
ORIGINAL RESEARCH
published: 10 December 2019
doi: 10.3389/fams.2019.00063

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 December 2019 | Volume 5 | Article 63

Edited by:

Carlos Gershenson,

National Autonomous University of

Mexico, Mexico

Reviewed by:

Guoyong Yuan,

Hebei Normal University, China

Joseph T. Lizier,

University of Sydney, Australia

*Correspondence:

Hildegard Meyer-Ortmanns

h.ortmanns@jacobs-university.de

Specialty section:

This article was submitted to

Dynamical Systems,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 19 September 2019

Accepted: 25 November 2019

Published: 10 December 2019

Citation:

Voit M and Meyer-Ortmanns H (2019)

Dynamical Inference of Simple

Heteroclinic Networks.

Front. Appl. Math. Stat. 5:63.

doi: 10.3389/fams.2019.00063

Dynamical Inference of Simple
Heteroclinic Networks
Maximilian Voit and Hildegard Meyer-Ortmanns*

Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany

Heteroclinic networks are structures in phase space that consist of multiple saddle fixed

points as nodes, connected by heteroclinic orbits as edges. They provide a promising

candidate attractor to generate reproducible sequential series of metastable states. While

from an engineering point of view it is known how to construct heteroclinic networks

to achieve certain dynamics, a data based approach for the inference of heteroclinic

dynamics is still missing. Here, we present a method by which a template system

dynamically learns to mimic an input sequence of metastable states. To this end, the

template is unidirectionally, linearly coupled to the input in a master-slave fashion, so that

it is forced to follow the same sequence. Simultaneously, its eigenvalues are adapted

to minimize the difference of template dynamics and input sequence. Hence, after the

learning procedure, the trained template constitutes a model with dynamics that are

most similar to the training data. We demonstrate the performance of this method at

various examples, including dynamics that differ from the template, as well as a regular

and a random heteroclinic network. In all cases the topology of the heteroclinic network

is recovered precisely, as are most eigenvalues. Our approach may thus be applied

to infer the topology and the connection strength of a heteroclinic network from data

in a dynamical fashion. Moreover, it may serve as a model for learning in systems of

winnerless competition.

Keywords: inference, heteroclinic networks, learning, metastable states, winnerless competition

1. INTRODUCTION

When the unstable manifold of a saddle fixed point intersects the stable manifold of another
saddle this is called a heteroclinic orbit. A heteroclinic network is a set of multiple saddles that are
connected this way. Non-linear dynamics of heteroclinic networks are frequently found in ordinary
differential equations under certain constraints like symmetries [1] or delay [2]. They are predicted
in models of coupled phase oscillators [2, 3], vector models [2], pulse-coupled oscillators [4]
and models of winnerless competition (WLC) [5]. Applications are manifold and range from
social [6, 7] and ecological [5, 8] systems, to computation [4] and neuronal [9–13] networks. In
particular, heteroclinic sequences in models of winnerless competition predict transient dynamics
that share features with cognitive dynamics [5, 9–11, 13, 14]. Cognitive dynamics, or more
generally, brain dynamics proceeds via sequential segmentation of information that is manifest
in sequences of encephalography (EEG)-microstates [15] which are brief periods of stable scalp
topography with a quasi-stationary configuration of the scalp potential field. Transitions between
EEG-microstates have been modeled by epsilon-automata [16], for example, or by noisy network
attractor models [17], of which the latter are closely related to heteroclinic networks. Such
sequences of metastable states are observed on different time scales, ranging from milliseconds
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to seconds [18]. In addition, these sequences may be nested as
reflected in so-called chunking dynamics [10] when, for example,
slow oscillations of neuronal activity modulate fast oscillations
modulate even faster ones. On a formal level, the “events” in
WLC are described as saddle equilibria (with one or higher-
dimensional unstable manifolds), connected via heteroclinic
orbits which facilitate transitions among the saddles [1]. The
orbits can form heteroclinic sequences, cycles, or even whole
networks with saddles as nodes and heteroclinic connections
as edges. Specifically, heteroclinic networks are considered in
this paper.

