
ORIGINAL RESEARCH
published: 10 December 2019
doi: 10.3389/fams.2019.00061

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 December 2019 | Volume 5 | Article 61

Edited by:

Qingtang Jiang,

University of Missouri-St. Louis,

United States

Reviewed by:

Baobin Li,

University of Chinese Academy of

Sciences, China

Lin Li,

Xidian University, China

*Correspondence:

Shailesh Acharya

sailes437@gmail.com

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 09 August 2019

Accepted: 15 November 2019

Published: 10 December 2019

Citation:

Acharya S and Fung G (2019) Mileage

Extraction From Odometer Pictures

for Automating Auto Insurance

Processes.

Front. Appl. Math. Stat. 5:61.

doi: 10.3389/fams.2019.00061

Mileage Extraction From Odometer
Pictures for Automating Auto
Insurance Processes
Shailesh Acharya* and Glenn Fung

Machine Learning Research and Innovation, American Family Insurance, Madison, WI, United States

For an insurance company is a priority to supply customers with an easy and streamlined

way to provide all the information needed when reporting a claim or asking for a quote.

A simple and efficient process to do so improves customer experience, reduces human

error and accelerates the information collection process. An accurate mileage reading

is a key piece of information that is relevant for auto insurance quotes and claims

processing. The vehicle mileage can be combined with the License Plate number and

the Vehicle Identification Number (VIN) to get a complete overview of the information

needed for many insurance processes and workflows. In this paper, we describe a

novel solution for extracting vehicle mileage from odometer images taken by mobile

devices. There are many available low-cost commercial solutions for both License plate

recognition and VIN recognition from images, however, to the best of our knowledge, this

is not existing commercial solutions for odometer mileage extraction from images. Our

proposed system mainly consists of two parts: (a) identifying the odometer display and,

(b) extracting characters inside the display. We leverage existing state-of-the-art object

detection deep learning architectures to solve each part and design a post-processing

algorithm to identify mileage from the extracted characters. We tested empirically

our proposed system in unseen odometer images taken in the wild. We achieve

satisfactory performance that meets the requirements needed for real-life applications

in the insurance industry.

Keywords: image recognition, information extraction, deep learning, computer vision, optical character

recognition

1. INTRODUCTION

In a competitive customer-driven auto insurance landscape, businesses are constantly changing the
way they interact with customers to improve attraction and retention. Better customer experiences
and more efficient interactions with customers lead to satisfaction which is one of the top
differentiators that impact customer loyalty. Digitization and process automation allow service
providers to unveil timely opportunities to offer effective and time-saving interactions to improve
customer experience.

With the incorporation of more sophisticated safety features in modern cars, the increase in
claim cost due to the replacement of modern devices is outpacing the decline in claim frequency.
Hence, there is pressure on insurance companies to create a more effective way to handle auto
claims. Filing a claim is an example of one of the few direct interactions customers have with
their insurer and it comes at a time when they are under stress and will most likely appreciate a
streamlined process.

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2019.00061
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2019.00061&domain=pdf&date_stamp=2019-12-10
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sailes437@gmail.com
https://doi.org/10.3389/fams.2019.00061
https://www.frontiersin.org/articles/10.3389/fams.2019.00061/full
http://loop.frontiersin.org/people/757200/overview
http://loop.frontiersin.org/people/671433/overview

Acharya and Fung Mileage Extraction From Odometer Pictures

However, the typical experience offered today from most
insurers when you have an accident involves a process to manage
the claim filing that can be slow, expensive (for the insurer) and
may involve several insurance representatives. The same idea
applies when a potential new customer is inquiring about a new
insurance policy.

When asking for a quote for a new policy, potential customers
can upload photographs that can be used for retrieving quick
information about the car from their phone to a web-based
app, which can be analyzed in seconds. This results in a quick
and accurate quote. By reducing human error and accelerating
the information collection process, we can make processes
that involve customer interactions smoother, hence simplifying
the policy claims ecosystem for the agent, the customer and
the insurer.

Optical character recognition (OCR) is a widely researched
problem in computer vision. Text extraction from scanned
documents or from pictures taken under controlled lighting has
seen significant improvement with the advent of deep learning
architectures. However, text extraction from images in the wild
is still very challenging. The general purpose OCRs do not work
well for images from uncontrolled sources. In this paper, we
describe a novel solution for extracting mileage readings from
odometer images. In the insurance domain, especially for auto
insurance quotes and claims processing, there are three key
pieces of information; license plate number, odometer mileage
reading and vehicle identification number (VIN). License plate
recognition and VIN recognition from images are very popular
problems and there exist commercial solutions for both. It is
important to note that VIN recognition is a significantly easier
problem since for modern cars the VIN number plates are
standardized. To the best of our knowledge, few or no work
has been done for odometer mileage extraction from images
and there are not reliable available commercial solutions for
this use-case.

