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We discuss formal, theoretical, and practical issues with the statistical analysis of

multivariate time-series data that represent self-reports of human experience, often

referred to as Ecological Momentary Assessment (EMA) data or Experience Sampling

Method (ESM) data. We argue that such time series likely violate the assumptions

required for valid statistical inference, such as the memoryless-ness property (due to

the presence of long-range temporal correlations) and ergodicity (due to non-stationarity

and non-homogeneity of central moments). Moreover, we consider the common practice

of interpreting outcomes of self-reports as if they were outcomes of classical physical

measurements as extremely problematic and suggest to consider them as records

of the temporal evolution of observables of a complex adaptive system with internal

state dynamics. We propose to address some of these issues by analyzing the change

profile instead of the observed time series, using recurrence-based analyses, specifically

(multiplex) recurrence networks. We analyze a publicly available dataset in which four

participants rated six questions about their self-esteem and physical self, twice a day

over a period of 512 days and introduce the concept of recurrence networks weighted

by recurrence time. The edge weights represent either recurrence times or recurrence

time frequencies and results show that the scaling relation between vertex degree and

vertex strength (the weighted variant of vertex degree) is associated to the scaling relation

between frequency and spectral power based on the “raw” time series. We present a new

spiral layout for recurrence networks that might be more appropriate when the detection

of critical periods, regime shifts, and tipping points requires insight into the temporal order

in which those events occur. We conclude that a complex systems approach to analyzing

multivariate time series of self-reports of human experience is preferred over and above

fitting statistical models like the Gaussian Graphical Model or its derivatives.

Keywords: weighted recurrence networks, multiplex recurrence networks, complex systems approach, ecological

momentary assessment, experience sampling method, idiographic analysis, fractal scaling
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TIME SERIES OF SELF-REPORTS OF
HUMAN EXPERIENCE: A COMPLEX
SYSTEMS APPROACH

Technological advances have made collecting densely sampled
physiological, behavioral, and psychological data from
individuals relatively easy and inexpensive (e.g., sensors
and apps on “wearables” and personal electronic devices). The
availability of such large, multivariate time-series data of human
physiology and well-being is of great interest to the social,
behavioral, and medical sciences; however, there is at present no
consensus on how to analyze such datasets or how to interpret
the results obtained by different analytic approaches [1–3].

The challenges faced by researchers in these disciplines
entail more than expanding their analytical toolbox of
population statistics to include multivariate time-series analyses.
Measurements of the temporal evolution of mental or emotional
states are known as Experience Sampling or Ecological
Momentary Assessment (e.g., daily ratings of “Today I feel
happy” on an ordered categorical scale from 1 = “completely
disagree” to 5 = “completely agree”). Analysis strategies of such
datasets expose some well-known concerns about the validity of
assumptions pertaining to the theoretical object of measurement
and the nature of the data generating processes underlying
human behavior and cognition [4–6].

Our main concerns are about the validity of the
following assumptions:

1. The assumption that the ergodic theorems apply [7] to
the theoretical objects of measurement and data generating
processes: Ensemble averages of variables observed in
samples of sufficiently many individuals are expected to be
arbitrarily similar to the time averages of variables evolving
over a sufficiently long interval of time, from any single
initial condition.

2. The assumption that the interpretation of outcomes of
psychological measurement is, or, should be, equivalent
to classical physical measurement [8]: It is considered
unproblematic to interpret a measurement outcome as a
property of the theoretical object of measurement confounded
by sources of random, additive, measurement noise, or
sampling error.

The assumptions related to ergodicity (i.e., stationarity and
homogeneity of central moments) are obviously important
for making valid statistical inferences and generalizations. A
common practice in psychopathology studies in which the
Gaussian Graphical Model (GGM) is fitted to multivariate
self-report data to estimate so-called “symptom networks”
[9] is the use of rather ad hoc methods to achieve data

reduction. For example, subsets of the multivariate time-series

data are combined by simply taking their average or by using

techniques like principal component analysis and exploratory

factor analysis to achieve dimension reduction by estimating

the network on the extracted component or factor structure.

Such aggregation methods are known to be problematic if the
assumptions of independence, stationarity, and homogeneity are
violated [7, 10].