In an abstract representation, such sequences of metastable
states can bemodeled as a sequence of symbols, each representing
one state with discrete state-transitions between them as in
finite-state machines. In contrast, heteroclinic dynamics captures
both, the sequence of states and autonomous smooth transitions
between them as they exist in a physical realization.

How to construct a heteroclinic network with a certain
topology has been well-studied, e.g., in references [19–21].
Moreover, with the perspective of engineering oscillators as noise
driven heteroclinic cycles, the influence of different parameters
on the dynamics has been investigated in Horchler et al. [22].
This way, versatile generators of repetitive patterns may be
constructed by designing suitable heteroclinic networks.

In this article we address the inverse problem: Given the time
series of a dynamics that was generated by a heteroclinic network,
we propose how to infer the topology and the eigenvalues of
this network. Related studies have been conducted for example
by Selskii and Makarov [23]. The authors focus on how a
learning process synchronizes the dynamics of heteroclinic cycles
by adapting the expanding eigenvalues only. In Calvo Tapia
et al. [24], this approach was extended by an additional step
that identifies the sequence of saddles in a discrete manner,
but it is still limited to circular topologies. With focus on
the sequential memory in neural systems, Seliger et al. [25]
proposed a learningmechanism for sequences of images based on
winnerless competition. In their model, the learning mechanism
that alters and adapts the competition matrix is realized via delay
differential equations.

In this paper, we present a method that infers the topology
and all eigenvalues of a so-called simple [26] heteroclinic network
from time series data, generated by a heteroclinic network.
Note that “simple” here does not refer to the topology, but to
the type of heteroclinic network: Heteroclinic orbits of simple
heterolinic networks are contained in two-dimensional fixed-
point subspaces, so that (for a suitably chosen coordinate system)
the saddles lie on the coordinate axes. If the input was generated
by a heteroclinic network, the time series of the process switches
between metastable states, which manifest themselves in the
data as accumulation points if the sampling rate was constant.
Otherwise, if for a given time series the generating dynamics
is not known, but the series shows such features of metastable
states, the generation via a heteroclinic network would be a first
conjecture. The inference is realized as a continuous dynamical
process that alters the parameters of a template system. At the
end of the process, this template system generates the same
sequence of metastable states that was presented to it. The

method may thus be considered from various perspectives:
As a data analysis/inference tool, as a tool for engineering
purposes, and as a model of a learning process in the context of
winnerless competition.

The remainder of this article is structured as follows. In
section 2, we describe the method by introducing the template
system and defining the learning dynamics. Additionally, we
give a first demonstration of the method at a simple example,
the Kirk-Silber network. Subsequently, we present increasingly
complex networks in section 3 to highlight different aspects and
possible obstacles in the application of the method. We conclude
in section 4.

2. THE LEARNING DYNAMICS

Suppose we have an input signal y(t) ∈ R
N that was generated by

a simple heteroclinic network. In this case, the multidimensional
time series has accumulation points (representing the metastable
states) that lie on the coordinate axes in the positive hyperoctant
(if necessary, after a suitable rotation). Moreover, we assume
normalization, so that these accumulation points are essentially
the unit vectors ei for i ∈ {1, . . . ,N}. Our goal is to construct
a system (described by ODEs) which generates a signal that
resembles this input. To this end, we employ the idea that the
ODEs of a simple heteroclinic network have a certain form as
described in section 2.1. To mimic the dynamics of the input for
a specific system, these ODEs of Equation (1) below merely have
to be adjusted in their parameters. We call this adjustment (the
incremental changes of the eigenvalues) the learning dynamics,
defined in section 2.2. Afterwards, we demonstrate this method
at a simple example, the Kirk-Silber network.

