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INTRODUCTION

Financial volatility, risk measures and inequality are issues that concern not only finance and
economics. It is a rather broad topic related to politics, education, health, and many other areas
in social sciences. The globalization and the economic crisis of 2008 have made volatility modeling
one of themost attractive research topics [1]. On the other hand, income inequality is themain issue
for the economic growth of any country. How do inequality, financial volatility and risk measures
behave during the periods of economic crisis?

Academics and financial institutions develop sophisticated models in order to estimate and
forecast volatility and market risk. Volatility, which is the main characteristic of any financial asset
and its return, plays a very important role in many financial applications. Its primary role is to
estimate the value of market risk. Well-known measures for the estimation-evaluation of market
risk are Value-at-Risk (VaR) and Expected Shortfall (ES). Value-at-Risk is referring to a “portfolio’s
worst outcome which is likely to occur at a given confidence level” while Expected Shortfall is “the
average of all losses which are greater or equal than Value-at-Risk.” The family of ARCH-GARCH
models is themain representative of the parametricmodels used for the calculation of Value-at-Risk
and Expected Shortfall measures.

Though volatility in financial data is not directly observable, it has some characteristics
commonly seen in asset returns. These characteristics, known as “stylized facts” of financial time
series returns, are mainly summarized to the volatility clustering [2] and leverage effect [3], along
with a distribution which is heavy-tailed with downward skew and strong autocorrelations in
squared returns. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model
and its extensions are able to capture volatility clustering very efficiently. This is known in the
literature as Univariate ARCH-GARCH modeling. One the other hand, there are many ways to
observe and measure income inequality. One of the most popular measures of income inequality
is the examination of top income shares, which gives important indications of the structure of
long-term economic development [4].

On the other hand, there is important voluminous recent literature developed, especially after
the 2008 crisis [5–7] on how much volatility contributes to inequality.

The target of this paper is to present the inequality evolution through the evolution of the top
1%’s income share and at the same time try to connect and compare the performance of alternative
ARCH/GARCH univariate models for the estimation of 95%Value-at-Risk (VaR) and 95%Expected
Shortfall (ES) measures for three equity indices. We draw conclusions about which methods fit
better according to certain statistical criteria.We implement six alternative specifications of ARCH-
GARCH family volatility models—GARCH(1,1), GARCH(1,2), GARCH(2,1), EGARCH(1,1),
TGARCH(1,1), GJR GARCH(1,1)—under two distributional assumptions, the normal error and
Student-t distributions. The alternative distributions allow selecting a more flexible model for
the return tails. For this purpose, daily data of three stock exchange indices have been used.
The financial time series data used are the US S&P500, the British FTSE 100 and the German
DAX. The period studied is from January 2000 to May 2015. The criteria for the period chosen
is the availability of inequality data. The criteria for the country choice are mainly inequality
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data availability from the same data bank for the same period of
time. Specific R code packages (urgarch, mrgarch, Performance
Analytics) have been used for the estimation. The VaR one-
day-ahead out-of-sample forecasts are evaluated according to
Kupiec’s and Christoffersen’s tests. ES is evaluated through the
estimation of Loss Function.

This paper is structured as follows: Firstly, we discuss briefly
the financial data employed as well as inequality data. Then,
in section Estimation of GARCH Models, we present the
estimated coefficients of the univariate GARCH models, which
are GARCH, EGARCH, TGARCH, and GJR-GARCH under
two alternative error distributions. Next, volatility forecasts and
95%VaR as well as 95%ES estimates produced by alternative
GARCH models are shown. Evaluation of various GARCH
models’ average 95%VaR and 95%ES estimates based on Kupiec’s
and Christoffersen’s criteria and respective Loss Function are
also discussed. Finally, conclusions are presented in section
Conclusions, as well as possible future research extensions.

Data and Stylized Facts
For our study, we use daily data from three stock indexes:
the Chicago Standard and Poor’s 500 (S&P500), the London
Financial Times Stock Exchange 100 (FTSE100) as well as the
German Stock Index (DAX30). The data cover the period January
2000-May 2015. For all three indices, the evolution of their
adjusted closing prices and their continuously compounded daily
returns are illustrated in Figures 1, 2, respectively.

The most important financial events that are responsible for
the main financial crises, depicted in Figure 1, are the following:
In 2000, a massive fall in equity markets from over-speculation
in tech stocks was produced by dot-com bubble pops. After
that, in 2001, another junk bond crisis took place and the crisis
in Argentina resulted in defaulting payment obligations by the
government. Also, the September 11th attacks of the same year
hindered various critical communication hubs creating great
risk. The next year, 2002, a serious bond market crisis in Brazil
took place. Five years later, in 2007 US real estate resulted
in the collapse of massive international banks and financial
institutions. In September 2008, Lehman Bros. bankruptcy takes
place, creating a great fall and in the 29th of the same month the
Dow Jones falls 778 points. In February of 2009, the Financial
Stability Plan is announced and the Recovery Act is signed. This
global crisis did not start at the same time for every country, for
instance the U.K officially enters recession in January 2009.

Visual inspection of indices in Figure 2 shows clearly that the
mean is constant, but the variance keeps changing over time,
so the return series does not appear to be a sequence of i.i.d.
random variables. The stylized fact noticeable from the figures
is the volatility clustering according to Madelbrot [2] and Famma
[8]. Table 1 provides summary statistics as well as Jarque-Bera
statistic for testing normality. In all cases, the null hypothesis
of normality is rejected and there is evidence of excess kurtosis
and asymmetry.

