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Two of the most remarkable phenomena in non-linear systems are multistability and

remote synchronization. In the first one, depending on the initial conditions, the system

may set in different states after the transient, while in the other, dynamical units that are

not directly connected set in a synchronized state. In this work, we introduce a new

approach to detect multistability in the remote synchronization phenomena where the

dynamical system is given by a star-like topology whose oscillators are governed by the

Stuart-Landau equation. This approach is based on symbolic dynamics characterization

and complex network formalism. It has already been used to detect periodic windows

and chaos in non-linear systems and now we show that although it is not able to

differ from a non-synchronized to a synchronized state, it is able to detect the region

where multistability takes place. Our findings are compared with the results obtained by

traditional methods such as the partial synchronization index.

Keywords: synchronization, multistability, Stuart-Landau, remote synchronization, symbolic dynamics

1. INTRODUCTION

Network of oscillators are dynamical systems in which nodes represent individual elements with
degrees of freedom and internal parameters and the edges represent the interactions between them
[1]. The dynamics of the nodes are often governed by differential equations that depend on the
coupling to the adjacent nodes and on their internal dynamics. Usually these differential equations
are given by oscillator models like Kuramoto [2] and Stuart-Landau [3, 4] and an important
phenomena that can arise from this is the synchronization of a certain dynamic property of the
system [5, 6]. Complete synchronization phenomenon is ubiquitous in natural and technological
systems and appears in a diversity of forms [7]. One of these remarkable forms is the situation in
which it appears for oscillators that are not directly interconnected. In a simple situation, consider
that there are three oscillators in which one (central node) is connected to the other two (extreme
nodes) and these two don’t present a connection among them and are in complete synchronization
while the center one is not. Here, two scenarios may be identified. It may happen that although the
center one is not in complete synchronization with the extremes ones, there is actually a weaker
form of synchronization among them. This phenomenon is called relay synchronization [8–12]
and there is high evidence that in fact the center oscillator and the extreme ones are locked in a
generalized synchronization [13, 14], which takes place when there is a function that allow to map
a trajectory from a system to another. In a different scenario, there is no synchronization at all
between the center node and the oscillators that are located in the extremes. This phenomenon
is called remote synchronization [15, 16]. All those phenomena can involve several oscillators
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interconnected in a complex network. Another phenomenon
worth mentioning are the chimera states [17–19] in which a
network of oscillators is divided into two domains, one coherent
and synchronized and the other incoherent and desynchronized.

In this work, we are interested in the phenomenon of
frequency locking, that is, when the phase difference between
two dynamical units remains constant through time; it often
occurs when the coupling is strong enough so that they start
to oscillate with the same instantaneous frequency, even though
their natural frequencies are not the same [20]. Also, our focus is
in the phenomenon of remote synchronization.

In order to study and quantify synchronization, metrics
like the order parameter and the partial synchronization index
are used [21, 22]. These metrics take into account the state
variable called phase, which describes the motion of the
oscillators and is dependent of time. A phenomenon that can
arise when studying synchronization is multistability which
is the coexistence of multiple attractors [23, 24], implying
that the final synchronized state of the system is heavily
dependent on the initial conditions, as the system synchronizes
only for some of these initial conditions and doesn’t for
others [25].

An alternative approach to study the dynamics of non-
linear systems has been proposed [26, 27]. The main idea is,
instead of using the usual metrics to characterize the behavior
of a system, like Lyapunov exponents and bifurcation diagrams,
network metrics like average degree and betweenness centrality
are exploited. It works by using the systems’ time series to
generate undirected graphs (by the use of symbolic dynamics
for example) and then complex network formalism is exploited
to extract information from them. One of the methods used
in Freitas et al. [26] is the Dynamical Characterization using
Symbolic Dynamics (DCSD) which has been shown to able to
detect periodic windows and chaos and has been employed to
characterize the dynamical behavior of the Hénon [28] and the
Logistic [29] maps.