2.1. Template System
In the following, we describe the template system, which
after training should reproduce the input sequence. Consider
an input sequence y(t) ∈ R

N with N accumulation points
(representing the metastable states) on the coordinate axes in
the positive hyperoctant (Depending on the context, the variable
y may represent, for example, species concentrations, cognitive
information, or whatever physical meaning the temporary
winner in this case of WLC has). To produce such a sequence
by a simple heteroclinic network, N dimensions are required, as
saddle fixed points are located only on the coordinate axes. We
thus propose as template

dt xi = xi



−ai,i

(

1

2
+

x2i
b2i

)

+
∑

j

(

aj,i +
ai,i

2

) x2j

b2j





+σηi(t) ∀i ∈ {1, . . . ,N}, (1)

where x ∈ R
N describes the state, and ai,j ∈ R and bi ∈ R, bi >

0 are free parameters that will be subject to learning. Indices
i, j, k are always assumed ∈ {1, . . . ,N}. The parameter σ ≥ 0
determines the noise strength, and ηi(t) is white noise with zero
mean and unit variance. This system has N equilibria ξi = {x ∈
R
N
: xi = bi > 0, xj = 0∀j 6= i} with only a single item xi > 0

active. Moreover, the eigenvalues of the Jacobian of Equation (1)
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evaluated at ξi are ai,j, and the corresponding eigenvectors are
ej = {x ∈ R

N
: xj = 1, xk = 0∀k 6= j}. Precisely these properties

are the reason for choosing the very form of Equation (1). It is the
lowest order realization that has the aforementioned properties
andZN

2 reflection symmetry. A second order realization would in
principle be also possible, but lacks this symmetry and may show
divergent dynamics as soon as xi < 0 for some i. Equation (1)
may be understood as a generalization of the ODEs of the simplex
method [19] that makes all eigenvalues and the saddle positions
directly available as parameters. These ODEs can be retrieved
from Equation (1) by setting bi = 1 and ai,i = −2 for all i.

Note that Equation (1) is equivariant under reflection
symmetry Z

N
2 . As a result, the coordinate planes Pi,j = {x ∈

R
N
: xk = 0∀k /∈ {i, j}} are invariant sets. Thus, when the

eigenvalues of two equilibria ξi and ξj fulfill ai,j < 0, aj,i >

0, ai,i < 0, and aj,j < 0, there exists a heteroclinic orbit from
ξi to ξj within Pi,j [27, 28]. Furthermore, the hyperoctants (e.g.,

R
N
+) are invariant sets, so in the following we assume w.l.o.g. all

components of x (and y) to be positive at all times. For simplicity,
we also assume that the input sequence y(t) is normalized so that
the accumulation points are the unit vectors ei ∈ R

N . We thus
fix bi = 1∀i.

2.2. Definition of the Learning Dynamics
The principal idea is tomake the template system follow the input
signal y(t) ∈ R

N by coupling it linearly into the template. If
we know also the system that generates the input, the learning
may be performed online, so that the signal is learned while it is
generated. When the generating system is known, the setup can
be seen as a master-slave coupling, as there is no coupling back
from the template to the generating system. Thus, Equation (1) is
extended by a coupling term

dt xi = xi (. . . ) + σηi(t)+ ϑ(yi − xi) (2)

with yi the ith component of the input signal and ϑ the strength
of the coupling. Empirically, for ϑ large enough the coupling
draws the template dynamics close to the input as desired,
even under the influence of noise. For mutual coupling of two
identical heteroclinic networks without noise such an effect may
be anticipated via the master stability function approach [29]:
The mode corresponding to the synchronized manifold has the
original eigenvalues, say λl; the transverse mode has eigenvalues
λl−2ϑ , and perturbations away from the synchronized manifold
thus decay if the coupling ϑ is large enough. A detailed discussion
of this synchronization (in the sense that ||x(t) − y(t)|| → 0 for
t → ∞) for linearly coupled heteroclinic cycles will be given
elsewhere (Voit and Meyer-Ortmanns, in preparation).

Even with coupling, however, small differences between
master and slave remain as long as the two systems are not
identical. The key point is therefore the following: When the
trajectory is in the vicinity of saddle ξi, it is the N eigenvalues
ai,j at ξi that determine the time evolution of the concentrations
xj near ξi. If there is a difference (yj − xj) > 0 (< 0) while the
systems are close to ξi, it is therefore the eigenvalue ai,j that has to

be increased (decreased) to match the eigenvalue underlying the
signal. This is realized by the learning rule

dt ai,j = (1− δij(1+ ρ))γϑ(yj − xj) exp

(

−
(

bi −
yi + xi

2

)2

ζbi

)