In Figure 3, we may observe the phenomenon of leverage
by plotting the daily market prices and their volatility
(standard deviations of the continuously compounded returns).
The periods of market drops are followed by a large
increase in volatility. The leverage effect is captured by

asymmetric conditional volatility specification models presented
in sections below.

Inequality Evolution: 1% Top Income
Shares in USA, UK, Greece and France
One of the most popular measures of income inequality is the
examination of top income shares [9] which gives important
indications of the structure of long-term economic development
[4]. In this section we discuss the 1% top income share using a set
of macroeconomic factors for the period 1971–2014. We tested
[10] for the existence of a long-run relationship between 1% top
income share (tis) and the other macroeconomic factors for the
cases of France, UK, Greece and USA [11] using the bounds test
for cointegration proposed by Pesaran et al. [12].

According to the current literature on income inequality, we
utilize tax data for the period 1972–2014 in order to study top
income shares, following the suggests [13] methodology.

More specifically, we investigated [10] how and to what extent
the main macroeconomic factors may affect income inequality as
measured by top income shares. The macroeconomic indicators
of most interest are the economic development and the openness
of the economy, as well as education, financial development,
and inflation.

The methodology of Autoregressive Distributed Lag (ARDL)
cointegration is employed to analyze empirically the long-
running relationships and dynamic interaction among the
variables of interest. The findings refer to the period before and
after the economic crisis for USA, UK, Greece and France. If
the results are favorable, we can continue forming the long-
run relationship, calculating the long-run multipliers, the short-
run dynamics, the speed of the adjustment to the long-run
equilibrium, etc. If the results show no signs of cointegration
among the variables, the formation of the long-run relationship
and those that were described above would be meaningless
because the results would be spurious.

For the cases of France and Greece the ARDL test concluded
in favor of the existance of a long-run relationship. In the case of
USA the unit root tests shows that tis01 is trend stationary but
it is a generate one while for UK the test is incocnclusive so we
are not able to suggest a long run relationship [10]. In Table 2, we
present some summary statistics about the tis01 series for each
country. The results in the table are calculated using the data for
the period 1971 to 2014. The evolution of income inequality as
this is captured from the 1% top income shares and the respective
yearly changes are presented in Figures 4, 5. We notice that there
is a sharp upward increase of the 1%tis after the mid 80s’ period
for all three countries. The 2008-09 economic crisis is captured
with a violent decrease in France and UK but not for the USA.
So, the financial implications of the 2008 economic crisis affected
some countries more heavily than others.

So, if we study carefully Figures 2–5 we notice that the
deep recession in the stock market in 2008 does not affect
immediately the 1% top income share. The inequality effect
is not the same in all four countries with respect to time,
duration, and sharpness. That is, in Greece the consequences
came almost immediately with sharper changes in the inequality
index than other countries. There is also a long-lasting period of
continuously rising inequality [14]. On the other hand, in USA,
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FIGURE 1 | Adjusted closing prices of DAX, FTSE100, and S&P500 from Jan. 2000 to May 2015.

FIGURE 2 | Daily returns of adjusted closing prices of DAX, FTSE100, S&P500, from Jan. 2000 to May 2015.
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UK, and France the effect of the crisis shows a decline in the
1% top income share, which appears later (after 2010) but is not
that sharp as in Greece (in mean levels) and shows mixed year
to year changes. The trend in USA seems to be unaffected while
in UK and France there is a slight trend change, which signals
trend ambiguity.

But what if we try to connect these findings with
the risk measures? Which model should we use in
order to connect volatility with risk measures and then
to inequality?

In the following section an econometric analysis is applied in
order to choose the best fitting model to volatility data.

TABLE 1 | Summary statistics of the S&P500, FTSE100, DAX equity indices

(ln- returns).

S&P500 FTSE100 DAX

Mean 0.00001 0.00000 0.0001

Standard Dev. 0.0127 0.0121 0.0154

Skewness −0.1850 −0.1592 0.0098

Kurtosis 11.1035 9.5095 7.2325

Jarque-Bera 10613.49 7086.34 2926.82

[p-value] [0.00] [0.00] [0.00]

Minimum −0.0947 −0.0926 −0.0743

Maximum 0.1096 0.0938 0.1080

Median 0.0006 0.00002 0.0008

Observations 3,871 3,921 3,921

ESTIMATION OF GARCH MODELS

In this section, we present and discuss for all three equity indices
the estimation of three symmetric GARCH(p,q) models and
three asymmetric GARCH(1,1) under two error distributions: the
Normal and Student-t. The respective estimated specifications
are as follows: GARCH(1,1), GARCH(1,2), GARCH(2,1),
EGARCH(1,1), TGARCH(1,1), and GJR-GARCH(1,1). For the
estimation of these models, we used the fGARCH package,
which follows model specification (2.11), as well as Performance
Analytics and ugarch. For all models, the AIC [15] and SBC
criteria are presented in Table 3. For each equity index, the
best symmetric GARCH(p,q) is selected according to the
best SBC criterion. All three asymmetric models for each
index are also presented analytically in Tables 4–6 under two
error distributions: the normal and student-t. For all considered
models, tests are conducted for their residuals for autocorrelation
(Ljung and Box’s Q-test) and for heteroscedasticity (ARCH LM

TABLE 2 | 1% Top income share: summary statistics.