On Lacerda et al. [25] multistable remote synchronization
was characterized on dynamical system given by a star
network of Stuart-Landau oscillators by using state variables
and metrics like the partial synchronization index. In this
work, we introduce a new approach to detect multistability
for the same dynamical system as we make use of symbolic
dynamics characterization, the DCSD model in Freitas
et al. [26], and complex networks formalism to study this
multistability behavior. Our approach is not able to differ
from a synchronized to a non-synchronized state yet it is able
to detect the region where multistability takes place. It was
also able to detect a region where there is an increase in the
incoherence related to the synchronization of units of the system
being studied.

2. MODEL

Following the work done at Lacerda et al. [25], the topology of
our first case study is given by a dynamical system composed by a
eleven node star network (Network 1), Figure 1, whose dynamics

FIGURE 1 | Network 1: Star network composed of N = 11 nodes. The central

node, also called hub, is colored blue, the peripheral nodes are colored red.

are modeled by the Stuart-Landau equation:

ẋn = xn(α − xn
2 − yn

2)− wnyn +
k

dn

N∑

m=1

gnm(xm − xn),

ẏn = yn(α − xn
2 − yn

2)− wnxn +
k

dn

N∑

m=1

gnm(ym − yn), (1)

where, N is the number of nodes, α = 1 is the Hopf bifurcation
parameter [30], ωn is the natural frequency of oscillator n, k is
the coupling constant, dn is the degree of node n and (gnm) is the

adjacency matrix as gnm equals one if node n is connected to node
m and is equal to zero otherwise. The phase of oscillator n is given
by θn = tan−1(

yn
xn
).

The natural frequencies are fixed as Lacerda et al. [25]

(ω0, . . . ,ω10) = (2.500, 1.016, 1.006, 1.017, 1.007, 1.007, 1.032,

1.019, 1.039, 1.008, 1.019).
(2)

Our second studied case is given by two eleven node star
networks whose hubs are connected (Network 2), Figure 2.
Nodes labeled from 0 to 10 will be referred to as Star 1 (S1) and
have the same natural frequency distribution as the star presented
in Figure 1, which is given by Equation (2). Nodes labeled from
11 to 21 will be referred to as Star 2 (S2) and have the following
natural frequency distribution:

(ω11, . . . ,ω21) = (2.750, 1.206, 1.207, 1.241, 1.218, 1.260, 1.214,

1.233, 1.237, 1.251, 1.242).
(3)

The hubs (central nodes) are always represented by the subscript
0 and 11. The initial conditions xin and y

i
n vary each time Equation

(1) is integrated and are given by a uniform distribution between
(−0.5, 0.5).

In order to study the synchronization of our system, we will
make use of the partial synchronization index [22]:

rnm = | < ei[θn(t)−θm(t)] >t |, (4)
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where < . >t denotes the mean through time. This metric will be
used to calculate rdirect and rindirect that are defined as follows [16]:

rdirect =
1

N − 1

N−1∑

n=1

r0n, (5)

rindirect =
2

(N − 1)(N − 2)

N−1∑

n=1,m>n

rnm. (6)

Note that rdirect only takes into account the values of the partial
synchronization index that relate the hub (node 0) and the
peripheral nodes, on the other hand, rindirect is only related to
the partial synchronization index of the peripheral nodes among
themselves. When rnm = 1, nodes n andm are frequency locked,
meaning that their phase difference remains constant through
time. So, rdirect = 1 means that the hub is frequency locked
with all the peripheral nodes and rindirect = 1 indicates that all
peripheral nodes are synchronized among themselves. In order
for the system to present remote synchronization, rindirect must
be very close to one, while rdirect has a low value. So, in this work
we characterize remote synchronization when rindirect > 0.99 and
rdirect < 0.7.

FIGURE 2 | Network 2: Topology composed of two eleven node star networks

whose hubs are connected. The star on the lower left, composed of nodes 0

to 10 is referred as Star 1 (S1), the star on the upper right, composed of nodes

11 to 21 is referred to as Star 2 (S2).

2.1. Dynamical Characterization Using
Symbolic Dynamics and Complex Network
Statistics
The symbolic dynamical characterization [26] of Equation (1) is
made by following steps 1 to 6:

(1) For each of the N oscillators, Equation (1) is integrated for
20 different initial conditions for several values of coupling
0 ≤ k ≤ 1.

