 Model 2 Model 3 Model 4 Model 5

Metropolis-Hastings None 0.1 (1) 0.5 (1)

Variance

Rate parameters 5 (1), 10 (1)

Both 15 (2)

Single adaptive None

Variance 5 (6), 10 (3), 15 (3),

25 (9)

Rate parameters

Both

The table shows the cases, in which non-convergence of at least one parameter was observed (Geweke’s test). The bold numbers indicate the corresponding noise level, and in brackets

the number of parameters with failed convergence diagnostic. For models 4 and 5 no convergence failure was observed.

we restricted this assessment to Metropolis-Hastings and
single chain adaptive MCMC. According to the results
shown in Table 2 no clear influence of informative priors
on convergence could be identified for Metropolis-Hastings,
but in case of single adaptive MCMC all models showed
convergence when incorporating an informative prior for
rate parameters.

Effective Sample Size
Parallel MCMC Yields More Effective Sampling
We compared the ESS achieved by the different MCMC
algorithms while not using any informative prior and fixing
the noise level to 10% (Figure 5). Interestingly, our results
indicate the most effective sampling by parallel tempering
for models 1, 4, and 5, while for the other two models
parallel adaptive MCMC seemed to be most efficient. We
speculate that in case of non-trivial correlations among
parameters adaptive MCMC might yield a higher ESS.
Altogether, parallel MCMC techniques seem to provide an
advantage compared to single chain methods, which matches
the intuition.

Influence of Informative Priors on Effective Sample

Size
We next investigated, whether informative priors would enhance
the effective sampling size. We focused this comparison on single
chain adaptive MCMC and Metropolis-Hastings with the same
noise level as in the previous paragraph. Interestingly, a certain
advantage of informative priors could only be observed for
adaptive MCMC (Figure 6). However, the exact type of prior that
yielded most effective sampling was not identical for all models,
and for model 4 no influence of the prior on effective sampling
size could be observed.

Parameter Estimates
We compared the fraction of true model parameters lying within
the 95% Bayesian credible interval of the posterior distribution.
Our results indicate a clear benefit for parallel adaptive MCMC
for all models and noise levels (Figure 7). Interestingly, parallel
adaptive MCMC seems highly robust against noise, because
the fraction of true parameters lying within the 95% Bayesian
credible interval was not obviously affected. Also on experimental
data parallel adaptive MCMC resulted into a high fraction of
true parameters within the 95% Bayesian credible interval, even
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FIGURE 5 | Effective sample size achieved by different MCMC algorithms per model. The y-axis is on log-scale.

FIGURE 6 | Influence of informative Bayesian priors on effective sample size. The y-axis is on log-scale.

with only 5 parallel chains. Parallel tempering showed a quite
unsystematic dependency on noise level, and altogether the
fraction of truemodel parameters covered by the credible interval
was much lower than for parallel adaptive MCMC. This indicates
that learning the covariance structure of model parameters, as
done by parallel adaptive MCMCmethods, is probably primarily
beneficial for an effective exploration of different modes of the
posterior distribution. Different parallel chains begin to explore
different regions of the posterior, and the covariance structure
seems to guide the focus on those regions.

We explored whether our suggested informative priors could
improve parameter estimation, while focusing on single chain
MCMC methods. Figure 8 clearly shows that this was the
case, also with experimental data. Specifically, a combination

of both informative priors yielded a high fraction of true
model parameters covered by a Bayesian 95% credible interval.
The benefit was most pronounced for adaptive MCMC, and
the combined effect of both priors was in models 1–3
stronger than each individual one. In model 5 the informative
prior for model parameters in adaptive MCMC yielded the
strongest benefit.

CONCLUSION

ODE systems play an important role to describe biological
mechanisms in systems biology and systems medicine. However,
kinetic rate parameters appearing in these models are typically
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FIGURE 7 | Heatmap for the fraction of true parameters lying into the 95% Bayesian credible interval of MCMC samples. Samples were estimated by single and

multiple parallel MCMC. X-axis is labeled with noise levels used in the fiver models (dark red color bar, model 1; red, model 2; light red, model 3; light yellow, model 4;

yellow, model 5).

FIGURE 8 | Heatmap for the fraction of true parameters lying into the 95% confidence interval of MCMC samples. Samples were estimated through different

likelihood computation. X-axis is labeled with noise levels used in the five models, starting with model 1 and ending with models 4 (light yellow) and 5 (dark yellow).

unknown and have to be inferred from experimental data,
which is a challenging problem due to practical and structural
non-identifiability of parameters [4–6]. Full Bayesian inference
can in principle address both aspects, but usually requires
computationally costly sampling via MCMC. The design of a
good sampling algorithm providing sufficiently fast convergence

to the target distribution, high ESS, and high probability of
coverage of the true parameter is therefore very important.
However, this is non-trivial from a statistical point of view.
The first aim of this work was to benchmark different MCMC
strategies, specifically including parallel MCMC methods that
can—at least in theory—deal with the existence of multiple
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statistical modes of posterior distributions. The second aim was
to understand, whether our suggested prior distributions for
noise variance and rate parameters were beneficial.

Using five published ODE models we performed extensive
comparisons of our tested MCMC algorithms by investigating
convergence behavior, ESS, and the quality of parameter
estimates. Our results showed that with parallel adaptive MCMC
the highest fraction of true model parameters was covered by
the 95% Bayesian credible interval of the posterior distribution.
In addition, adaptive MCMC methods appeared to benefit
most from the inclusion of our suggested informative priors,
including convergence. No benefit in terms of convergence
could be found for parallel adaptive MCMC compared to
other MCMC methods. ESS in general increased with parallel
sampling methods (matching the intuition), but this benefit was
independent of the type of parallel MCMC approach. Of course,
we cannot fully exclude that beyond the impact of the actual
MCMC sampling technique there is also some (minor) influence
of the actual code implementation used in this paper.

MCMC techniques are per se not without limitations. As
mentioned above they are computationally costly due to the
large number of required likelihood function evaluations, and
with significantly larger ODE systems than the ones used in
this work convergence might become more challenging. Notably,
some authors have suggested specific approximations to deal
with computationally expensive posterior distributions, e.g., via
Gaussian Process regression [40] and local approximations [41],
which might be a principle way to scale the methods investigated
in this paper to larger ODE systems.

In summary, according to our results parallel adaptiveMCMC
in conjunction with the suggested variance prior and prior
for kinetic rate parameters seems a promising approach for
full Bayesian inference of parameters in ODE based models in
systems biology.
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