,

(3)

where γ > 0 is the learning rate, δij the Kronecker delta. The first
terms are precisely the scaled dependence on the deviation of the
current dynamics x from the original y. By taking along a factor
of ϑ , the learning rate γ becomes independent of the coupling
strength. The exponential term is a Gaussian ensuring that the
changes of eigenvalues are local to the saddle these eigenvalues
are associated with: The difference bi − yi+xi

2 becomes small
precisely when the average of the dynamics of the input and
the template is close to the location of the saddle. It should be
noticed that here the structure of simple heteroclinic networks
enters in that it suffices to measure the ith component only,
since regularly never a situation occurs where two coordinates
i, j simultaneously strongly differ from zero such that xi ≈ bi
and xj ≈ bj at the same time. The range of this localization is
adjusted by the parameter ζ > 0. The bi-dependence is kept
in the exponent for cases where bi 6= 1 to adjust the size of
the neighborhood of the saddle. Note that the situation for the
radial eigenvalues is different. It is necessary to use coordinates
local to the saddle, which for non-radial components are just the
global ones. The radial component, however, is transformed to
x̃i = bi − xi (equivalently for yi) in local coordinates, so that the
sign of the learning rule has to be inverted. We therefore require
ρ > 0 and usually will choose ρ ≥ 1 since radial eigenvalues
empirically converge slower than eigenvalues associated with the
other directions.

2.3. Inferring a Single Eigenvalue
We proceed by illustrating the method introduced above with a
Kirk-Silber network [30]. This is a simple heteroclinic network
consisting of two heteroclinic cycles that share a common edge,
c.f. Figure 1. Suppose that the ODEs of the master system dty
are known and of the form of Equation (1). The slave system
(the template) naturally is Equation (2), and we assume to know
all eigenvalues ai,j but a2,3, which is different from its value
in the master system a2,3m. The effect of the linear coupling
is to continuously counteract this difference, but ultimately the
learning dynamics of Equation (3) leads to the convergence
a2,3 → a2,3m, and the contribution of the coupling term in
Equation (2) vanishes, c.f. Figure 2. Note that the learning takes
place whenever the template system visits ξ2 and x3 differs from
y3. During the remaining time, the differences between x and y

are due to the differing noise realizations in both systems, which
also makes both dynamics diverge as soon as the coupling is
removed at t = 1, 500. Afterwards the fact that the template
(slave system) on its own has the same dynamics as the master
system is clear from its value of a2,3 = a2,3m on the one hand,
and the statistics (of visits to ξ3 vs. ξ4) on the other hand. It
might be beneficial to delay the start of learning in order to allow
initial transients to decay (this is not necessary when the initial
condition is close to the heteroclinic network).
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FIGURE 1 | Topology of two Kirk-Silber networks. The networks initially differ in their expanding eigenvalues at ξ2. Sketched in orange is the linear coupling and its

effect to increase (decrease) the eigenvalues toward ξ3 (ξ4), respectively, in the slave system.

FIGURE 2 | Learning dynamics near the Kirk-Silber network. From top to bottom: Dynamics of the master system, the slave system, their difference, and the

eigenvalue a2,3 are plotted against time. Vertical dashed lines mark the beginning of learning (t = 100) and its end (t = 1, 500), at which time also the coupling is

turned off (→ ϑ = 0), so that due to different noise realizations the system states slowly diverge. Parameters are ϑ = 1, γ = 0.5, ζ = 50, σ = 10−6; eigenvalues are

chosen as arad. = −1, acontr. = −0.22, aexp. = 0.2, and a2,3m = 0.21.

3. INFERRING HETEROCLINIC NETWORKS
WITH INCREASING COMPLEXITY

In this section, we illustrate our method of the previous section
by heteroclinic networks with increasingly complex features.
As the simplest non-trivial topology we choose the Kirk-Silber
network in section 3.1. At this example, we demonstrate how
not only one, but all eigenvalues are recovered by the template
without any prior knowledge. In addition, we point out how
even the noise level may be captured by the learning method.
Moreover, in section 3.2 we analyze the effect of a mismatch
between the system that generated the input and the template
system. Significant differences in the ODEs of the two systems
strongly affect the convergence of radial eigenvalues, while the
remaining eigenvalues are mostly inferred well. Furthermore,
in section 3.3 we focus on larger networks with more complex
topologies. We both probe our method at a highly regular,
hierarchical heteroclinic network which exhibits two time scales,
and construct a random heteroclinic network (by the simplex

method) to generate the input and reconstruct its topology by
learning. The latter example underlines the role of noise in how
extensively the heteroclinic network is explored, especially in the
case of an irregular topology with heterogeneous preferences of
heteroclinic connections.