Even if the core assumptions for an ergodic data generating
process formally apply, one cannot rely on parameter estimates
to converge on a characteristic expected value within the
time scale of observation or magnitude of fluctuation. This
occurs for example when the process samples from a stable
distribution with one or more undefined central moments like
the Cauchy distribution. This has led some scholars to suggest
that “the very notion of probability may not make sense” [11]
when studying complex systems with internal state dynamics.
Recent observations of discrepancies between inferred statistical
properties at the ensemble level (inter-individual) and the
individual level (intra-individual), have been suggested as a cause
of the so-called reproducibility crisis in the social and life sciences
[11–13]. A study that observed a lack of “group-to-individual
generalizability” in the context of psychopathology described the
phenomenon as a threat to human subjects research: “In clinical
research, diagnostic tests may be systematically biased and our
classification systems may be at least partially invalid. In terms of
theory development, we may have a misleading impression about
the nature of psychological variables and their interactions” [13].
A study of the neuroanatomical phenotypes of schizophrenia
and bipolar disorder [14] concluded: “This study found that
group-level differences disguised biological heterogeneity and
interindividual differences among patients with the same diagnosis.
This finding suggests that the idea of the average patient is a non-
informative construct in psychiatry that falls apart when mapping
abnormalities at the level of the individual patient.”

The second concern is about the lack of a clear notion
of how to incorporate the measurement context and the act
of measurement of psychological variables into the description
of a phenomenon [15]. It seems uncontroversial to suggest
that the very act of asking someone to project their current
internal state of happiness onto an arbitrary ordinal scale will
interfere with their “true” state of happiness (if such a thing even
exists without the measurement context). However, this actually
implies that psychological measurement cannot be regarded as
classical physical measurement, because the outcomes of self-
reports emerge as the result of an interaction between the
theoretical object of measurement and the measurement context.
This causes measurement problems that are at least conceptually
related to contemporary discussions about the ontological status
of measurement in physics [16]. Resolutions have been proposed
for measurement of psychological variables, for example, various
types of conjoint measurement [8, 17] or measurement models
based on contemporary particle physics [15, 18, 19]. When the
temporal evolution of internal states is concerned, additional
issues arise due to the fact that living systems are subject to aging
(loss of identity over time) and appear to be able to coordinate
their current behavior relative to some record of previously
experienced events (i.e., memory). In more general terms, the
behavior of a complex adaptive system will display after-effects
of interactions with its internal or external environment that
extend far beyond any time scale that might be understood
as a simple stochastic process with autoregressive components
[10, 20]. Time series of observables of living systems will often
lack the memoryless-ness property [21, 22], suggesting that, at
least, anomalous rather than normal diffusion processes should
be considered as a model for the data generating process [23].
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Addressing (Some) Concerns: Recurrence
Networks of Change Profiles
In the present paper, we discuss the benefits and challenges
of considering multivariate time-series data that represent self-
reports of human experience as the observables of a complex
dynamical system with internal state dynamics (internal degrees
of freedom). More specifically, we will consider the framework of
(multiplex) recurrence networks [24, 25] as the preferred analytic
toolbox for describing the dynamics of multivariate time series
collected using the Experience Sampling Method. Recurrence
networks have been used to analyze multivariate physiological
data, like human EEG [26]. A publicly available dataset will be
used in which four participants evaluated six questions about
their self-esteem and attitudes toward their physical self, twice
a day, during 512 consecutive days [27]. Figure 1 displays the
time series for each participant and each variable; the ratings
were evaluated on a visual analog scale, and participants moved

a slider between the values 0 and 10. The analyses in the

original study revealed the presence of long-range dependence,

power-law scaling in virtually all cases close to 1/f noise [27].

Most time series are obviously non-stationary with respect to
level and trend; some appear to reveal clear transitions between

dynamical regimes, such as periods of low and high variability
in responses.

There are several advantages of using recurrence-based
methods for time-series analysis over statistical models that
require stationarity and (conditional) independence like the
GGM [9], but also over models that can handle non-stationary
signals like Time Varying Auto Regressive models (TV-AR) [28].
These models generally limit estimating temporal dynamics to
the linear domain, and to very short time scales (e.g., lag-1 vector
autoregression [9]), which severely limits the range of potential
data generating processes that can be considered to underlie the
observed series.

In general, recurrence analytic approaches to time-series
analysis are as follows:

• Essentially model-free and make few assumptions about the
data [29].

• Describe linear as well as non-linear dynamical
phenomena [25].

• Describe (transitions between) dynamical regimes, even in
exceptionally noisy environments [30].