Min. Median Mean St. Dev. Max.

tis01_FRA 0.077 0.100 0.103 0.015 0.127

tis01_USA 0.104 0.148 0.151 0.035 0.208

tis01_GBR 0.057 0.103 0.102 0.033 0.154

tis01_GRC 0.039 0.053 0.054 0.011 0.091

FIGURE 3 | Daily logvalues and recursive standard deviation of returns for all indices.
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FIGURE 4 | The evolution of 1% top income shares.

FIGURE 5 | The evolution of first differences of the 1% top income shares.

tests). Almost all models do not violate the homoskedasticity
hypothesis. In Table 7 the findings are as follows:

For the symmetric GARCH models for all equity indices
for both error distributions, the best model according
to both AIC and SBC criteria is GARCH(2,1), with the
only exception of FTSE, where GARCH(1,1) is suggested
by SBC.

For the asymmetric GARCH models, under the normal
distribution for the indices S&P500, DAX, and FTSE,
both AIC and SBC criteria suggest that TGARCH(1,1) is
the best.

Under the Student-t: For both AIC and SBC the
TGARCH(1,1) is the best for FTSE and DAX indices.
EGARCH(1,1) is the best for S&P500.
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TABLE 3 | Values of SBC and AIC criteria for all models.

Model S&P500 FTSE100 DAX

NORMAL DISTRIBUTION

AIC-Criterion

GARCH(1,1) –6.3531 –6.4094 –5.8746

GARCH(1,2) –6.3525 –6.4080 –5.8739

GARCH(2,1) −6.3601 −6.4104 −5.8786

EGARCH(1,1) –6.3998 –6.4520 –5.9150

GJRGARCH(1,1) –6.3983 –6.4510 –5.9134

TGARCH(1,1) −6.4012 −6.4536 −5.9177

SBC-Criterion

GARCH(1,1) –6.3467 −6.4031 –5.8682

GARCH(1,2) –6.3444 –6.4010 –5.8659

GARCH(2,1) −6.3520 –6.4026 −5.8706

EGARCH(1,1) –6.3917 –6.4440 –5.9070

GJRGARCH(1,1) –6.3902 –6.4431 –5.9054

TGARCH(1,1) −6.3931 −6.4457 −5.9097

STUDENT-t DISTRIBUTION

AIC-Criterion

GARCH(1,1) –6.3784 –6.4250 –5.8889

GARCH(1,2) –6.3779 –6.4249 –5.8882

GARCH(2,1) −6.3854 −6.4263 −5.8938

EGARCH(1,1) −6.4214 –6.4650 –5.9240

GJRGARCH(1,1) –6.4157 –6.4624 –5.9218

TGARCH(1,1) –6.4213 −6.4665 −5.9259

SBC-Criterion

GARCH(1,1) –6.3703 −6.4178 –5.8809

GARCH(1,2) –6.3682 –6.4154 –5.8786

GARCH(2,1) −6.3757 –6.4169 −5.8842

EGARCH(1,1) −6.4117 –6.4550 –5.9150

GJRGARCH(1,1) –6.4060 –6.4530 –5.9122

TGARCH(1,1) –6.4116 −6.4570 −5.9163

Bold are indicated as minimum values.

In Table 4, where the estimated parameters of best symmetric
GARCH models are presented, we notice that the conditional
variance parameters are highly significant and that the
distribution of zt has significantly thicker tails than the
normal. In Tables 5, 6, where the estimated parameters of the
asymmetric EGARCH(1,1) and TGARCH(1,1) specifications
are presented, we notice that all coefficients are statistically
significant under both distributions. The leverage effect is
present in all EGARCH(1,1) and TGARCH(1,1) models for all
indices since the respective coefficients are significantly different
from zero. The GJR presented in Table 7 for both distributions
does not capture the overall volatility equally well for all indices
as by EGARCH(1,1) and TGARCH. In all tables, the reported
t-statistics are estimated from robust standard errors.

VALUE-AT-RISK AND EXPECTED
SHORTFALL

Value-at-Risk (VaR) reports, for a given portfolio, the financial
risk which refers to the worst outcome that may occur over a

TABLE 4 | Parameter estimates of symmetric GARCH(p,q) models for three equity

indices using the entire data set and assuming two alternative distributions for the

residuals, t-statistics are presented in parentheses.

Model S&P500 FTSE100 DAX

NORMAL DISTRIBUTION

GARCH(p,q) GARCH(2,1) GARCH(1,1) GARCH(2,1)

c0 0.0005

(4.4384)*

0.0001

(0.4833)

0.0007

(4.4425)*

a0 0.2 E-05

(0.4619)

0.1 E-05

(0.1397)

0.3 E-05

(0.7424)

a1 0.0163

(0.9601)

0.101639

(0.6949)

0.0259

(1.5535)

a2 0.1053

(2.0923)*

– 0.0892

(2.5574)*

b1 0.8607

(14.4286)*

0.8890

(5.8973)*

0.8696

(22.6763)*

LogLikelihood 12314.98 12835.67 11530.06

STUDENT-t DISTRIBUTION

GARCH(p,q) GARCH(2,1) GARCH(1,1) GARCH(2,1)

c0 0.0006

(2.2447)*

068.E-04

(0.3004)

0.0008

(5.3476)*

a0 0.2E-05

(0.0897)

0.1E-05

(0.1616)

0.3E-05

(0.3801)

a1 0.0059

(0.4155)

0.1006

(0.7044)

0.0151

(0.8901)

a2 0.1236

(0.3336)

– 0.1048

(1.3414)

b1 0.8593

(2.2947)*

0.8917

(6.3733)*

0.8707

(10.9288)*

Shape 7.7297

(0.9296)

9.3729

(1.4952)

10.2649

(3.7038)*

LogLikelihood 12365.02 12869.12 11560.73

*Statistically significant.

certain period and at a certain confidence interval. An extended
discussion for VaR can be found in Best [16] and Dowd [17] as
well as in Bauwens et al. [18]. There are also many references on
VaR application (see [19–21]).