3.1. Inferring All Eigenvalues and the Noise
Level
As the basic example in section 2, we demonstrated the
successful inference of a single eigenvalue of a Kirk-Silber
network. Actually, however, all eigenvalues may be inferred at
the same time. Thus it is possible to start with a template
with unbiased randomly or uniformly chosen parameters and
infer the whole topology of a simple heteroclinic network. As
demonstration, again we choose the Kirk-Silber network and
initialize all eigenvalues as 0. The learning method then infers
the values of the generating system, c.f. Figure 3. It is convenient
to distinguish the different kinds of eigenvalues and refer to
them by standard terminology [31] according to their respective

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 December 2019 | Volume 5 | Article 63

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Voit and Meyer-Ortmanns Dynamical Inference of Simple Heteroclinic Networks

FIGURE 3 | Learning all eigenvalues of a Kirk-Silber network. Eigenvalues are

grouped by their corresponding direction. Horizontal dotted lines mark the true

values. Transverse eigenvalues converge slightly slower, radial significantly.

Parameters are ϑ = 5, γ = 1, ρ = 10, and σ = 10−6.

eigendirection (radial, contracting, expanding, and transverse).
Note that transverse eigenvalues converge only slightly slower
than contracting and expanding ones, while radial eigenvalues
pose a greater difficulty and converge much slower. Therefore,
accelerating the learning process for radial eigenvalues (by
choosing ρ ≥ 1) may be useful to moderate this effect.

Up to this point we neglected a careful discussion of the
influence of noise, although noise has to be present in the
generating system to sustain the switching between saddles. If the
template should reproduce this switching after the input signal
is switched off, it must also be subject to noise. As the noise
intensity influences the pace of switching, it ought to be the same
in both systems.

To discover the original noise intensity we exploit its
characteristics. If the noise is lower in the template than it was
in the generating system, this has no noticeable effect. However,
if it is stronger in the template, contracting eigenvalues fluctuate
during learning, c.f. Figure 4. Thus, by performing multiple
learning trials with decreasing σ in Equation (1), the correct noise
level (as inherent in the input) may be recovered.

In summary, after decoupling the template from the master
system with identical dynamics, the time evolution of both
systems is exactly the same if there is no noise and identical initial
conditions have been used. Otherwise, i.e., under the influence of
noise and depending on the initial conditions, the statistics and
sequence of visited saddles in both decoupled time evolutions
remain the same, but the dynamics differs in details.

3.2. Mismatched Template
In the examples above the input signal is generated by a system
of ODEs that has the same form as the template. Otherwise,
if the input stems from a different implementation of a simple
heteroclinic network, the question arises of how this mismatch
between template and generating system impacts the inference.
In the following we pursue this question, as it is crucial in view of

FIGURE 4 | Influence of the noise strength on the template system during

learning a Kirk-Silber network. Plotted are the contracting eigenvalues during

learning. The master system has always σ = 10−6. For stronger noise in the

template contracting eigenvalues fluctuate. Parameters are ϑ = 5, γ = 1, and

ρ = 10.

the fact that for a realistic inference task the form of the original
ODEs is usually unknown.

Time continuous models of population dynamics are
commonly derived as a mean-field approximation [32] of
reaction equations that describe interactions at the level of
individuals. One basic example of such a continuous model is
the May-Leonard model [33]. It contains a heteroclinic cycle
that is also known as the Busse-Heikes cycle [34], generated by
the ODEs

dtxi = xi(1− xi − bxi+1 − cxi+2) , (4)

where 0 < c < 1 < b, b− 1 > 1− c, and i ∈ Z3 = {1, 2, 3} cyclic.
The variables xi represent population densities, thus they are
restricted to the positive octantR3

>0. By a variable transformation

(xi → √
xi) the Guckenheimer-Holmes cycle [35] emerges,

which matches the form of the template. The original Busse-
Heikes cycle, however, does not; it has second-order terms
instead of third-order ones1.