There are several open source and commercial OCRs available
in market such as Tesseract [1], and the built-in OCR toolbox
in Matlab [2] to name a few. These OCRs systems are designed
to read characters from high quality pictures taken by scanners
or a camera under good lighting conditions. They use image
pre-processing and character segmentation techniques that are
very specific to document images. They are trained to recognize
printed characters which are different from characters in a
odometer display since odometer images contain huge variation
in color, intensity, font, and texture. For all these reasons,
these OCR systems perform poorly on odometer images. Google
cloud vision API [3] is another interesting commercial option
that does a better job in extracting text from images in the
wild, but its performance on odometer images is nowhere
close to our accuracy expectations and does not meet our
performance requirements.

We divide the mileage extraction problem into two parts;
identifying odometer display and extracting characters inside
the display. We leveraged existing object detection architectures
to solve each part and finally designed a post processing
algorithm to extract mileage number. We tested two different
object detection architectures Single Shot Detector (SSD)[4]
and Faster RCNN [5]. Our system differs from open source

OCR such as tesseract and other commercial OCRs both on
the system architecture and the dataset used for training. We
used hand labeled odometer pictures to train the character
recognition which makes our model much more customized to
odometer characters than any other OCRs. We also designed the
post processing algorithm to distinguish mileage reading from
other characters in odometer display such as tripmeter reading,
temperature, etc.

The rest of the paper flows as follows: In section 2 we
present relevant related work that uses recent machine learning
techniques to extract text from pictures taken in non-restrictive
environments and background on FasterRCNN and SSD object
detectors. In section 3 we describe the data used to train
our system which is described in detail in sections 4 (system
workflow). After that, we share results derived from our empirical
evaluation of the system in section 5 followed by a description
of how the system is being deployed in section 6. We end the
paper with conclusions and lessons learned and discuss future
work in section 7.

2. PRELIMINARIES

2.1. Related Work
As mentioned before, automatic license plate recognition
(ALPR) is a mostly commercially solved problem. Besides traffic
monitoring, this technology is used in many applications such
as, highway toll collection, border and custom checkpoints,
parking access control system and more recently, homeland
security. The ALPR problem is similar in some aspects
to our problem proposed here since most ALPR system
breakdown the problem into similar sub-tasks: number plate
detection, character segmentation, character recognition. Deep
convolutional networks have been used recently to improve
accuracy on ALPR systems [6] and in Bulan et al. [7] they
propose the use of synthetically generated images to improve
CNN performance while reducing the need for human labeling.
Amore comprehensive survey view of such system can be seen in
Sanap and Narot [8], Sonavane et al. [9], and Du et al. [10].

Faster RCNNs have been successfully used to extract text from
pictures taken in the wild, for example in Nagaoka et al. [11],
the authors propose an architecture that takes into consideration
the characteristics of texts by using multiresolution feature maps
to detect texts of various sizes simultaneously. A faster RCNN
approach is also used in Rosetta [12], a recently proposed scalable
system to extract text from web images.

There are many recent real-world applications to detect
text in images where the faster RCNN and the Single Shot
Detector (SSD) architectures have been used successfully. A good
representative example of such system is presented in Yang et al.
[13], where the goal is to extract (detecting and recognizing) text
from biomedical literature figures.

However, to best of our knowledge there is few or no work
related to extracting mileage readings from odometer pictures.

2.2. Faster RCNN
Early object detectors used pyramidal sliding windows over the
input image followed by an image classifier to detect objects
at various location and scales. The Fast RCNN architecture

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 December 2019 | Volume 5 | Article 61

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Acharya and Fung Mileage Extraction From Odometer Pictures

FIGURE 1 | Faster RCNN detector.

introduced by Girshick [5] made significant improvement over
these architectures by using selective search for region proposals
and convolutional feature maps as input. Although, Fast RCNN
was significantly faster than the previous architectures, the
region proposal technique was still too slow for most real-time
applications. Faster RCNN, introduced in Ren et al. [14], solves
this problem by using a different region proposal network.

Faster RCNN can be roughly viewed as a combination of two
networks: The region proposal network (RPN) and a classifier as
shown in Figure 1. The RPN takes convolutional feature map
inputs and outputs a set of rectangular object proposals and
an objectness score for each proposal. But before that, the first
step is translating the image to convolutional feature maps by
passing the image through a series of convolution layers. In
faster RCNN, RPN is modeled with a fully convolutional network
[15]. Region proposals are generated by sliding a small sub-
network over this convolutional feature map output. The sub-
network looks at n × n spatial windows of input feature maps
and projects it into a lower dimensional feature vector. At the
end of the sub-network architecture there are two siblings fully
connected layers: a box-regression layer and a box-classification
layer. The regression layer outputs delta coordinates to adjust the
reference anchor coordinates for each spatial window. The box-
classification layer predicts the possibility of an anchor box being
either background or an object. For the next stage of processing,
only the anchors with high scores are retained. The second part
of the faster RCNN architecture is a classifier that predicts the
class label for the regions proposed by the RPN. The classifier
also contains a regression layer that outputs offset coordinates
to further tighten the proposed box. The output region from the
RPN is passed through a ROI pooling layer tomap them to a fixed
shape before feeding them to the classifier. The classifier consists
of a fully connected layer that outputs softmax scores across all
the class labels.