However, there are criticisms for VaR that the underlying
statistical assumptions are violated [22–25], while [26] argued
that alternative risks for management techniques produce
different VaR forecasts, and this might affect the accuracy of
risk estimate. Moreover, Marshall and Siegel [27] proved that
if we consider the same portfolios, we may find statistically
significant differences, while according to Artzner et al. [28, 29],
VaR is not necessarily sub-additive for the case of more than one
instruments. In order to overcome VaR shortcomings, Artzner
et al. [28] introduced the Expected Shortfall (ES) risk measure,
which estimates the expected value of loss in the case of a VaR
violation. In this paper, both VaR and ES are estimated.

VaR, at a given probability level
(

1− p
)

, is defined [30–32] as
the predicted amount of financial loss of a portfolio over a given
time horizon. IfPtis the observed value of a portfolio at time t,

and yt = ln
(

Pt
Pt−1

)

is the ln-returns for the period from t − 1

to t, then for a long trading position and under the assumption
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TABLE 5 | Parameter estimates of EGARCH and TGARCH models for three

equity indices using the entire data set and assuming normal distribution for the

residuals, t-statistics are presented in parentheses.

Model S&P500 FTSE100 DAX

NORMAL DISTRIBUTION

EGARCH(1,1)

c0 0.0001

(0.8423)

−0.0000

(−0.6003)

0.0002

(0.9265)

a0 −0.1880

(−63.2461)*

−0.1573

(−65.6709)*

−0.1848

(−56.4958)*

a1 −0.1437

(−12.6159)*

−0.1208

(−12.4249)*

−0.1188

(−12.1216)*

b1 000.9794

(13672.19)*

0.9828

(41155.94)*

0.9786

(6365.51)*

γ1 0.1114

(14.9271)*

0.1127

(12.6623)*

0.1241

(16.6165)*

LogLikelihood 12391.79 12922.63 11601.11

TGARCH(1,1)

c0 0.32E-04

(0.2517)

−0.0001

(−0.5751)

0.0001

(0.7803)

a0 0.0002

(5.2810)*

0.0002

(3.9241)*

0.0003

(5.2465)*

a1 0.0779

(7.9408)*

0.0675

(5.1679)*

0.0699

(70.2118)*

b1 0.9172

(88.6149)*

0.9297

(66.9063)*

0.9234

(84.1483)*

η11 0.9999

(10.0978)*

0.9999

(6.4470)*

0.9651

(9.1407)*

LogLikelihood 12394.57 12925.09 11606.72

*Statistically significant.

of standard normally distributed ln-returns, VaR is defined to be

the value VaR
(1−p)
t satisfying the condition below:

p = P
(

yt ≤VaR
(1−p)
t

)

=
∫ VaR

(1−p)
t

−∞

1√
2π

exp

(

−1

2
y2t

)

dyt .

(1)

This implies that

VaR
(1−p)
t = ζp, (2)

where ζp is the
(

100p
)

-th percentile of the standard
normal distribution.

So, under the assumption thatyt ∼ N(0, 1), the probability of

a loss less than VaR
(1−p)
t = −1.645 is equal to p = 5%.

Value-at-Risk is estimated via the parametric approach
through the ARCH-GARCH framework below.

Suppose that the ln-returns yt can be expressed by

yt = µt + εt , (3)

where µt is the expected return of portfolio for the period from
t − 1 to t, and εt is the error term. The unpredictable part of

TABLE 6 | Parameter estimates of EGARCH and TGARCH models for three

equity indices using the entire data set and assuming Student-t distribution for the

residuals, t-statistics are presented in parentheses.

Model S&P500 FTSE100 DAX

STUDENT-t DISTRIBUTION

EGARCH(1,1)

c0 0.0003

(2.6489)*

0.0000

(0.6369)

0.0004

(2.5307)*

a0 −0.1487

(−5.4219e+01)*

−0.1550

(−49.6326)*

−0.1645

(−51.0398)*

a1 −0.1522

(−1.3353e+01)*

−0.1343

(−11.4283)*

−0.1272

(−20.2615)*

b1 0.9844

(1.3587e+06)*

0.9835

(5682.3016)*

0.9814

(6232.4871)*

γ1 0.1024

(1.27779e+01)*

0.1137

(19.0338)*

0.1277

(10.5054)*

Shape 8.7318

(6.8294)*

11.0201

(7.2472)*

12.5341

(5.1762)*

LogLikelihood 12434.57 12948.91 11620

TGARCH(1,1)

c0 0.0003

(1.7758)

0.0001

(0.5521)