Nevertheless, our method is able to infer the Busse-Heikes
cycle. With the default parameters (ϑ = 1, γ = 0.5,
ζ = 50, and ρ = 10), we find that the radial eigenvalues
fluctuate strongly, but the eigenvalues of the remaining directions
converge approximately to their true values. Choosing a low
value of ρ (e.g., ρ = 0.2) reduces the fluctuations of the radial
eigenvalues. The resulting template follows a heteroclinic cycle
with the same topology, but different shape of the approach
toward the saddles, c.f. Figure 5A.

Since the heteroclinic cycles that we considered so far do not
contain transverse directions and we want to analyze the effect
of a mismatch also on the transverse eigenvalues, we modified a

1Commonly, the terms “Busse-Heikes cycle” and “Guckenheimer-Holmes cycle”

are used synonymously, as the heteroclinic cycles (as objects in phase space) are

diffeomorphic to each other. In this article, however, we specifically distinguish the

two different ODE systems by these terms.
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FIGURE 5 | Effects of mismatched templates. Upper panels show the dynamics of the signal and template against time. Lower panels display the deviation of the

eigenvalue in the template from their value ai,jm in the master system, i.e., di,j = ai,j − ai,jm, sorted by the kind of direction they correspond to (radial, expanding,

contracting, and transverse). Parameters are ϑ = 1, γ = 0.5. (A) Busse-Heikes cycle, with b = 1.25, c = 0.8, and ρ = 0.2. (B) Kirk-Silber network with only

second-order terms, using ρ = 0.1. (C) Guckenheimer-Holmes cycle with higher order terms, using a = 1, b = 1.25, c = 0.8, α = 0.01, β = 0.01, and ρ = 1.

Kirk-Silber system in the same way (so that its terms are second-
order instead of third-order). The situation is quite similar; small
ρ remedies the fluctuation of radial eigenvalues, whereas the
transverse eigenvalues converge toward their true values, only
slower than expanding and contracting ones, c.f. Figure 5B.

One further possible mismatch of the template and the
generating system is due to higher order terms. To check the
effect, we modified a Guckenheimer-Holmes cycle by adding two
fourth-order terms:

dtxi = xi
(

1− ax2i − bx2i+1 − cx2i+2 − αx4i − βx2i x
2
i+1

)

. (5)

The additional terms do not break the Z3
2 equivariance. Thus, for

|α| and |β| small, the heteroclinic cycle persists (it is structurally
stable). While the second term affects the dynamics far from
the saddles (for β 6= 0), the first one acts in their vicinity.
More precisely, α 6= 0 changes the position of the saddles and
also the eigenvalues, so |α| ≪ 1 is necessary to maintain the
heteroclinic cycle.

As long as the cycle persists, our method correctly identifies
it and approximately infers the eigenvalues (independently on
whether they are original or changed due to α 6= 0) of the
generating system, c.f. Figure 5C. Here, as in the other cases of
mismatched templates, the eigenvalues corresponding to radial
directions fluctuate and converge to values different from the
ones in the generating system. More precisely, we observed
radial eigenvalues to be only slightly negative, even though these
directions should be definitely stable. In contrast to section 3.1
setting ρ ≥ 1 is not helpful, but intensifies the problem. Instead,
a possible remedy is to ensure that radial directions are stable
by fixing the radial eigenvalues to a negative value (e.g., −1)
from the beginning and keeping them at this value rather than
changing them by the learning dynamics (by setting ρ = 0), see
the following example.

3.3. Inferring Larger Regular and Irregular
Networks
The example networks presented up to this point were rather
simple in their topology, involving four saddles at most. Larger
networks may pose additional challenges for inference, as we
point out by the following two examples: one is a highly regular,
hierarchical heteroclinic network with nine nodes; the other one
is a random heteroclinic network composed of 12 nodes with
heterogeneous in- and out-degrees.