• Quantify recurrent dynamics across all available time
scales [25, 31].

FIGURE 1 | Bi-daily ratings of self-esteem and perception of the physical self by four participants over the course of 512 days. The data were originally reported by

Delignieres et al. [27].
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• Quantify structural similarities between different time
series represented as multiplex recurrence networks [24],
suspending the need for potentially problematic aggregation
and/or dimension reduction of multivariate time-series data.

By using recurrence-based methods, most of the concerns related
to the assumption of ergodicity are addressed to the extent
that one is able to quantify dynamical behavior associated with
local ergodicity breaking. However, the concerns about the
interpretation of measurement outcomes of EMA data remain,
which is why we propose to transform the data prior to analysis.

In the context of the current paper, we can expect the temporal
evolution of self-reported ratings of internal states projected onto
an arbitrary ordinal scale to be affected by at least three factors.
First, current ratings are likely evaluated relative to some moving
average of previous ratings (memory). People might recall their
evaluations of a couple of days ago, perhaps a week, but it is
less likely they will recall the previous month and use it as a
reference level. Second, changes in the function that projects the
internal state onto the ordinal scale (observed as sudden shifts
in level, trend, or variance) are expected to be unpredictable and
nonlinear. For example, a sudden re-evaluation of the relation
between internal state and values of the rating scale might be
triggered by the occurrence of an event that is extreme in the
sense that the scale boundaries no longer adequately represent

the current state relative to previously experienced states. The
projection of “Today I feel sad” onto a scale of 1–5 might change
dramatically relative to previous evaluations due to the sudden
loss of a loved one. Finally, it is unlikely that using the same
arbitrary scale to simultaneously measure two or more different
internal states within the same individual will yield projection
functions that are approximately equivalent for each distinct state
or that such projections will be affected in an equivalent way by
the state history and experience of extreme events. Based on these
assertions, we assume that the way in which the ratings change
from one moment to the next relative to some (non-stationary)
level is more informative than the sequence of absolute values
of the scale itself. For example, in Figure 1, Participants 1, 2,
and 3 stay within a very limited range of the values allowed for
by the scale, but analyses reveal that these bounded fluctuations
are not random at all, but represent a complex pattern of long-
range dependence.

We suggest to use a change profile (CP) whenever the raw
data consist of time series of self-reports on bounded ordinal

scales. This transformation of the data takes the cumulative sum

of deviations of observed values from an estimate of the reference

level used to evaluate the current state. One could, for example,

use a simple moving average in a sliding window (a linear filter)

to represent the reference level. The window size should be a

FIGURE 2 | Change Profiles (blue lines) of the variable Perceived Fitness for each participant. The profiles were calculated using a right aligned window of 14 data

points, representing 7 days (see Equation 1).
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reasonable estimate of the lag of time across which a person’s
current ratings are still affected by their previous ratings. Such
a lag could be estimated using a partial autocorrelation function
(first lag with non-significant autocorrelations), a lagged mutual
information function (e.g., lag at the first or global minimum),
or a lag that makes sense based on theoretical and empirical
knowledge of the process in question. Here, we consider a CP
based on a running average in a right-aligned window.

The CP is a simple extension of the global profile (GP), which
is obtained by first subtracting the mean of the time series from
each observed value and subsequently taking the cumulative sum:

GPj =

j
∑

i=1

xi−x, for j = 1, 2, . . . , N (1)

In Equation 1, GPj is the global profile of xi, a time series of
i = 1, . . . ,N equidistant observations, x represents the time-
series mean 1

N

∑N
i=1 xi. The main difference between the GP and

CP is that instead of subtracting the constant x, a running average
series wj calculated in a window of sizeW is used:

wj =
1

W

W−1
∑

i=0

xi+j, with j = 1, 2, . . . , N−W (2)

CPj in Equation 3 is the cumulative sum of the differences
between xi and wj, but because wj is a shorter sequence than
xi, one can choose how to align the two series. Using a left-
aligned window refers to the differences taken starting at xi=1,
in a centered window at xi=W/2, and in a right-aligned window at
xi=W . Equation 3 represents a right-aligned window:

CPj =

j−1
∑

i=0

xi+W − wj, with j = 1, 2, . . . , N−W (3)

Figure 2 displays the CPs for the observed variable Perceived
Fitness for each participant, in which the window size was W =