2.3. SSD
The single shot multiBox detector (SSD) was introduced
by Liu et al. [4]. The Faster RCNN algorithm produces
accurate results but the network is still computationally
intensive for use in some real-time applications [4]. The
SSD algorithm proposed a series of improvements over the
existing object detection architectures for accelerating running

FIGURE 2 | Single Shot Detector extracts detections from feature map at

multiple scales.

time. The main idea behind SSD is predicting category
scores and box offsets for a fixed set of default bounding
boxes using small convolutional filters applied to feature
maps. SSD then generates predictions from different scales of
feature maps thereby producing predictions for all of them.
Similarly to the faster RCNN algorithm, the input to SSD
is a convolutional feature map. In the original paper, the
convolutional feature map is generated by passing an image
through the Conv5_3 layer of a VGG-16 network. The feature
map is downscaled using convolutional filters to get feature
maps at multiple scales. Figure 2 shows original feature maps
along with 6 downscaled ones. Each feature map is processed
independently using different convolutional models to detect
objects at particular scales. There is a set of default boxes
associated with each cell of the feature maps. The convolutional
model predicts offset coordinates relative to the default boxes
and class scores for that box. The offset coordinates move and
tighten the default boxes for a better localization of objects. The
architecture is trained end-to-end by minimizing the weighted
sum of the localization loss and the classification loss.

2.4. Transfer Learning
The success of Deep Learning is contributed mostly by the
large datasets available for training the model. However, data
acquisition and annotation is costly and time consuming. Both
SSD and the Faster RCNN detectors contain deep architecture
with large number of parameters. Hence, training them from
scratch with small dataset can lead to overfitting.

Transfer learning allows deep networks to be trained on
one domain and reused on a different domain. The first few
convolution layers of a CNN trained on images learn universal
representation of image features. These layers can be reused to
build an image classifier with a different dataset. The reused
layer can either be fine-tuned on the new network or kept
frozen allowing only the newly added layers to be updated. There
are several different ways to adopt transfer learning in object
detection. Figures 1, 2 show that the first step for both the
SSD and the faster RCNN detector is transforming the images
to convolutional feature maps using a feature extractor. This
feature extractor can be constructed from the first few layers
of pre-trained image classification architectures such as VGG
[16], Inception [17], Resnet [18], etc. trained on a large image
classification dataset such as imagenet [19]. When training the
object detection model, the layers in the feature extractor can

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 December 2019 | Volume 5 | Article 61

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Acharya and Fung Mileage Extraction From Odometer Pictures

either be kept frozen or updated with a very small learning rate
depending on the size of the dataset. Another way of adopting
transfer learning in a detection domain is by training a detection
model end-to-end using a large object detection dataset such
as Pascal VOC [20], MS COCO [21], and fine-tuning it with a
new dataset.

3. DATA

Training object detection architectures such as SSD and Faster
RCNN requires a large corpus of annotated training samples.
Our initial dataset contained only around six thousand (6,000)
odometer images. These images were uploaded by customers
when filing an auto insurance claim. Before any further
processing, we manually filter the dataset to remove images
with potential personally identifiable information (PII). We also
removed images that do not contain odometers in them. Finally,
the gathered dataset has total of 6,209 odometer images. The
images came from uncontrolled sources and hence in general
the quality of images in the dataset is poor. Most images suffer
from non-uniform illumination, insufficient lighting, incorrect
orientation and low picture resolution.

3.1. Labeling
The process to label the dataset can be divided in two stages.
In the first stage, we aimed to manually segment the odometer
display by drawing a bounding box enclosing the display. Here,
the term odometer display refers to LCD screens from digital
odometers or mechanical meter from analog odometers. In the
second stage, our goal was to generate boxes enclosing each
individual character inside the odometer display and label the
characters with the corresponding digit.

Both of the annotation stages involved labor intensive and
repetitive tasks. Hence, we resorted to crowdsourcing as a viable
solution for these tasks. There are several commercially available
platforms that facilitate crowdsourcing labeling tasks. We used
two popular crowdsourcing platforms: Amazon Mechanical
Turk (AMT) [22] and Figure Eight (previously known as
Crowdflower) [23].

Amazon Mechanical Turk is one of the largest crowdsourcing
platforms operating today. At any given time, it has hundreds
of active workers ready to work on the given task. It provides
flexibility to build customized user interfaces using HTML, CSS

FIGURE 3 | Sample odometer images.

and javascript. It also provides some basic customizable templates
for annotations tasks like sentiment analysis, image classification,
NER, etc.

For our first stage of the annotation process, i.e., manually
segmenting the odometer display, we used AMT. For this task, we
modified the UI opensourced by Russell et al. [24]. The modified
UI allows workers to draw a box over the image, drag it and resize
it. We collected 3 boxes from different labelers for each image in
order to capture possible annotation errors.