In Voit and Meyer-Ortmanns [36], we constructed a
heteroclinic network H that is hierarchically structured. It
consists of three small heteroclinic cycles (SHCs) that constitute

the saddles of a large heteroclinic cycle (LHC). This hierarchy is

produced by a difference of the expanding eigenvalues associated

with connections belonging to one SHC vs. connections between

different SHCs. The structural hierarchy translates to a hierarchy
in time scales, which amounts to the modulation of fast
oscillations by slower ones. The network H obeys a Z3 × Z3

symmetry. Thus it is highly regular, as is its dynamics. All
saddles are visited equally often, and all SHCs dominate with the
same frequency.

We apply our inference method to the dynamics generated
by the very system described in Voit and Meyer-Ortmanns [36],
c.f. Figure 6. It thus deviates from the template dynamics by
containing only second-order terms compared to the third-
order terms of the template. This mismatch leads to a
deviation of the inferred radial eigenvalues from the real ones,
c.f. Figure 6D, just as expected from the previous section.
Nevertheless, the topology of H and its structural hierarchy
(manifest as the difference between the two kinds of expanding
eigenvalues in the small and large heteroclinic cycles) is
inferred correctly. The resulting dynamics of the template
thus reproduces the same sequence of saddles visited as the
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original system. Frequency and amplitude, however, are not
recovered accurately.

As an alternative, we fixed the radial eigenvalues to their true
value ai,i = −1 and subjected only ai,j for i 6= j to the learning
method (setting ρ = 0). For these entries, the error of the
inference is comparable to the previous situation, c.f. Figure 6E.
In addition, due to employing the true radial eigenvalues, the
resulting dynamics does not only reproduce the sequence of the
visited saddles correctly, but also recovers the frequency and
amplitude of the oscillations to a good agreement, c.f. Figure 6H.

For the random heteroclinic network, we generated a 12 node
Erdős–Rényi graph with edge probability 0.2, without self-loops.
Subsequently, two-loops were removed by deleting one of the
edges each, whilst ensuring that the in- and out-degree at all
nodes is at least one. Figure 7 depicts the topology of the resulting
graph G.

From the graph we generated the heteroclinic network by
employing the same form of ODEs as in the template Equation
(1) and choosing the eigenvalues ai,j from the adjacency matrix A
in the following way:

ai,j =
{

X ∈ (0.4, 0.6) for Ai,j = 1

X ∈ (−1.1,−0.9) for Ai,j = 0
(6)

with X a random variable taken uniformly from the specified
interval. The choice of these intervals is arbitrary to some extent.
Mainly, eigenvalues in expanding directions (Ai,j = 1) must
be positive, while contracting, radial and transverse eigenvalues
must be negative. Furthermore, for the heteroclinic network as

a whole to be attractive, “contraction must surpass expansion”.
The size of the intervals controls the degree of heterogeneity in
the preference of heteroclinic orbits. Overall, this process is thus
an adapted version of the simplex method [19], which describes
how to construct a simple heteroclinic network for a given graph.

For our choice of intervals, the expanding eigenvalues differ
sufficiently, so that the system dwells more frequently in some
parts of the network than in others. The relevance of this becomes
especially clear once the learning method is applied. Strong noise
is required to infer all parts of the heteroclinic network, c.f.
Figure 8. Then, however, also the inferred eigenvalues fluctuate

FIGURE 7 | Topology of the random heteroclinic network G. The edge

thickness is determined by the magnitude of the expanding eigenvalue at the

node from which the respective heteroclinic orbit originates.

FIGURE 6 | Eigenvalues ai,j and dynamics of the hierarchical heteroclinic network H. Panel (A) depicts the original values, (B) the values inferred with parameters

ϑ = 10, γ = 20, ρ = 0.001, σ = 10−6 where ai,j = 0 initially, and (C) the values inferred with parameters ϑ = 10, γ = 20, ρ = 0, σ = 10−6 with ai,j = −δij initially. The

inference was realized over 19× 103 time units. The lower panels show the error of the inference, i.e., (D) the difference of panels (B,A), (E) the difference of panels

(C,A). The remaining panels display the dynamics at the end of the inference process plotted against time. Panel (F) shows the input signal, (G,H) the dynamics of the

templates that resulted in (B,C), respectively.
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FIGURE 8 | Eigenvalues ai,j of the random heteroclinic network G. Panel (A) depicts the original values, (B) the values inferred with parameters ϑ = 5, γ = 3, ρ = 0.2,