14 (corresponding to 7 days). The effect of calculating the CP
is that any changes in the state evaluation relative to the rolling
average are “exaggerated”; the description of the state dynamics
is no longer bounded by the range of the ordinal rating scale
(see the Supplementary Material for a more detailed description
of the effect of window size on the CP). The observed series of
Participant 1, for example, oscillate around a rather stationary
level in the first half of the observation period, but displays a
downward trend in the second half. This can also be seen in the
series of Participants 3 and 4. The CPs indicate that the dynamics
driving these downward trends are likely more diverse than what
might be expected based on the fluctuations of observed values on
the bounded ordinal scale. In subsequent analyses that quantify
recurrent states, values that are similar in the observed bounded
series will be dissimilar in the unbounded CP, which we believe
to be more realistic given the context of self-reports of emotional
and psychological states.

The remainder of this paper is structured as follows: In
Section Weighted Recurrence Network Analysis: Recurrence

Times as Edge Weights, we construct recurrence networks from
the CPs of the time series in Figure 1 and discuss a method
for extracting a scaling exponent from a weighted recurrence
network that is similar to scaling exponents obtained from fractal
analysis techniques. In Section Swing on a Spiral: A Sequential
Layout for Recurrence Networks, we present novel layouts
for recurrence networks designed to provide insight into the
occurrence of regime shifts and network measures within certain
epochs. In SectionMultiplexWeighted Recurrence Networks, we
construct multiplex recurrence networks and evaluate multilayer
mutual information based on similarities between the strength
distributions of the layers in the network.

WEIGHTED RECURRENCE NETWORK
ANALYSIS: RECURRENCE TIMES AS EDGE
WEIGHTS

The goal of the original study reporting on the multivariate time
series of the four participants in Figure 1 was to quantify the
temporal structure of fluctuations in self-esteem ratings in terms
of scaling exponents [27]. The results showed that all subjects
produced time series that resemble long-memory processes that
resemble 1/f noise. In this section, we explore whether recurrence
networks can be used to extract similar information about the
data, by creating networks that represent information about
recurrent states as well as information about the frequency with
which they occur.

To the best of our knowledge, this approach is different
from previous studies using, e.g., the degree distribution (k-
spectrum [32]), the transitivity, or clustering dimension to
quantify dimension characteristics [24]. Weighted recurrence
networks have been constructed based on multivariate EEG
data [26], by creating a joint recurrence matrix (from the
recurrence matrices of simultaneously recorded EEG channels).
The joint recurrence rates (RRs) served as the edge weights. We
propose using recurrence times as edge weights. This allows for
a comparison of the scaling relation between the vertex degree ki
and vertex strength si (sum of the number of edges times edge
weights) [33]. It has been shown that, absent any correlations
between edge weights and vertex degree, the average strength of
vertices of degree k scales with k as s(k) ∼ kβwith β = 1. Any
deviations from β = 1 can be interpreted to arise from systematic
dependencies between the edge weights and vertex degree. In the
case of a recurrence network weighted by recurrence times, a
scaling relation β > 1 represents the case in which the mean
recurrence time of an observed state increases exponentially with
the frequency with which an observed state will recur, relative to
a randomly connected network. We will refer to the slope β as
the recurrence rate–recurrence time dependency (irrespective of
whether frequency or duration is used), abbreviated as βRR∼RT .

Weighted Recurrence Network
Construction
For each participant, we constructed distance matrices by delay
embedding [34] the CPs of the six self-esteem variables using a
window size of 14 (7 days). We chose a common delay τ and
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embedding dimension m for all six time series observed within
a participant, using the median of the six τ values (found as
first local minima of the lagged mutual information function)
and the maximum of the six embedding dimensions (found by
false nearest neighbor analysis [25, 35, 36]). Settling on one set
of parameters for all variables observed within an individual
is necessary for the construction of a multiplex network for
each participant (see Section Multiplex Weighted Recurrence
Networks), which requires the same number of vertices for
each layer of the network [24]. Figure 3A (created with R
package casnet [37]) displays the distance matrix of the delay-
embedded CP of Perceived Strength for Participant 1. To turn
the distance matrix into a recurrence plot (RP, Figure 3B), which
is a visualization of the recurrence matrix Ri,j, a threshold value
ε is chosen. The color bar in Figure 3A represents the range of
distance values in the matrix. On the right side of the color bar,
distance values are reported that would result in the RR reported
on the left side of the color bar, should they be chosen as the

threshold value. In the present paper, we chose ε such that RR
would be 5% for all Ri,j, denoted as ε.05 in Equation 4:

Ri,j (ε.05) = 2
(

ε.05 −
∥

∥

−→x i −
−→x j

∥

∥

)

, i, j = 1, . . . ,N (4)

The RP in Figure 3B was constructed with ε.05 = 2.08, with N
as the length of the state space vectors (series length − (m −

1) · τ ), Θ as the Heaviside function (returning 0 if the distance
exceeds ε.05, 1 otherwise), and ‖‖·‖‖ as the Euclidean norm. To
create a version of Ri,j weighted by recurrence time, the result
of the Heaviside function (0 or 1) is multiplied by the temporal
separation between two state coordinates (Figure 3C):

Ri,j (ε.05) = 2
(

ε.05 −
∥

∥

−→x i −
−→x j

∥

∥

)

.
∣

∣i− j
∣

∣ , i, j = 1, . . . ,N
(5)

If a time stamp is available, the weights
∣

∣i− j
∣

∣ can be expressed
as a duration in the observed units of time. For the purpose of

FIGURE 3 | (A) shows a distance matrix for the Change Profile of Perceived Strength of Participant 1. The series was embedded with parameters, m = 3 and τ = 37.

(B) is a recurrence matrix, a threshold value ε = 2.08 was chosen to yield RR = 0.05. A weighted recurrence matrix is shown in (C), created by eliminating all values

above the threshold of ε = 2.08 and replacing the distance values with recurrence times.
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FIGURE 4 | (A) shows one set of 51 (out of 100) simulated ideal noise series with log–log PSD slopes varying between −2.5 and 2.5. (B) represents the relation

between the log–log PSD slopes and βRR∼RT . Each of the 5,100 circles represents a recurrence network constructed from a simulated noise series. Circles are color

coded according to the mean vertex strength s(k), and their size represents the mean vertex degree k. The Spearman correlation between log–log PSD slopes in the

range [−2,0] and βRR∼RT is 0.93.

FIGURE 5 | The relation between the log–log PSD slopes and βRR∼RT for each participant and each observed variable.
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comparing the strength-degree scaling relation s(k) ∼ kβ to the
scaling relation between frequency and power obtained from a
power spectrum of the time series, we represent the weights as a
frequency 1

|i−j |
.

Power-Law Scaling in Time Series and
Weighted Networks
First, we study how the scaling relation s(k) ∼ kβ (in the
present context with βRR∼RT) behaves when we create weighted
recurrence networks of simulated ideal colored noise series. Time
series were generated using a procedure based on the inverse
Fourier transform that allows constructing a specific scaling
relation between frequency and power in the frequency domain
(a log–log slope in Power Spectral Density, see [38]). Figure 4A
displays a set of 51 simulated time series of which the PSD slope
varies from −2.5 to 2.5 in 0.1 increments; that is, noises include

Brownian (red) noise (−2) to pink (−1), white (0), blue noise
(1), and violet noise (2). For each of the 51 scaling relations, we
generated 100 noise series (each with different random seeds)
and created recurrence networks, choosing the delay τ and
embedding dimension m as described in the previous paragraph
(see Table 1).

A threshold ε was selected that yielded a 5% RR. This means
the average vertex degree of each network will be approximately
the same, but will vary with the length of the embedded series.
Figure 4B shows the relation between βRR∼RT of each recurrence
network and the log–log PSD slope from the simulated series
from which it was constructed. The plot suggests a logistic
relation, which has an almost perfect linear relationship (rS =

0.93) for noise series with log–log PSD slopes in the range
of [−2, 0]. Outside of this range, the βRR∼RT slope does not
seem to be able to distinguish very well between log–log PSD
slopes; the Spearman correlation for the full range is rS =

TABLE 1 | Mean and standard deviation (SD) of the embedding parameters and recurrence network measures for the simulated series in Figure 4.

PSD slope τ SD m SD βRR-RT SD s(k) SD k SD

(−2.5, −1.5) 26.59 6.03 3.73 0.47 0.18 0.02 5.37 0.73 47.59 0.34

(−1.5, −0.5) 8.85 3.97 4.90 0.32 0.71 0.32 1.89 0.94 49.43 0.66

(−0.5, 0.5) 2.15 0.47 5.00 0.00 1.20 0.02 0.70 0.06 50.67 0.10

(0.5, 1.5) 2.20 0.42 4.75 0.42 1.21 0.02 0.64 0.02 50.69 0.02

(1.5, 2.5) 1.85 1.11 4.25 0.35 1.19 0.01 0.62 0.02 50.80 0.20

TABLE 2 | Relation between βRR−RT, predicted PSD slope, and estimated PSD slope for each participant and variable.