Figure Eight is another crowdsourcing platform that works
similar to AMT. In addition to supporting HTML, CSS and
Javascript for UI design, it has rich UI templates for labeling
different objects in images. It has built-in functionality such
as zoom-in, zoom-out, scrolling, etc. that are very relevant for
us when drawing character level bounding boxes. The zoom-
in functionality facilitates the ability to draw tighter boxes. This
platform also monitors the quality of work done by its workers.
All workers have to pass tests before they can work on any
annotation job. For all these reasons, we found the quality of the
annotations on Figure Eight to be better than the ones obtained
when using AMT but this comes at an extra price. Hence, we
decided to use both platforms for each of our first and second
stage of annotation, depending on the trade-off between the cost
of labeling vs. the quality of the annotations.

For any sort of annotation task completed through
crowdsourcing, it is important that the workers understand
the expected outcome of the solicited annotations. It is essential
to provide clear and detailed labeling instructions, covering all
the corner cases and at the same time being as precise as possible.

FIGURE 4 | Sample annotations. (A) Labeling odometer display. (B) Labeling

characters.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 December 2019 | Volume 5 | Article 61

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Acharya and Fung Mileage Extraction From Odometer Pictures

TABLE 1 | Dataset and distribution.

Total no. of images 6,208

Total no. characters labeled 55,739

Avg. no. char per display 9

Digits 73 %

Alphabets 27 %

FIGURE 5 | Distribution of characters; X represents non-digit characters.

TABLE 2 | Image quality distribution.

Image Quality Percentage

Extremely poor 8.1

Poor 12.8

Average 25.3

Good 33.4

Excellent 20.1

We completed the annotation tasks in several batches, we
evaluated the annotations quality for each batch and identified
the key sources of confusion among the workers. We then
changed the instructions accordingly before sending out the next
batch. Figures 3, 4 show some sample odometer images and the
annotation labels.

Table 1 and Figure 5 show the distribution of the characters
in the dataset. 73% of all labeled characters are digits while only
27% of them are letters. With 52 possible alphabet letters (26-
lowercase and 26-uppercase), the number of samples for each
alphabet class is too small and highly imbalanced. This later
inspires us to group all the alphabet characters together in a single
class when training the character recognition model.

We also collected additional information from the labelers
about the quality of the images in our dataset. During an initial
manual inspection, we noticed that a significant portion of the
images in the dataset were not of good quality. To confirm this,
during annotation, we asked the annotators to rate the image
quality of the characters into different categories. Table 2 shows
the distribution of the images in five categories. Note that a
significant portion of the images (21%) are marked as being of
poor or extremely poor quality.

4. GENERAL WORKFLOW OF THE SYSTEM

The proposed solution consists of two cascaded object detection
classifiers followed by a post-processing algorithm (See
Figure 6). Algorithms for object detection have seen significant
improvement over the last few years. In order to leverage the
effectiveness of these models, we divide our problem into two
sub-problems that can directly be seen as problems in the object
detection domain:

• The first is odometer localization where the goal is to locate the
odometer display given an input image.

• The second is character recognition where the goal is to locate
and recognize characters inside the odometer display.

We next proceed to explain in detail each one of
these sub-problems.

4.1. Odometer Localization
The first stage of the pipeline is to isolate and extract the
odometer display from the rest of the image. There are commonly
two types of odometers: analog and digital. Digital odometers
have LCD displays containing a mileage reading and may be
accompanied by other information such as temperature, time,
fuel status, etc. The analog odometer consists of a mechanical
rolling meter. Although, there is large variation in appearance of
analog and digital odometers, we do not differentiate these two
types for this stage. In order to train the odometer localization
model, we trained an object detection model with odometer
images where the odometer display box is the object of interest.
The position of odometer display is supplied as coordinates (x-
center, y-center, height, width) of the odometer display box.
Object detection algorithms are usually trained to localize and
classify objects in the image. However, for odometer localization
there is a single class i.e., odometer display, so the only output
we want from the model is the localization coordinates. During
inference, the localization model takes an image and output
back the coordinates(x-center, y-center, width, height) of the
odometer display.

4.2. Character Recognition
The second stage of the pipeline consists of a character
recognition model. This an object recognition model trained on
images and labels generated in the second stage of annotation.
The training images for this stage come from the odometer
display labeled in the first stage.We crop the odometer display for
each image in the dataset and feed it to the model along with the
annotations from the second stage. The second stage produces
annotations of position (x-center, y-center, height, width) of
each individual character and the corresponding class label. We
do make some changes to the class labels before training the
classifier. Since we only care about getting the mileage number
in the images, it’s sufficient to recognize only digits in the images
and not the rest of the alphabet characters. Furthermore, if we
look at distribution of characters in Table 1, we have very few
samples per class for the letters in the alphabet. Training a model
to recognize individual alphabet characters means we would
have very few examples for most class labels and we would risk

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 December 2019 | Volume 5 | Article 61

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Acharya and Fung Mileage Extraction From Odometer Pictures

FIGURE 6 | Pipeline of proposed architecture.