σ = 0.002, and (C) the values inferred with parameters ϑ = 5, γ = 3, ρ = 0.2, σ = 0.00001. The inference was realized over 19× 103 time units. The lower panels

show the error of the inference, i.e., (D) the difference of panels (B,A), (E) the difference of panels (C,A). Panel (F) displays the number of times the dynamics visits

each of the saddles for both noise strengths.

strongly. For low noise levels, on the other hand, some saddles
are visited only rarely. For example, saddle 10 is not visited at all
for σ = 10−5, but 12 times for σ = 0.002, c.f. Figure 8F. This
scarcity of visits to certain saddles is one factor that may lead to a
comparatively bad inference of their eigenvalues, c.f. Figure 8E.
However, other factors such as the topology of the heteroclinic
network and the recent history of the trajectory before arriving at
a certain saddle play a role as well.

For practical applications the obvious trade-off between
exploring the whole network (high noise level) and the quality of
the inferred eigenvalues (low noise level) is of minor importance.
Indeed, for weak noise it would be impossible to infer some of the
saddles, but the actual dynamics neither visits these saddles.

Besides the noise strength, the length of the input signal needs
to be taken into account. Longer input is beneficial, as weakly
attached parts of the networks get visited more often. If the input
is too short, only the most probable cycles of the heteroclinic
network become inferred. For example, running the inference for
merely 1500 time units, we observed the resulting heteroclinic
network settle to the cycles 1 → 2 → 6 → 11 → 1, or
1 → 3 → 5 → 6 → 11 → 1.

4. DISCUSSION

In summary, we have introduced a novel method of learning
simple heteroclinic networks. It is based on an unbiased template
system of a heteroclinic network in combination with a learning
dynamics that progressively alters the eigenvalues at the saddles.
The system thereby dynamically infers the eigenvalues at all
saddles and thus reconstructs the topology of the heteroclinic
network that generated the signal. A key ingredient is the linear

coupling to the input signal, which forces the dynamics of the
input onto the template. Only this enables the learning, which
primarily takes place when the system visits the saddle equilibria.
The trained template then reproduces sequences of metastable
states most similar to the input time series.

We worked out the performance of this method for
various examples, inferring all eigenvalues even in comparatively
large heteroclinic networks. Moreover, we illustrated possible
difficulties that the noise level or a mismatch of template
and generating system can pose, for example. We pointed out
strategies to handle them. A subtle point will be to achieve
a deeper understanding of what determines the speed of
learning the eigenvalues of saddles, that is, its dependence on
the topology of the heteroclinic network, the noise level and
other factors.

In view of engineering underlying heteroclinic networks from

a given data set, ourmethod provides a continuous counterpart to

designing simple finite-state machines from given example data,
as it automatically interpolates between subsequent maxima. If

data of sequential switching between different metastable states

suggest games of winnerless competition behind their generation,
it would be natural to attempt a learning of rates at a first
place (say in generalized Lotka-Volterra models), rather than
a learning of eigenvalues. In simple heteroclinic networks it is
the local information stored in the eigenvalues of the saddles
that is sufficient to control and learn the time evolution of
the dynamics in a desired way, bridging the global (non-local)
distance between the different saddles. Therefore, as long as the
assumed heteroclinic network is simple, one would learn the rates
as a function of the learned eigenvalues, while the eigenvalues at
the saddles are expressed in terms of the rates.
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Simple heteroclinic networks are specific in the sense that
the saddles lie on the coordinate axes, the phase space has
a dimension that is given by the number of saddles, and
together with the imposed symmetry one knows from the local
information of the eigenvalues at one saddle at which saddle one
ends up next. It is therefore sufficient to learn the eigenvalues
(and thus mimic the local dynamics) in order to reproduce the
global dynamics. In general (and in particular in the context
of heteroclinic computing), the heteroclinic networks are non-
simple and the dimension of phase space is lower than the
number of saddles. It is an interesting open challenge to derive
rules for learning non-simple heteroclinic networks and possibly
combine these with the concept of heteroclinic computing.
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