ID Variable βRR-RT Predicted PSD slope Estimated PSD slope Difference

Participant 1 Attractive body 0.27 −1.56 −2.09 0.53

Participant 1 Global self-esteem 0.26 −1.57 −1.80 0.22

Participant 1 Perceived fitness 0.16 −1.71 −1.30 −0.41

Participant 1 Perceived strength 0.24 −1.61 −1.18 −0.42

Participant 1 Physical self-worth 0.23 −1.62 −1.83 0.21

Participant 1 Sport competence 0.19 −1.67 −0.91 −0.76

Participant 2 Attractive body 0.29 −1.53 −1.51 −0.02

Participant 2 Global self-esteem 0.30 −1.52 −0.85 −0.67

Participant 2 Perceived fitness 0.20 −1.66 −1.68 0.02

Participant 2 Perceived strength 0.25 −1.59 −2.22 0.63

Participant 2 Physical self-worth 0.25 −1.59 −1.49 −0.10

Participant 2 Sport competence 0.23 −1.62 −1.07 −0.55

Participant 3 Attractive body 0.26 −1.58 −1.58 −0.01

Participant 3 Global self-esteem 0.28 −1.56 −2.40 0.84

Participant 3 Perceived fitness 0.28 −1.54 −1.15 −0.39

Participant 3 Perceived strength 0.31 −1.51 −0.98 −0.53

Participant 3 Physical self-worth 0.30 −1.53 −2.12 0.59

Participant 3 Sport competence 0.30 −1.53 −2.03 0.50

Participant 4 Attractive body 0.25 −1.59 −1.43 −0.16

Participant 4 Global self-esteem 0.26 −1.58 −0.83 −0.75

Participant 4 Perceived fitness 0.34 −1.46 −1.89 0.43

Participant 4 Perceived strength 0.36 −1.44 −2.09 0.65

Participant 4 Physical self-worth 0.34 −1.46 −1.22 −0.24

Participant 4 Sport competence 0.24 −1.61 −1.27 −0.33

Mean 0.27 −1.57 −1.54 −0.03
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0.75. Another interesting pattern that can be seen in Figure 4B

is that the highest mean vertex strengths are associated with
negative log–log PSD slopes (rS = −0.94), whereas the highest
average vertex degrees are associated with positive log–log PSD
slope (rS = 0.85).

Compared to the observed series in Figure 1, the simulated
series are relatively stationary, homogeneous, and void of noise.
When the scaling relation βRR∼RT is calculated based on the
observed data (Figure 5), we arrive at the same conclusion as
the original study [27]: These observed time-series display a
structure of temporal dependencies that resembles the category
of colored noises between pink noise (PSD slope −1) and red
noise (PSD slope −2). Table 2 displays the values of βRR∼RT and
the estimated log–log PSD slope for each participant and variable.
In addition, we use the linear relationship for log–log PSD slope
ranges of [−2, 0] to predict the log–log PSD slope from βRR∼RT ,

which is approximately: PSD slope ≈ −1.94 + 1.38 · βRR∼RT . As
can be seen in the final row of Table 2, the deviation between the
predicted and estimated PSD slope is rather small on average.

SWING ON A SPIRAL: A SEQUENTIAL
LAYOUT FOR RECURRENCE NETWORKS

Graphical representations of recurrence networks often use
layouts that emphasize certain structural properties (e.g., “spring”
layouts) and discard information about the temporal order, the
vertex sequence. However, in a clinical setting, e.g., if multivariate
time-series data are used to detect imminent regime shifts, such
as sudden gains and losses in symptom severity [39, 40], it
is important to retain temporal information. Here, we present
a simple layout for recurrence networks based on the spiral.

FIGURE 6 | A spiral layout of the recurrence network of the change profile of variable Perceived Strength produced by Participant 1. Edges with recurrence times of

10 or smaller (5 days) were removed to improve visibility.
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Figure 6 displays a basic Archimedean spiral layout in which the
vertices are equally divided over six arcs. The edge weights are
set to the recurrence time frequency. The RN represents the CP
of the variable Perceived Strength produced by Participant 1 and
weighted by recurrence time.