0.0003

(2.0637)*

a0 0.0002

(4.6411)*

0.0002

(4.2329)*

0.0002

(5.0707)*

a1 0.0797

(7.6976)*

0.0731

(6.2531)*

0.0717

(7.1425)*

b1 0.9192

(83.5278)*

0.9257

(75.1352)*

0.9239

(86.2720)*

η11 1.0000

(11.4572)*

0.9999

(7.9253)*

0.9916

(9.2834)*

Shape 9.0226

(6.6841)*

11.1210

(6.1178)*

13.2491

(4.7286)*

LogLikelihood 12434.36 12951.86 11623.77

*Statistically significant.

the ln-returns is expressed with an ARCH process as presented in
section Data and Stylized facts, that is:

εt = σtzt

σt = g(θ|It−1) (4)

zt ∼ f (0, 1;w)

where, as usual, zt denotes a random variable with density
function f (0, 1;w), with mean equal to zero and variance equal to
one, and w is a parameter vector to be estimated. The VaR value
in this case is given by

VaR
(1−p)
t = µt + fa(zt;w)σt (5)

where fa(zt;w) is the a-quantile of the assumed distribution,
computed on the basis of the information set available at time
t, and µt+1|t and σt+1|t are respectively the conditional mean and
conditional standard deviation forecasts at time t+1 given the
information at time-t. The one-step-ahead VaR forecast, based
on ARCHmodel, is given by

VaR
(1−p)
t+1|t = µt+1|t + fa

(

zt;w(t)
)

σt+1|t (6)

Expected Shortfall (ES) provides information about the expected
loss in the case of an extreme event, summarizing the risk in just
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TABLE 7 | Parameter estimates GJRGARCH model for three equity indices using

the entire data set and assuming two alternative distributions for the residuals,

t-statistics are presented in parentheses.

Model S&P500 FTSE100 DAX

NORMAL DISTRIBUTION

GJRGARCH(1,1)

c0 0.77E-04

(0.0299)

−0.24E-04

(-0.0561)

0.0002

(1.1414)

a0 0.2E-05

(0.0542)

0.2E-05

(0.3104)

0.3E-05

(1.8121)

a1 0.00000

(0.1E-05)

0.24E-04

(0.0003)

0.0000

(0.4E-05)

b1 0.9021

(4.8948)*

0.9050

(57.4529)*

0.9086

(113.0199)*

γ1 0.1635

(0.2475)

0.1577

(1.1988)

0.1511

(4.2016)*

LogLikelihood 12388.97 12919.87 11598.19

STUDENT-t DISTRIBUTION

GJRGARCH(1,1)

c0 0.0002

(1.1852)

0.0001

(0.5125)

0.0004

(2.0348)*

a0 0.1E-05

(0.3104)

0.2E-05

(0.2721)

0.2E-05

(0.4368)

a1 0.0000

(0.0000)

0.0000

(0.15E-05)

0.7E-05

(0.0000)

b1 0.9042

(9.0756)*

0.9020

(12.2906)*

0.9097

(21.0851)*

γ1 0.1658

(2.4551)*

0.1666

(1.6151)

0.1544

(2.6423)*

Shape 9.4274

(2.2440)*

11.3379

(2.7037)*

13.2656

(4.2674)*

LogLikelihood 12314.98 12943.73 11615.69

*Statistically significant.

one number. It is a better risk measure since according to Yamai
and Yoshiba [33] it is more reliable duringmarket turmoil. ES is a
probability weighted average of tail loss, and the one-step-ahead
ES is defined mathematically as below:

ES
(1−p)
t+1|t = E

(

yt+1|
(

yt+1 ≤ VaR
(1−p)
t+1|t

))

(7)

In order to calculate ES, we may follow [17], who estimated VaR

by slicing the tail into a large number k̃ of segments of equal
probability mass. Then, VaR is associated with each segment
and ES is calculated as the average of these VaR estimates
as below:

ES
(1−p)
t+1|t = k̃−1

∑k̃

i=1

(

VAR

(

1−p+ip(k̃+1)
−1
)

t+1|t

)

. (8)

Backtesting VaR
Financial institutions pay great attention to the accurate
estimation of 95 or 99%VaR. In real life if VaR is overestimated
it leads regulators to charge higher amount of capital than

is really needed, and this has a negative impact on their
performance. The risk that financial institutions face may
not be covered by the regulatory capital left aside if VaR
is underestimated. The most simple method for the accurate
evaluation of VaR forecast is to count in how many cases the
losses exceed the value of VaR. If this count is not substantially
different from what is expected, then the VaR forecasts are
sufficiently computed.

The most well-known statistical methods for evaluating VaR
models are Kupiec’s [34] and Christoffersen’s [35, 36], which
are back-testing measures. Inference of these methods focus on
hypothesis testing about the percentages of times a portfolio loss
has exceeded the estimated VaR.

Kupiec [34] introduced a back testing method in terms of
a hypothesis test for the expected percentage of VaR violations

p = P(yt+1 ≤ VAR
(1−p)
t+1|t ) and used the observed rate at which the

portfolio loss has been violated by the estimation of VaR in order
to test whether the real coverage percentage p∗ is statistically
significantly different from the desired level p.

The tested hypotheses are as follows:

H0 : p
∗ = p (9)

H1 : p
∗ 6= p

The likelihood ratio test under null hypothesis is as follows:

LRun = 2log

(

(

1− N

T̃

)T̃−N (N

T̃

)N
)

− 2log

(

(

1− p
)T̃−N − pN

)

. (10)

where T̃ is the period that loss is more than the estimated
VaR. N is the number of trading days that follows a binomial
distribution under H0 with parameters T̃ and p. LRun is
asymptotically χ2 distributed with one degree of freedom.
This test is known as unconditional covariance test. The null
hypothesis is rejected for both a statistically significantly low and
high failure rate.