Algorithm 1: Post-processing algorithm

1: Filter bounding boxes that belong to non-digit character.
2: Augment/extrapolate boxes in horizontal direction by a

factor of a quarter of the width (width4) along both sides.
3: Create a graphGwhere vertices represents bounding box and

edges represent overlap between two boxes.
4: Select subgraph with largest number of vertices.
5: Sort boxes in that subgraph horizontally and extract digits in

order to form a mileage number.
6: ifMileage has 7 digits then
7: Discard the last digit
8: end if

9: return Mileage

overfitting. Instead, we categorize characters into 11 different
class labels, 10 for the digits 0–9 and 1 “non-digit” class for all
the alphabets.

4.3. Post-processing
The character recognition stage identifies individual characters
inside the odometer display along with their coordinates. In
the last part of the pipeline, we want to isolate the digits
that are part of the mileage reading. The post-processing step
combines nearby characters to form words/numbers and selects
the most likely number as the mileage reading. In some digital
odometers, we can find additional information being displayed
alongside the mileage reading. Some of the most frequently
seen additional pieces of information include temperature, time,
warning messages, trip meter reading, fuel status, etc. It is
essential to distinguish the actual mileage reading from other
numbers being displayed on the screen. Similarly, for an analog
odometer we observe two variants: most models have six digits
while a few older models have 7 digits. Usually the 7th digit
changes every 1/10th of a mile and is not considered a significant
part of the mileage reading.

In order to deal with special cases like this, we designed a post-
processing algorithm that takes care of all these corner cases. The
processing algorithm is described in detail below in Algorithm 1.

5. EVALUATION AND EMPIRICAL RESULTS

5.1. Experimental Settings
We randomly selected a small portion of the training set and
used it as validation set for all experiments. The hyperparameter
selection for all architectures is based on performance in the
validation set. We used the object detection API included in

tensorflow models [25] to train and evaluate the models. Huang
et al. [26] provides in-depth comparison of speed and accuracy
of different meta-architectures supported by the API. We used a
Amazon Web Services (AWS) Elastic Cloud Compute instance
containing 8 GPU with 12 GB memory each for training and
testing the models. For both odometer localization task and
character recognition task, we train SSD and faster RCNN
architectures with several choices of CNN model for Feature
extraction such as inception v2 [27], resnet101 [18], inception
resnet [28], mobilenet [29], etc. We experimented with both
approaches of transfer learning described in the previous section:
(a) we fine-tuned a detection model trained on the MS COCO
dataset and, (b) we used a classification model trained on
the imagenet dataset for feature extraction and trained the
remaining layers from scratch. We find that using the detection
model trained on the MS COCO dataset gave the best results.
Furthermore, SSD got the best performance with inception v2
as features extractor and Faster RCNN got the best results
with inception Resnet as the feature extractor. We report the
mean average precision for the best performing SSD and faster
RCNN for the two stages; Odometer localization and character
recognition. We report the final accuracy and error analysis for
the faster RCNN architecture which is a winner between the two
architectures for both stages.

The best performing faster RCNN model is finetuned version
of a faster RCNN detector originally trained on MS COCO
dataset. The MS COCO detector was trained with inception
resnet architecture [detailed in Szegedy et al. [28]] as feature
extractor and 90 different categories in MS COCO dataset as
output objects. We finetuned this model by modifying the
last layer to detect one class(odometer display) for odometer
localization. Similarly, for character recognition we modified the
last layer to output 11 classes(0,1,..,9, X). We used a grid anchor
generator with scales of 0.25, 0.5, 1.0, and 2.0, aspect ratios of
0.5, 1.0, and 2.0 and strides of 8 for both height and width. This
means a total of 12 proposal boxes for each anchor position in the
grid. The post processing stage is set to reject all the detections
with score < 0.3. The IOU threshold is set to 0.6 for Non
maximum suppression. The loss being minimized is the sum of
localization loss and classification loss both of which are equally
weighted. We used learning rate of 0.0003 and trained the model
for 50, 000 steps with a batch size of 8.

5.2. Results
A common evaluation technique for object detection models
is to measure mean average precision (map) [20] for a certain
threshold of the Intersection Over Union (IOU) ratio. A

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 December 2019 | Volume 5 | Article 61

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Acharya and Fung Mileage Extraction From Odometer Pictures

TABLE 3 | Mean Average Precision of Faster RCNN and SSD architectures for

odometer localization and character recognition stage.

map 0.5IOU SSD Faster RCNN

Odometer Localization 0.79 0.82

Character Recognition 0.89 0.93

FIGURE 7 | Accuracy results comparisons.

prediction is a true positive if the IOU ratio between the
predicted bounding box and the actual box is greater than the
IOU threshold. Table 3 shows the map values (at IOU = 0.5)
of the SSD and the faster RCNN models for both the odometer
localization the and character recognition task. The results
clearly indicate that the faster RCNN algorithm is a winner for
both tasks.