In Figure 6, each arc corresponds to an epoch, which is color
coded, but epochs could also describe months, years, phases in
an experiment, or other qualitative descriptors of segments of
time. If edges connect vertices within the same epoch, they are
represented in the vertices; otherwise, they are gray (see the
Supplementary Material for spiral RNs of each participant and
each variable in the dataset). This provides a rough indication of
differences between longer and shorter recurrence times.

Although the estimated scaling exponents of the time series
for each participant fall within a similar range [27], Figure 7
shows that the recurrence network on a spiral suggests that the
power laws arise from rather different patterns of recurrent states,

occurring at different moments in time. The RN of Participant
3 reveals lots of recurrent states in the first two arcs, and very
few later on in the time series, whereas the RN of Participant
4 indicates most recurrent states occurring in the final arc and
across different arcs (longer recurrence times). It is possible to
change the spiral layout to highlight different structural aspects
of the RN.

Figure 8 shows a number of different layout options for the CP
of Participant 3 in Figure 7. The Archimedean spiral (top left) in
Figure 8 is similar to the layout in Figures 6, 7, except for the start
and end of the time series, which are reversed. In Archimedean
spirals, points on the spiral that intersect a line going through the
origin will all be equidistant. This means the first part instead of
the last part of the time series will be emphasized if the order is
reversed, because it is now displayed on the longest arcs of the
spiral. In the Bernoulli and Fermat spiral layout (Figure 8, top
right and bottom left), the length of the arcs increases with each

FIGURE 7 | Spiral graphs with four arcs of the variable Global Self-Esteem for each participant. Edges with recurrence times of 10 or smaller (5 days) were removed

to improve visibility.
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turn, which emphasizes the part of the series represented on the
outer arcs. The Euler spiral layout can emphasize the middle part
of the time series.

MULTIPLEX WEIGHTED RECURRENCE
NETWORKS

Multiplex recurrence networks provide a framework for studying
the temporal structure in multivariate time series. To obtain
a multiplex weighted recurrence network (MwRN), we simply
consider the six recurrence time frequency weighted RNs for each
participant as the layers of a larger network, the MwRN. The
structural association between layers α and β in an unweighted
MRN can be quantified by the interlayer mutual information

measure Iα,β that is based on the degree distributions
P

(

κ [α]
)

, P
(

κ [β]
)

of the vertices in each layer [41, 42]:

Iα, β =
∑

κ[α]

∑

κ[β]

P
(

κ [α], κ [β]
)

. log
P

(

κ [α], κ [β]
)

P
(

κ [α]
)

P
(

κ [β]
)

(6)
The term P

(

κ [α], κ [β]
)

denotes the joint probability of

observing the same vertex with degree κ [α] in layer α and
degree κ [β] in layer β . P

(

κ [α]
)

and P
(

κ [β]
)

represent the
marginal probabilities of observing the degree distribution in
each layer.

Taking Iα,β as the weight between two layers in a multiplex
network can be interpreted as the quantification of structural

FIGURE 8 | A showcase of spiral graphs using the variable Global Self-Esteem of Participant 3 in Figure 7. Each spiral type (Archimedean, Bernoulli, Fermat, and

Euler) can highlight different aspects of the temporal structure of recurrent states. Edges with recurrence times of 10 or smaller (5 days) were removed to improve

visibility.
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regularities between the time series in the multivariate dataset.
This is of course a more abstract-level interpretation of the
mutual information quantity: The averaged mutual information
across all layers, Iα,β , in a multiplex network can be interpreted
as a quantification of typical information flow between the
dimensions of the multivariate system [41, 42].

For the weighted RNs, we construct a multilayer mutual
information based on the strength distributions in each layer, e.g.,

P
(

s(κ)[α]
)

, P
(

s(κ)[β]
)

, by simply exchanging vertex degree for

vertex strength:

Iα, β =
∑

s(κ)[α]

∑

s(κ)[β]

P
(

s(κ)[α],s(κ)[β]
)

. log
P

(

s(κ)[α],s(κ)[β]
)

P
(

s(κ)[α]
)

P
(

s(κ)[β]
)

(7)