Christoffersen [35] introduced a testing method based on the
expected percentage of having a VaR violation event conditional
on the number of times it occurred in the past in a first order
Markov set up and tested whether VaR violation events are
independent with each other or not. That is, he tested (11) for
{

Ĩt
}∞
t=1

trading days:

πij = P
(

Ĩt = i
∣

∣Ĩt−1 = j
)

= P
(

Ĩt = i
)

, i, j = 0,1 (11)

where : Ĩt+1 =
{

1, if yt+1 < VaR
(1−p)
t+1|t

0, if yt+1 ≥ VaR
(1−p)
t+1|t

(12)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 December 2019 | Volume 5 | Article 57

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Livada and Anagnostopoulou Risk Measures and Inequality

Therefore, the probability of observing a violation in VaR in
two serial periods must be equal to the desired p value. The
hypotheses tested are:

H0 :π01 = π11 = p (13)

H1 :π01 6= π11

The hypotheses were tested using a LRin likelihood ratio statistic
that follows asymptotically the χ2 distribution with one degree
of freedom:

LRin = 2

(

log
(

1− π̂01

)n00
π̂
n01
01

(

1− π̂11

)n10
π̂
n11
11

− log

(

(

1− N

T̃

)n00+n10 (N

T̃

)n01+n11
))

∼ χ2
1 , (14)

Where π̂ij = nij
∑

j nij
is the sample estimate of πij and nij is the

number of trading days with value i followed by j, for i,j= 0,1.
Christoffersen [35] also suggested to test simultaneously

whether the true percentage p∗ of failures is equal to the desired
percentage and whether the VaR failure process is independently
distributed. So, the following hypotheses were tested

H0 : p∗ = p andπ01 = π11 = p

H1 : p∗ 6= p orπ01 6= π11 6= p (15)

The LRcc follows χ2 distribution with two degrees of freedom:

LRcc = −2log

(

(

1− p
)T̃−N

pN
)

+ 2log
((

1− π̂01

)n00
π̂
n01
01

(

1− π̂11

)n10
π̂
n11
11

)

∼ χ2
2 , (16)

Conditional coverage process rejects a model that gives either
many or very few clustered violations.

Because VaR does not indicate the size of the expected loss,
Degiannakis and Angelidis [37] introduced utilizing loss function
that are based on ES.

9(ES)t+1 =
{

(yt+1 ES
(1−p)
t+1|t )

2 , if yt+1 < VaR
(1−p)
t+1|t ,

0, if yt+1 ≥ VaR
(1−p)
t+1|t .

(17)

When we compare alternative models, according to ES loss
function we prefer the model that gives lowest total loss value.

This is equal to the sum of the penalty scores,
∑T

t=1 9(ES)t+1. In
this study we estimate (17) augmented by one.

One-Day-Ahead Value-at-Risk and
Expected Shortfall Forecasting
In this section we estimate the one-day-ahead 95% VaR and 95%
ES values for all three indices. For each equity index we apply a
model with constant mean ARMA(0,0) and conditional variance
as GARCH(1,1), GARCH(1,2), GARCH(2,1), EGARCH(1,1),
TGARCH(1,1), and GJRGARCH(1,1) volatility specifications
presented before, for daily ln-returns under two distributional

assumptions (Normal and Student-t). For all equity indices
and all above models we have estimated 95%VaR and 95%
ES forecasts for 500 trading days based on a rolling sample.
Tables 8–10 present, for each equity index and 12 volatility
models, the average values for the one-day-ahead 95% VaR
and 95% ES forecasts as these are defined in the previous
section. We also report the percentage of violations expressed by
the number of violations over the out-of-sample 500 forecasts
(N/T), Kupiec’s and Christoffersen’s p-values and the average
value of the Loss Function based on the Expected Shortfall
augmented by the value of one. A high p-value is preferred
since this means that a good model will not overestimate or
underestimate the true VaR. This is important because a high VaR
estimation implies an obligation to allocate more capital than is
actually necessary.

For all equity indices we notice that the percentage of
violations is greater for all indices and all model specifications
under the assumption of normal distribution compared with
that of Student-t. Thus, the Student-t gives less violations.
However, we have to take into account firstly that the period
forecasted is not very volatile and secondly the period of
trading days we forecast may be considered small. In almost
all cases, according to both Kupiec’s and Christoffersen’s test
p-values reported in the Tables 8–10, we fail to reject the
null hypothesis.

For the case of FTSE, for the normal distribution
case the observed average 95%VaR gets values between
(−1.31, −1.25) and for the Student-t distribution (−1.42,
−1.38). The observed average 95% ES has values between
(−1.6, −1.55) for the Normal distribution, which are
larger (algebraically) compared to the values of Student-t
distribution (−1.84, −1.82). The ES Loss function in the
normal distribution has the lowest price for TGARCH(1,1)
model (1.91), while in the Student-t case it has the lowest
price in the three symmetric GARCH models (Equation 12).
According to Kupiec’s LRun p-value, the best model in normal
distribution is the GJRGARCH(1,1), [38] with a p-value
equal to 0.8384. In the Student-t distribution, all models
have very low Kupiec’s LRun p-values. For the cases where
Christoffersen’s p-values are available these are in agreement
with Kupiec’s.