Our mileage extraction model contains two object
detectors working in conjunction. Rather than detecting an
object/character, the objective is to extract the actual mileage
reading. To do so, the model has to predict every single digit
correctly. For our system, getting those numbers right is more
important than getting perfect localization of the odometer
display or the individual characters.

In order to measure system performance, We defined a binary
measure of end-to-end system accuracy in the following way:
the model gets a score equal to 1 if extracted mileage equals
the annotated mileage and 0 otherwise. Furthermore, in most
business use-cases, it is sufficient to get the mileage within a given
error range. For example; if a model predicts the mileage to be
45,607 when the actual mileage is 45,687 then there is an error
of 80 miles. For use cases such as insurance quote generation or
claims processing a perfectly acceptable margin of error is around
a thousand (1,000) miles. Taking this into account, we introduce
one more additional end-to-end system evaluation metric in the
following way: the model gets score = 1 if absolute(extracted
mileage–annotated mileage) < threshold and 0 otherwise (where
threshold= 1,000 miles).

Since the overall quality of images in our odometer images
dataset is not so good, we performed a further analysis on the
effect of the image quality on the performance of the model.
We created a subset of the test set comprised of only the

good quality images. These images are selected from the test
set based on their corresponding annotator rating. This “good-
quality images” subset ended up containing 362 images. Figure 7
shows end-to-end system accuracy for the faster RCNN model
for both the original test set and the “good-quality images”
subset. For the original test set, we obtain end-to-end accuracy
of 85.4% using faster RCNN for both stages. Similarly, we
achieve an accuracy of 88.8% within an error boundary of 1,000
miles. For the “good-quality images” subset, we get a general
accuracy of 90% and an accuracy of 91.4% within an error
bound of 1,000 miles. It is important to note the improvement
of 5% in test set accuracy associated with the improvement in
image quality. This result presents an opportunity to improve
performance by validating the quality of uploaded images in
real time and providing immediate feedback and guidance to
the customer to generate better quality pictures. Sample results
for odometer localization and character recognition are shown
in Figures 8, 9.

5.3. Error Analysis
To identify key weakness of the model and opportunities for
improvement, we performed a more detailed error analysis. For
all the incorrect predictions, we manually assigned the error
to one of the three stages in the pipeline. Figure 10 shows the
distribution of the incurred test set errors among the odometer
Localization, the character Recognition and the post-processing
stage. The localization errors occur when the localization model
cannot properly detect the odometer display, either because it did
not find the display or because the proposed bounding box is
not accurate enough to include all the characters in the display.
It is evident from Figure 10 that a large portion of the errors
are coming from the character recognition stage. Errors in this
stage include not detecting or recognizing characters inside the
odometer display. This error could be minimized by improving
the character recognition model. As we mentioned before, image
quality is an important factor in improving accuracy and we need
to put more effort on ensuring that the uploaded images meet
minimum quality standard.

The post processing algorithm constitutes 15% of the total
error. This error comprises cases such as failure to group digits
together, failure to distinguishmileage from other numbers in the
display, identifying the digit after the decimal point as part of the
mileage, etc.

6. DEPLOYMENT ARCHITECTURE

The deployment of the odometer mileage detector is a work in
progress. However, we are reusing a deployment framework used
in the past for similar image recognition models in our company.
In this section, we will describe such framework.

Containerized deployment is very popular nowadays.
Containers are independent, easily configurable and easily scaled
to multiple machines. Microservices running inside containers
provide isolation from actual system ingesting the service and
provide flexibility to work independently and quickly. We deploy
the model as a microservice running in a docker container.
Docker allows packaging codes and dependencies into a docker

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 December 2019 | Volume 5 | Article 61

@

Acharya and Fung Mileage Extraction From Odometer Pictures

FIGURE 8 | Selected examples of odometer localization. In case of multiple detections, only the most confident box is shown.

FIGURE 9 | Selected examples of character recognition. Character recognition model scans for characters inside the region(green box) proposed by localization

model. Characters in red are predictions from character recognition model. X represents non-digit character.

FIGURE 10 | Detailed error analysis by stage.

image that runs inside a docker container. Docker containers are
compatible to run on any operating system.

Figure 11 shows the overall architecture used for deployment.
We use tools provided by the Amazon Web Service(AWS)
ecosystem to launch, scale, orchestrate and run the docker
container. Detailed description of each of these tools can

be found in the official site [30]. The central component is
the docker container hosting the odometer mileage extraction
model. We use the Amazon elastic container registry (ECR)
to host docker images and Amazon elastic container services
(ECS) to run the containers. We use Amazon systems manager
parameter store (SMPS) to store runtime parameters and
Amazon CodeBuild to build the docker image. Furthermore,
Amazon ElasticBeanStalk (EBS) is used to orchestrate the
deployment to ECS, as well as to provision and configure other
resources such as LoadBalancer, AutoScaling groups, etc. EBS
facilitates logging, monitoring and sending notifications to the
developers about unexpected service interruptions. We believe
that the Continuous Integration/Continuous Delivery(CI/CD)
principle [31] is a crucial part of any data science project. We
want to be able to train new models or update code base and
deploy them into production automatically withminimum effort.
This allows data scientist to focus more on improving models
rather than spending time on deployment. For CI/CD, we use
Jenkins. As soon as we push changes to a git repository, Jenkins
builds an image, runs tests and deploys the model to production.
Here is a step by step break down of the deployment process:

• Push changes to git repository hosted in bitbucket.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 December 2019 | Volume 5 | Article 61

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Acharya and Fung Mileage Extraction From Odometer Pictures

FIGURE 11 | Deployment architecture.