Figure 9 displays the MwRNs for each participant; the edges
connecting a layer α and β represent the mutual information
Iα,β based on the vertex strength distribution in those layers.
Iα,β can be said to quantify the typical information flow between
the layers of the MwRN; in the present case, this can be
interpreted as the characteristic way in which self-reports of
internal states related to self-esteem and physical self-worth are
associated across time scales spanning from half a day to 512
days. Different patterns of similar structure can be identified
among participants. The MwRN of Participant 3 reveals that
associations between Global Self-Esteem, Physical Strength, and
Perceived Fitness are highest, whereas the strongest structural
similarities in the MwRN of Participant 4 occur between the
layers Global Self-Esteem, Sport Competence, and Attractive
Body. Participants 1 and 2 show more diverse flow patterns.
In Table 3, several MwRN measures were reported: The Layer

FIGURE 9 | Multiplex weighted recurrence networks for each multivariate dataset. The layers of the network represent the RNs of the observed change profiles (AB,

Attractive Body; PS, Physical Strength; GS, Global Self-Esteem; SW, Physical Self-Worth; SC, Sport Competence; PF, Perceived Fitness). The edge weights represent

the multilayer mutual information, Iα,β , based on the strength distribution in each layer.
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TABLE 3 | Layer strength, average edge overlap, and multilayer mutual information of the MwRNs in Figure 9.

Layer strength Average Average

ID GS PS AB PF SC SW Edge overlap Iα,β

Participant 1 10.44 10.44 9.67 9.67 10.44 10.44 0.024 2.04

Participant 2 9.60 10.03 8.44 10.13 10.36 10.15 0.028 1.96

Participant 3 11.61 11.61 11.36 11.61 11.36 11.36 0.035 2.30

Participant 4 10.99 10.64 10.99 9.91 10.60 10.04 0.017 2.11

Strength for each layer in the MwRN, which in the present case
is just the number of layers times the value of Iα,β (the vertex
degree is always 6, because we did not impose a threshold to
remove edges). The Average Edge Overlap measure represents
the proportion of edges that are shared between any two vertices
across all layers [42]. The average Iα,β is simply the mean of the
edge weights.

CONCLUSION AND DISCUSSION

A primary goal of the present paper was to address some of
the issues that arise when multivariate time series of self-reports
of human experience are analyzed and interpreted under the
assumption that:

1. The data generating process is essentially stationary,
homogeneous, and void of long-range dependencies.

2. The measurement process can be considered classical
physical measurement.

We explored a publicly available dataset of which it is known that
the multivariate time series represent non-stationary data with
long-range dependence [27].

First, we showed that focusing on how internal states change
relative to a non-stationary reference level, the CP seems to
be a more sensible observable than the sequence of values
allowed for by the arbitrary ordinal rating scale. A secondary
goal was to show that analytic methods developed to study
complex adaptive systems can be applied to time series of
self-reports of human experience (EMA data) and that the
results can be sensibly interpreted and visualized. We were
able to construct recurrence networks using regular methods
for delay-embedding time series (mutual information, false
nearest neighbor analysis). Moreover, we study recurrence
networks weighted by recurrence time (or recurrence time
frequency) and show that a scaling relation βRR∼RT can be
estimated that is very similar to the scaling relation estimated
from the power spectrum, for a specific range of scaling
exponents [−2,0].

Many of the potential applications of recurrence networks to
EMA data would benefit from a visualization of the network
in which the temporal order of observed values is retained
and we suggest that the spiral layout might be beneficial
in this respect. Finally, we constructed multilayer recurrence
networks that revealed that characteristic patterns of fluctuations

in self-reports about self-esteem vary across participants and
reveal a limited subset of variables sharing similar structure
over time in some participants, whereas other participants
appear to share structure in temporal dynamics that include
almost all observed variables. Of course, the present study
is in fact “merely” a multiple case study, and more research
will be required in order to decide whether the approach
presented here generalizes to other datasets as well. We do
believe that the present paper provides at least a proof of
principle with respect to the applicability of the recurrence
network approach to EMA data, which can potentially be a
valuable analytic method for idiographic research, especially
in psychopathology.

To summarize, we suggest that using a recurrence-based
approach to analyze multivariate time-series data that can
be considered to emerge from a complex adaptive system
with internal state dynamics should be preferred over analytic
methods that attempt to fit the parameters of a statistical model.
The data generating processes underlying the multivariate series
will almost certainly violate the key assumptions of stationary
and homogeneity, and likely do not possess the memoryless-
ness property.
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