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Multiple non-linear systems demonstrate the phenomenon where fluctuations enhance

the synchronization and periodic behaviors of the system. In the phenomenon

induced by stochastic additive noise, stochastic resonance, noise enhances the

synchronization of system behaviors against weak input signals. Along with

stochastic noise, deterministic chaos induces a phenomenon like stochastic

resonance called chaotic resonance. This review summarizes the progress of

studies on chaotic resonance over the most recent decade. First, the fundamental

characteristics of chaotic resonance are reviewed. Second, chaotic resonance in brain

informatics, including cerebellar learning and deterministic fluctuations observed in

electroencephalography/magnetoencephalography examinations, are reviewed. Third,

the “reduced region of orbit” method is reviewed for the potential application of

chaotic resonance. This review emphasizes the potential importance of recapturing

neural fluctuation functionality, previously considered in the framework of stochastic

resonance (also called stochastic facilitation), through chaotic resonance and assesses

the effectiveness of applying chaotic resonance.

Keywords: chaotic resonance, stochastic resonance, neural system, spiking neural network, chaos control,

synchronization

1. INTRODUCTION

Various non-linear systems reportedly demonstrate a phenomenon where fluctuations enhance
synchronization and periodic behaviors (reviewed in [1–5]) [6, 7]. Phenomena induced by
stochastic additive noise, stochastic resonance [8–10] and coherence resonance/noise-induced
order [11–17] are well-known. In stochastic resonance, the synchronization of system behaviors
against weak input signal is enhanced by noise [8–10]. In coherence resonance/noise-induced
order, the intrinsic periodic system behaviors are induced by noise [11–17]. In addition to stochastic
noise, deterministic chaos induces stochastic resonance, also called chaotic resonance (reviewed in
[3, 4]). These phenomena are summarized in Table 1.

Studies have assessed these phenomena and have identified various functionalities of
fluctuations in neural activity (reviewed in [38–41]). These studies have primarily focused on two
kinds of phenomena: sensitivity enhancement of sensory neural systems [38] and functionality
enhancement of the central nervous system [39–42]. A study on sensory neural systems reported
that crayfish and paddlefish use background noise to detect slight movements in the water made
by predators and prey [38]. Another study on the central nervous system reported that the
chaotic dynamics of electroencephalography (EEG) in the olfactory bulb of rabbits contributes to
efficient memory search [43]. Moreover, studies on the cerebellar learning process (i.e., the inferior
olive nucleus) showed transmission of teacher signals with rich error information in the form
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TABLE 1 | Emergence of synchronization and periodicity by fluctuations.

Phenomenon Brief explanation Objective systems

Stochastic

resonance

Enhancement of the degree of synchronization against weak

input signal by stochastic noise in non-linear

systems with a barrier or threshold.

Climate system [8],

neural systems [18–20],

social systems [6, 7, 21],

non-linear circuits [9, 10].

Coherence

resonance

Emergence of inherent periodic behaviors induced by

stochastic

noise in non-linear systems with a barrier or threshold.

Neural systems [11, 12, 16],

social systems [7, 17],

non-linear circuits [13].

Noise-induced

order

Stabilizing chaotic behaviors to periodic states

by stochastic noise in non-linear systems.

Neural systems [14],

chemical reaction system [15].

Chaotic

resonance

Synchronization of chaotic behaviors against weak

input signals by optimizing chaotic state in a non-linear

system.

Neural systems [22–25]

(in particular, cerebellar learning system

[26–30]).

Chaos

synchronization

Synchronization of chaotic behaviors in the assembly

of non-linear systems, which are classified as complete,

phase, and general synchronizations.

Additionally, the intermittent transition between synchronous

and asynchronous states is known as chaotic itinerancy.

Non-linear circuits [31, 32],

social systems [33],

neural systems [34–37].

of a low-rate chaotic spiking pattern (∼1.0 Hz) [26–
30]. Furthermore, neuroimaging modalities, such as
functional magnetic resonance imaging (fMRI) and
EEG/magnetoencephalography (MEG) revealed the degrees
of neural fluctuations are related to cognitive functions, aging,
development, and psychiatric disorders [44–48] (reviewed in
[40, 41]).