(2) We consider only the x time series to make the
characterization as the y time series is qualitatively the

same. In our case xn(t) ∈ [−1, 1] for all nodes. In order
to discard the transient, only 105 final values of the x time
series are used for this dynamical characterization.

(3) As represented in Figure 3, each time series is transformed
into a binary (or symbolic) series. A partition is set at the
middle of the range of the x time series (at 0) and we define
that if xn(t) < 0 the symbol 0 is assigned and if xn(t) ≥ 0,
the symbol 1 is assigned, giving rise to a symbolic series.
Then a 11 bit template is defined and it moves through the
symbolic series at one position at a time, forming several
binary words of size 11. This words are converted to their
decimal equivalents, forming then a decimal series.

(4) Networks (undirected graphs) are now generated from the
decimal series in a way that each one of them sets up
a distinct network. To generate a network we proceed as
follows: each value of a decimal series corresponds to a
node and connection is made only between neighbors of this
series; there can be only one edge between a pair of nodes and
self-connections are not allowed. The maximum number of

FIGURE 3 | Symbolical and decimal characterization of a time series.
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nodes a network can have is 211 (as we are using a binary
basis and the size of the template is 11). An example of a
network generated from a fictitious decimal series can be
seen in Figure 4.

(5) For each coupling k, 20 networks are generated for each
oscillator as we have 20 different initial conditions.

(6) Using these networks, we calculate the mean and standard
deviation of number of nodes, density, diameter, average
degree and normalized betweenness centrality for each
oscillator at several values of coupling.

The degree of a node represents the number of edges it has and
the average degree of a network is the average of the degree of
all nodes of the network. The diameter is the maximum distance
between two nodes of the network. The density is defined as

ρ =
2E

N(N − 1)
, (7)

where E is the number of edges and N the number of nodes. The
normalized betweenness centrality of a node n is

bn =
2

(N − 1)(N − 2)

∑

s6=n6=t

σ st
n

σ st
, (8)

where 2
(N−1)(N−2)

is the normalization factor, σ st is the total

number of shortest paths between nodes s and t and σ st
n is the

number of these paths that pass through node n. The average
normalized betweenness centrality of the network is the average
of the value this metric of all the nodes.

3. RESULTS AND DISCUSSION

We make use of the usual metrics given by Equations (5) and
(6) to study the synchronization of Networks 1 and 2, whose
nodes’ dynamics aremodeled by Equation (1), as a function of the
coupling. We then use symbolic dynamics and complex network
statistics to characterize the behavior of both systems and make a
comparison of both approaches.

Numerical integration of Equation (1) for both network
systems is performed for several values of coupling k ∈ [0, 1]. For
each value of k, the system is integrated using 20 different initial

FIGURE 4 | Example of the generation of an undirected network from a

decimal series defined as (51, 46, 5, 89, 46, 20, 51, 20, 89, 1).

conditions and the mean and standard deviation of the metrics
rdirect and rindirect are calculated.

The measures rdirect and rindirect of the Network 1 can be seen
in Figure 5. Note that for k = 0.425 the metric rindirect is equal
to one while the metric rdirect has a low value, approximately
0.3, and this indicates that all peripheral nodes are synchronized,
while the hub, which is the only connection among them, is
not; in a phenomenon called remote synchronization. As the
coupling k increases, more specifically at k ≥ 0.75, rdirect =

1 meaning that the hub gets synchronized with the rest of
the nodes and also as rindirect = 1, all nodes of the network
are synchronized. One interesting fact that can be noticed at
an intermediate value of coupling, 0.575 ≤ k ≤ 0.625, is
that the standard deviation of rindirect is high and its mean
value is lower than 1, meaning that the peripheral nodes are
synchronized only for some initial conditions, in a phenomenon
called multistability [25]. Note that the standard deviation of
rdirect in this interval of coupling is relatively low and its mean
value never gets close to one, thus indicating that multistability
is not taking place on the dynamics of the hub. It is important to
note that when the peripheral nodes don’t present a synchronized
state in this region duo to their initial condition, the whole
network is incoherent and desynchronized, so there is no
possibility of having a Chimera state for example. On Lacerda
et al. [25] we properly characterize this multistable behavior
by presenting more measures like instantaneous frequency
as a function of time, phase space, basin of attraction, and
Poincaré section.