Overall, our average 95%VaR one-day-ahead estimates
based on univariate models suggest that all indices
have the smaller score (larger in absolute values) under
Student-t distribution.

According to Kupiec’s LRun p-value, some models and
indices share the highest p-values, for instance for normal
distribution FTSE, and DAX has a p-value equal to 0.838 for the
GJRGARCH(1,1). For the Student-t case, there is no common
behavior regarding unconditional and conditional coverage tests,
showing lower p-values than normal distribution in the majority
of indices and respective models.

Because a greater p-value of the model does not indicate
superiority, in order to evaluate the models, we computed
Loss function based on ES. The score of the ES-Loss Function
suggests as the best model the asymmetric TGARCH(1,1) model
for most indices. For the Student-t case the ES loss function
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TABLE 8 | FTSE equity index: 95%VaR and 95%ES average values of one-day-ahead forecasts, percentages of violation (N/T), Kupiec’s and Christoffersen’s p-values

and ES loss function.

Model Average 95%VaR Average 95%ES N/T Kupiec’s-LRunp -value Christoffersen-LRccp -value ESLoss function*

NORMAL

GARCH(1,1) −1.25 −1.55 5.4% 0.6852 0.8129 2.15

GARCH(1,2) −1.25 −1.55 5.4% 0.6852 NA 2.14

GARCH(2,1) −1.25 −1.56 5.8% 0.6421 NA 2.24

TGARCH(1,1) −1.31 −1.62 4.4% 0.5301 0.4859 1.91

EGARCH(1,1) −1.31 −1.63 4.6% 0.6776 0.2126 1.95

GJRGARCH −1.30 −1.61 5.2% 0.8384 0.8173 2.17

STUDENT-t

GARCH(1,1) −1.38 −1.82 4.0% 0.2885 0.2804 2.12

GARCH(1,2) −1.38 −1.82 4.0% 0.2885 NA 2.12

GARCH(2,1) −1.39 −1.83 4.0% 0.2885 NA 2.12

TGARCH(1,1) −1.40 −1.82 4.2% 0.3992 0.3918 2.21

EGARCH(1,1) −1.42 −1.84 4.0% 0.2885 0.2804 2.21

GJRGARCH −1.40 −1.82 4.0% 0.2885 0.2804 2.20

*Multiplied by 10−5.

TABLE 9 | DAX equity index: 95%VaR and 95%ES average values of one-day-ahead forecasts, percentages of violation (N/T), Kupiec’s and Christoffersen’s p-values and

ES loss function.

Model Average 95%VaR Average 95%ES N/T Kupiec’s-LRunp-value Christoffersen-LRccp-value ES Loss function*

NORMAL

GARCH(1,1) −1.69 −2.11 5.4% 0.6852 0.8129 3.74

GARCH(1,2) −1.69 −2.11 5.4% 0.6852 NA 3.74

GARCH(2,1) −1.70 −2.12 5.2% 0.8384 NA 3.40

TGARCH(1,1) −1.70 −2.11 5.6% 0.5455 0.4859 3.57

EGARCH(1,1) −1.71 −2.12 5.4% 0.6852 0.2126 3.59

GJRGARCH −1.71 −2.12 5.2% 0.8384 0.8173 3.68

STUDENT-t

GARCH(1,1) −1.86 −2.46 4.6% 0.6776 0.2804 4.20

GARCH(1,2) −1.86 −2.46 4.6% 0.6776 0.2350 4.20

GARCH(2,1) −1.88 −2.49 4.6% 0.6776 0.0561 4.04

TGARCH(1,1) −1.82 −2.35 4.2% 0.2885 0.3918 2.61

EGARCH(1,1) −1.84 −2.39 4.0% 0.2885 0.2804 2.63

GJRGARCH −1.83 −2.38 4.4% 0.5301 0.2804 3.98

*Multiplied by 10−5. Bold are indicated as minimum values.

suggests for FTSE and S&P500 the GARCH(1,1), and for DAX
the TGARCH(1,1).

So, we may conclude that in almost all cases the null
hypothesis is not rejected. One of the reasons is the sample size,
which in our case is a small one. This can be supported by Brooks
and Persand [39] and Angelidis et al. [40], who argue that the
effect of the sample size on the performance of the models is
not clear.

In Figure 6, 95%VaR and 99%VaR one-day-ahead forecasts
are visualized of all three indices studied. The VaR values are
one-day-head, for 500 trading days. As expected, we have more
violations for the 95%VaR than for the 99%VaR. So, riskmeasures
capture adequately the volatility. We notice that business cycles
are present in risk measures as in the inequality measures. At

the beginning of 2014, there were low values of VaR and at the
same time the top 1% share increases in 3 out of the 4 countries
we study. However, the opposite holds for the period just before
2014. This could be an indication that risk measures are not
closely related to income inequality. For a more accurate result
we need more data and a business cycle study connecting risk
measures with volatility and income inequality.

CONCLUSIONS

This paper is an attempt to combine financial volatility with
income inequality and risk measures. It is an applied study
where the evolution of income inequality is based on the
top 1% income share for three European countries France,
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TABLE 10 | S&P500 equity index: 95%VaR and 95%ES average values of one-day-ahead forecasts, percentages of violation (N/T), Kupiec’s and Christoffersen’s

p-values and ES loss function.