• Jenkins monitors changes in git repository and initiates
build process.

• Jenkins builds code, runs test and builds image.
• Jenkins pushes image to ECR and issues deploy to ECS.
• ECS pulls new image from ECR and runs it inside

docker container.
• EBS receives a HTTP request with odometer image.
• ELB distributes load across multiple containers and EBS

launches additional container instances if necessary.
• Container processes the image and sends mileage back to

user app.

The client mobile app makes a HTTP request to odometer
server and receives a mileage number in response. It auto-
fills the odometer mileage reading into the form. The user will
have an option to validate, and correct the mileage reading if
necessary, before submitting the form. The odometer picture
is uploaded to a on-premises server along with the form
during submission.

7. CONCLUSIONS AND FUTURE WORK

In this work we developed a novel solution to the insurance-
related problem of extracting mileage readings from odometer
images. We leveraged existing object recognition technology and
designed a post processing algorithm to identify and extract
mileage readings. The developed system was able to get high
accuracy in mileage extraction despite having poor quality
images. We also have provided a complete implementation
design including the tools and technology we are using to deploy,
scale and manage the model in production.

Our detailed error analysis provides insights into the
shortcomings of the system and unveil opportunities to improve

it. We can further improve performance of the model using
image guidance and enforcing minimum requirements on image
quality. For example, when a user takes a picture of the odometer,
the app display could contain a bounding box and the user will
be asked to align the odometer display within that bounding
box. This technique is commonly used in several applications
that read data from credit cards, personal checks, etc. Image
guidance could help mitigate the need for having an accurate
localization model and hence the errors associated with that
model could beminimized significantly. This will also ensure that
the images are taken directly facing the odometer display and
with a proper orientation.

We are also exploring methods to estimate prediction
confidence for the predicted mileage digits. If we
are able to estimate prediction confidence, we can
automatically accept images when we feel confident
that we are predicting the correct mileage reading
and ask the user to repeat the process or enter the
mileage by hand if we fail to produce a confident
enough prediction.

DATA AVAILABILITY STATEMENT

The datasets generated for this study cannot be released
publicly due to the privacy concern of the customers.
Requests to access these datasets should be directed to the
corresponding author.

AUTHOR CONTRIBUTIONS

SA implemented the project, ran experiments, and worked on
manuscript. GF initiated the project, managed it, and worked
on manuscript.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 December 2019 | Volume 5 | Article 61

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Acharya and Fung Mileage Extraction From Odometer Pictures

REFERENCES

1. Smith R. An overview of the tesseract OCR engine. In: Proc. Ninth Int.

Conference on Document Analysis and Recognition (ICDAR) Parana (2007).

p. 629–33. doi: 10.1109/ICDAR.2007.4378659

2. Matlab OCR toolbox (2018). Available online at: https://www.mathworks.

com/help/vision/ref/ocr.html (accessed February 1, 2019).

3. Hosseini H, Xiao B, Poovendran R. Google’s cloud vision API is not robust to

noise. CoRR. (2017) abs/1704.05051.

4. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, et al. Ssd: single shot

multibox detector. In: European Conference on Computer Vision. Amsterdam:

Springer (2016). p. 21–37.

5. Girshick R. Fast R-CNN. In: The IEEE International Conference on Computer

Vision (ICCV). Beijing (2015).

6. Masood SZ, Shu G, Dehghan A, Ortiz EG. License plate detection and

recognition using deeply learned convolutional neural networks. CoRR.

(2017) abs/1703.07330.

7. Bulan O, Kozitsky V, Ramesh P, Shreve M. Segmentation- and annotation-free

license plate recognition with deep localization and failure identification. IEEE

Trans Intell Trans Syst. (2017) 18:2351–63. doi: 10.1109/TITS.2016.2639020

8. Sanap PR, Narote SP. License plate recognition system-survey. AIP Conf Proc.

(2010) 1324:255–60. doi: 10.1063/1.3526208

9. Sonavane K, Soni B, Majhi U. Survey on automatic number plate recognition

(ANR). Int J Comput Appl. (2015) 125:1–4. doi: 10.5120/ijca2015905920

10. Du S, Ibrahim M, Shehata MS, Badawy WM. Automatic License Plate

Recognition (ALPR): a state-of-the-art review. IEEE Trans Circ Syst Video

Technol. (2013) 23:311–25. doi: 10.1109/TCSVT.2012.2203741

11. Nagaoka Y, Miyazaki T, Sugaya Y, Omachi S. Text detection by faster R-CNN

with multiple region proposal networks. In: 2017 14th IAPR International

Conference on Document Analysis and Recognition (ICDAR). Vol. 6. Kyoto:

IEEE (2017). p. 15–20.