Now, we make use of symbolic dynamical characterization
and complex network statistics to characterize the dynamics
of the eleven node star network whose dynamics is given by
Equation (1). As before, we perform numerical integration for 20
distinct initial conditions for several values of coupling. Each of
these initial conditions will give rise to an x and y time series for
each oscillator. In this work, we will use the x time series to make
the characterization as the y time series is qualitatively the same.

FIGURE 5 | Network 1. Mean and standard deviation of rdirect (black) and

rindirect (green) as a function of the coupling k.
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Each x time series is converted into a symbolic binary series
and then to a decimal series as shown in Figure 3. All the
decimal series are then converted into graphs whose mean and

standard deviation of the average number of nodes, density,
diameter, mean degree and normalized betweenness centrality
are calculated and the result can be seen in Figure 6 (see section

FIGURE 6 | Network 1. Mean and standard deviation of the network metrics (A) density, (B) average degree, (C) average betweenness, (D) diameter, and (E) average

number of nodes as a function of coupling k. The plots on the right column are amplifications of the ones on the left. Values of metrics related to the peripheral nodes

are in blue and related to the hub are in red.
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2.1, steps 1–6 for details). For each metric at fixed value of k, 11
values of the mean and the standard deviation are plotted, each
corresponding to one oscillator. The metrics corresponding to
the peripheral nodes are plotted in blue and those of the hub
are plotted in red. Note that all the metrics have a constant
mean value and a standard deviation very close to zero for the
peripheral nodes and for the hub, except at a small region that
corresponds to 0.575 ≤ k ≤ 0.625. At this region, the mean
value of the metrics that correspond to the hub remain constant
and with a very small standard deviation which indicates that
the hub doesn’t have a multistable behavior, a similar result that
was found in Figure 5. As for the peripheral nodes, the mean
value of the metrics deviate from the constant values and present
a high standard deviation, showing that something unusual is
happening, which is the multistable remote synchronization as
also showed in Figure 5.

Analyzing the values of network statistics in Figure 6 at the
multistable interval, one sees that the networks generated by
the DCSD model present a lower mean value of the statistics
density and average betweenness and a higher mean value for the
average degree, diameter and number of nodes when compared
to the values outside the multistable interval of coupling. As
the peripheral oscillators in this interval of coupling present a
quasi-periodic motion [25], by Step 3, it is expected to have
a greater number of distinct values in the decimal series and
therefore generating a network with a greater number of nodes
whose average degree and diameter will be also bigger when
compared to the values outside this region. On the other hand,
as the number of nodes increases, the network gets more
sparse, which makes the values of the density and average
betweenness to be lower.

Now, in order to test our method in a relatively more complex
dynamical system, we consider the network composed of two
star networks whose hubs are connected named Network 2
(Figure 2). As before, the system is integrated for several values
of coupling and for each coupling, 20 different initial conditions
are used and the mean values of the measures rdirect and rindirect

are calculated. The difference here is that each of these measures
are computed for each star separately, so we have rdirectS1 and

rindirectS1 referring to Star 1 and rdirectS2 and rindirectS2 referring to

Star 2. The results can be seen in Figure 7. Both rindirectS1 and

rindirectS2 reach the maximum value at k = 0.55 while rdirectS1 and

rdirectS2 present a relatively low value, meaning that both sets of
peripheral nodes are synchronized among themselves, although
they are not synchronized with each other, that is, a peripheral
node of Star 1 is not synchronized with a peripheral node of
Star 2 (considering all peripheral nodes, rindirect = 0.42 for
this value of coupling, and its maximum value is 0.58 when
k = 1). The system then enters the region of multistability
which for Star 1 takes place at 0.575 < k < 0.65 and for
Star 2 at 0.575 < k < 0.675. One unusual behavior that can
be noticed is what happens to rdirectS1 (black circle) at 0.75 <

k < 0.8, although the value of the coupling is increasing,
suddenly there is a drop at the value of rdirectS1 , indicating that the
level of incoherence has increased. This behavior is not detected
at Star 2.