Model Average 95%VaR Average 95%ES N/T Kupiec’s-LRunp -value Christoffersen-LRccp -value ES Loss function*

NORMAL

GARCH(1,1) −1.22 −1.52 6.0% 0.3192 NA 2.64

GARCH(1,2) −1.22 −1.52 6.0% 0.3192 NA 2.64

GARCH(2,1) −1.22 −1.53 6.0% 0.3192 0.5081 2.67

TGARCH(1,1) −1.26 −1.57 5.4% 0.6852 NA 2.38

EGARCH(1,1) −1.26 −1.56 5.2% 0.8384 NA 2.55

GJRGARCH −1.26 −1.56 6.0% 0.3192 NA 2.85

STUDENT-t

GARCH(1,1) −1.37 −1.83 4.6% 0.6776 NA 2.19

GARCH(1,2) −1.37 −1.83 4.6% 0.6776 NA 2.19

GARCH(2,1) −1.38 – 4.6% 0.6776 NA –

TGARCH(1,1) −1.39 −1.81 4.2% 0.3992 NA 2.28

EGARCH(1,1) −1.39 −1.82 4.2% 0.3992 NA 2.42

GJRGARCH −1.37 −1.80 4.6% 0.6776 NA 2.32

*Multiplied by 10−5. Bold are indicated as minimum values.

FIGURE 6 | VaR exceedances and daily returns.

Greece, UK, and USA. These are countries with different
levels of development, but all of them have homogenous time
series inequality data. Most of the top income shares data are
taken from the World Inequality Database. The financial risk
measures are presented through the 95%VaR (Value-at-Risk)
and ES(Expected shortfall) of three stock exchange indexes

(S&P500, FTSE100, DAX30) which are based on ARCH/GARCH
models. The financial volatility period covered is from 2000
to 2015.

We first study and compare the stylized facts of the Stock
Exchange and inequality indices. Then, we compare the
performance of a class of alternative univariate ARCH/GARCH
models for the estimation of one-day ahead 95% Value-at-
Risk (VaR) and Expected Shortfall (ES) measures for three
equity indices. We implement six alternative specifications
of ARCH-GARCH family volatility models: GARCH(1,1),
GARCH(1,2), GARCH(2,1), EGARCH(1,1), TGARCH(1,1),
GJR GARCH(1,1) under two distributional assumptions, the
normal and Student-t distributions error. The alternative
distributions allow for selecting a more flexible model
for the return tails. The 95%VaR out of sample forecasts,
for all models, are evaluated according to Kupiec’s and
Christoffersen’s tests. ES is evaluated through the estimation of a
Loss Function.

Regarding income inequality, we notice that there is an
upward sharp increase of the 1% tis after the mid 80s period
for all four countries. The 2008-09 economic crisis affected
all countries. However, the deep recession in the stock market
in 2008 did not affect immediately the 1% top income share.
The inequality effect is not the same in all the four countries
with respect time, duration and sharpness (see also [41]). The
inequality effect is not the same in all the four countries
with respect to time, duration and sharpness. That is, in
Greece the consequences came almost immediately with sharper
changes in the inequality index then other countries. There
is also a long-lasting period of continuously rising inequality.
On the other hand, in USA, UK, and France, the effect
of the crisis shows a decline in the 1% top income share,
which appears later (after 2010), but is not as sharp as in
Greece (in mean levels) and shows a mixed year to year
changes. The trend in USA seems to be unaffected while in
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UK and France there is a slight trend change, which signals
trend ambiguity.

But what if we try to connect these findings with the risk
measures? Which model should we use in order to connect
volatility with risk measures and then to inequality?

The applied stochastic time series analysis for the
financial indices of FTSE100, DAX30, S&P500 proves that
the best models are under the Student-t distribution. More
specifically, the TGARCH(1,1) model is the best for FTSE
and DAX indices while for S&P500, the EGARCH(1,1) model
fits better.

The 95%VaR and 95%ES forecasts show that for all model
specifications of all equity indices, the percentage of violations is
greater under the assumption of normal distribution compared
with that of Student-t. We have to take into account that the
forecasted period is not extremely volatile and that the period of
trading days we forecast may be considered small. In almost all
cases, tests of Kupiec’s and Christoffersen’s p-values fail to reject
the null hypothesis.

Overall, our average 95%VaR one-day-ahead estimates
based on univariate models suggest that all indices
have the smaller value (larger in absolute values) under
Student-t distribution.

According to Kupiec’s LRun p-value, some models and indices
share the highest p-values. For the Student-t case, there is
no common behavior regarding unconditional and conditional
coverage tests, showing lower p-values than normal distribution
in the majority of indices and respective models. The score of the
ES-Loss Function suggests the asymmetric TGARCH(1,1) as the
best model in almost all indices under the normal distribution.
For the Student-t case, the ES Loss Function suggested to be best
for FTSE and S&P500 is the GARCH(1,1) model and for DAX it
is the TGARCH(1,1) model.

VaR (95 and 99%) one-day-head for 500 trading days forecasts
was visualized for all three indices studied, and as expected, we
have more violations for the 95%VaR than for the 99%VaR. Risk
measures used in this study capture adequately the volatility. We
notice that business cycles are present in risk measures as in
the inequality measures. At the beginning of 2014 there are low
values of VaR and at the same time the top 1% share increases in
3 out of the 4 countries we study. However, the opposite holds for
the period just before 2014. This could be an indication that risk
measures are not closely related to income inequality. For a more
accurate result we need more data and a business cycle study
connecting risk measures with volatility and income inequality.
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