12. Borisyuk F, Gordo A, Sivakumar V. Rosetta: Large scale system for text

detection and recognition in images. In: Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. London:

ACM (2018). p. 71–9.

13. Yang C, Yin X-C, Yu H, Karatzas D, Cao Y. ICDAR2017 robust reading

challenge on text extraction from biomedical literature figures (DeTEXT).

In: 2017 14th IAPR International Conference on Document Analysis and

Recognition (ICDAR). Vol. 1. Kyoto: IEEE (2017). p. 1444–7.

14. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object

detection with region proposal networks. In: Advances in Neural Information

Processing Systems. Montreal, QC: Curran Associates, Inc. (2015). p. 91–9.

15. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic

segmentation. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. (Boston, MA) (2015). p. 3431–40.

16. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale

image recognition. CoRR. (2014) abs/1409.1556.

17. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper

with convolutions. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. (Boston, MA) (2015). p. 1–9.

18. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. (Seattle, WA) (2016). p. 770–8.

19. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large

scale visual recognition challenge. Int J Comput Vision. (2015) 115:211–52.

20. EveringhamM, Eslami SMA, VanGool L,Williams CKI,Winn J, ZissermanA.

The pascal visual object classes challenge: a retrospective. Int J Comput Vision.

(2015) 111:98–136. doi: 10.1007/s11263-014-0733-5

21. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft

coco: common objects in context. In: European Conference on Computer

Vision. Zurich: Springer (2014). p. 740–55.

22. Mechanical Turk (2019). Available online at: https://www.mturk.com/

(accessed February 1, 2019).

23. Figure Eight (2019). Available online at: https://www.figure-eight.com/

(accessed February 1, 2019).

24. Russell BC, Torralba A, Murphy KP, Freeman WT. LabelMe: a database and

web-based tool for image annotation. Int J Comput Vision. (2008) 77:157–73.

doi: 10.1007/s11263-007-0090-8

25. Github Contributor. Object Detection API. GitHub (2019). [commit

947c92bc44df7499baa3da1fefe7d3094a1f4561]. Available online at: https://

github.com/tensorflow/models/tree/master/research/object_detection

(accessed February 1, 2019).

26. Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, et al.

Speed/accuracy trade-offs for modern convolutional object detectors. In: IEEE

CVPR. Vol. 4. (Honolulu, HI) (2017).

27. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the

inception architecture for computer vision. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. Seattle, WA (2016).

p. 2818–26.

28. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet

and the impact of residual connections on learning. In: AAAI (San Francisco,

CA). (2017). p. 12.

29. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T,

et al. Mobilenets: efficient convolutional neural networks for mobile vision

applications. arXiv preprint. (2017) arXiv:170404861.

30. Amazon Web Services Ecosystem (2019). Available online at: https://aws.

amazon.com/products/ (accessed February 1, 2019).

31. Wikipedia contributors. CI/CD — Wikipedia, The Free Encyclopedia

(2019). Available online at: https://en.wikipedia.org/w/index.php?title=CI/

CD&oldid=877599340 (accessed February 1, 2019).

Conflict of Interest: SA and GF were employed by the company American

Family Insurance.

Copyright © 2019 Acharya and Fung. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 December 2019 | Volume 5 | Article 61

https://doi.org/10.1109/ICDAR.2007.4378659
https://www.mathworks.com/help/vision/ref/ocr.html
https://www.mathworks.com/help/vision/ref/ocr.html
https://doi.org/10.1109/TITS.2016.2639020
https://doi.org/10.1063/1.3526208
https://doi.org/10.5120/ijca2015905920
https://doi.org/10.1109/TCSVT.2012.2203741
https://doi.org/10.1007/s11263-014-0733-5
https://www.mturk.com/
https://www.figure-eight.com/
https://doi.org/10.1007/s11263-007-0090-8
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://en.wikipedia.org/w/index.php?title=CI/CD&oldid=877599340
https://en.wikipedia.org/w/index.php?title=CI/CD&oldid=877599340
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Mileage Extraction From Odometer Pictures for Automating Auto Insurance Processes
	1. Introduction
	2. Preliminaries
	2.1. Related Work
	2.2. Faster RCNN
	2.3. SSD
	2.4. Transfer Learning

	3. Data
	3.1. Labeling

	4. General Workflow of the System
	4.1. Odometer Localization
	4.2. Character Recognition
	4.3. Post-processing

	5. Evaluation and Empirical Results
	5.1. Experimental Settings
	5.2. Results
	5.3. Error Analysis

	6. Deployment Architecture
	7. Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	References