FIGURE 7 | Network 2. Mean and standard deviation of rdirect (black circle)

and rindirect (green circle) for Star 1 and rdirect (blue square) and rindirect (red

square) for Star 2 as a function of the coupling k.

The results of the analysis of the system using the symbolic
dynamics and complex network statistics are shown in Figure 8.
For the sake of clarity, we plotted the metrics derived from Star 1
on the left column and the ones from Star 2 on the right. Note that
there are two main regions of coupling where the mean values
of the metrics differ from a constant one. We start by analyzing
the metrics from Star 1. The first region is at 0.475 < k < 0.55
for the density, degree, betweenness and number of nodes, for
the diameter its at 0.475 < k < 0.525. The second region is at
0.575 < k < 0.8 for the measures density, degree, betweenness
and number of nodes and at 0.575 < k < 0.725 for the diameter
along with another extra region at 0.75 < k < 0.8. One can
notice that there is a high standard deviation at the beginning
of this region and that it either decreases or remains constant as
k increases but when 0.75 < k < 0.8 there is a huge increase in
the standard deviation. For Star 2, the first is at 0.475 < k < 0.55
for all the measures except for the diameter which is at 0.5 < k <

0.55. The second is at 0.575 < k < 0.775 also for all the measures
except for the diameter which is 0.575 < k < 0.75.

First, we discuss the second region presented above, as it is
the region of multistabilty. As previously discussed, considering
Figure 7, the system enters the region of multistability which
for both stars begins at the coupling k > 0.575. Following our
definition at the beginning of the paper that we consider that the
system reaches remote synchronization when rindirect > 0.99,
the upper limit of the region of multistability would then be
0.65 for Star 1 and 0.675 for Star 2. But, if we want to be more
rigorous and say that the system reaches remote synchronization
only when rindirect equals exactly one, this region would then be
0.575 < k < 0.8 for Star 1 and 0.575 < k < 0.775 for Star 2. So,
our method with the DCSD and the complex network statistics,
with exception of the diameter, is accurate enough to predict the
region of multistability even when the value of rindirect is between
0.99 and 1.0. Also, the increase of the standard deviation of all
measures at 0.75 < k < 0.8 in Figure 8 for Star 1 indicates that
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FIGURE 8 | Network 2. Mean and standard deviation of the network metrics (A,F) density, (B,G) average degree, (C,H) average betweenness, (D,I) diameter, and

(E,J) average number of nodes as a function of coupling k. The plots on the left refer to Star 1, the plots of the right column refer to the Star 2. Values of metrics

related to the peripheral nodes are in blue and related to the hub are in red.
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something else is taking place in this region and this in the exact
region where there is a drop in the value of rdirectS1 , which indicates
that the level of incoherence has increased. As for the first region
detected by the DCSDmethod, nothing was detected by the usual
metrics and this region has yet to be studied.

4. CONCLUSIONS

In this paper, an alternative approach to detect multistability
in remote synchronization was proposed. Instead of using
the usual metrics like the partial synchronization index, the
methodology proposed in this work makes use of symbolic
dynamical characterization and complex network statistics. This
approach has already been used to characterize and detect
periodic windows and chaos in non-linear systems and, for
our knowledge, it is the first time that it is used in the study
of synchronization and multistability phenomena. Results show
that this methodology is also able to detect the region where
multistability takes place as the values of all complex networks
statistics used show a high standard deviation and a distinct mean
value inside this region when compared to the values outside

it where all metrics are constant and have a standard deviation
close to zero, the only metric used here that didn’t present a
significant result was the diameter. However, this method is
not able to differ from a synchronized to a non-synchronized
dynamics as the mean values of all the metrics are the same in
both of these regions of coupling. From the complex network
statistics, we were able to show that the networks generated by

our method present a greater number of nodes, diameter and

average degree inside the multistability region when compared to
the mean value of the metrics outside of this region. The method
proposed in this work was also able to detect a region where
there is an increase in the level of incoherence of the hub in
relation to the peripheral nodes in a region where the coupling
was increasing. We believe that the partial synchronization index
and the method proposed in this work should be used together as
one complements the other.
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