These resonance phenomena induced by fluctuations,
especially stochastic resonance, have recently been applied
to biomedical engineering [49–52]. Kurita et al. developed a
wearable device that enhances the tactile sensitivity of surgeons’
hands by applying appropriate vibrations [50, 51]. Enders
et al. and Seo et al. further utilized this method by applying
vibrotactile noise to study stochastic resonance in the human
sensory systems and proposed a rehabilitation method to
improve haptic sensations in patients with paralysis [49, 53]. In
addition to the sensory neural systems at the cognitive levels
of brain function, Van der Groen et al. developed a method
to enhance perceptual decision-making using the stochastic
resonance effect [52]. Specifically, applying the optimal amount
of noise by transcranial random noise stimulation to the visual
cortex can be used as a non-invasive brain stimulation technique
to enhance the accuracy of perceptual decisions. Regarding
chaotic resonance, although several studies reported that its
sensitivity to a weak input signal is higher than that of stochastic
resonance [23, 54], no study has reported any application of
chaotic resonance. One possible reason for this might be the
strength of additive noise, which can be easily controlled from
the outside during stochastic resonance. Conversely, controlling
the chaotic states to elicit chaotic resonance is difficult in many
cases, especially in biological systems. To tackle this difficulty,
we previously proposed a new chaos control method called the
“reduced region of orbit (RRO)” method, where the chaotic
signals are shifted to the appropriate chaotic state to elicit a

chaotic resonance by external feedback signals [55]. First, the
RRO-based method was adopted for a simple discrete chaotic
system, such as the cubic map and its assembly [55, 56], as well
as to a continuous chaotic system termed Chua’s circuit [57].
Studies have now started applying the RRO-based method to
neural systems [58, 59]. The RRO-based method is expected to
open an avenue for utilizing chaotic resonance in biomedical
engineering in addition to its application in stochastic resonance.

In this review, we summarize the progress of studies on
chaotic resonance over the decade. First, the fundamental
characteristics of chaotic resonance were reviewed. Second,
chaotic resonance in brain informatics, including cerebellar
learning and deterministic fluctuations observed in EEG/MEG,
are reviewed. Finally, studies on the RRO-based method for
controlling chaotic resonance are also reviewed. Through chaotic
resonance, this review emphasizes the potential importance
of recapturing neural fluctuation functionality, previously
considered in the framework of stochastic resonance (also called
stochastic facilitation), and assesses the effectiveness of applying
chaotic resonance.

2. MECHANISM AND FUNDAMENTAL
CHARACTERISTICS OF CHAOTIC
RESONANCE

First, we review the mechanism of chaotic resonance in
comparison with stochastic resonance (see the overview of these
resonance phenomena in Figure 1). We assumed a condition
in which the input signal is too weak for the system state
to surpass the barrier or threshold. Under this condition, in
case of stochastic resonance, the additive stochastic noise is
applied to the system with appropriate strength; the system state
surpasses the barrier or threshold due to the noise, especially
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when the input signal exhibits a peak. Consequently, the weak
input signal and the system output synchronize with one another.
Initially, the concept of stochastic resonance was devised to
explain the mechanism of periodically recurrent ice ages, called
the Milankovitch cycle [8]. Presently, it is widely recognized
that stochastic resonance emerges in various kinds of systems
with the following three factors: a barrier/threshold, a source of
noise, and a weak input signal [8–10]. Moreover, the noise source
is not restricted to additive stochastic noise; chaos also causes
a phenomenon of stochastic resonance, i.e., chaotic resonance
(reviewed in [3, 4]).

In chaotic resonance, two forms have been proposed to
utilize chaotic dynamical fluctuation (reviewed in [3, 4]). In
one form, the external additive chaotic signal is applied to
the system instead of the stochastic noise [60, 61]; in the
other form, an alternative intrinsic chaotic dynamics is utilized.
Many of the recently published studies were classified as the
latter form (reviewed in [3, 4]). In the following sections,
we review this type of chaotic resonance. Initially, chaotic
resonance was found in chaotic systems with chaos-chaos
intermittency, in which the chaotic orbit hops among the
several separated chaotic attractor regions, such as the cubic
map and Chua’s circuits [62–64] (reviewed in [3]). In these
chaotic systems, an attractor merging crisis arises according
to the adjustment of internal order parameters; through this
crisis, chaos-chaos intermittency is induced. The degree of
synchronization in chaotic resonance approximately maximizes,
which is the bifurcation point for this attractor merging
crisis. The underlying reason for this phenomenon is that,
approximately at this bifurcation, the intrinsic hopping of chaotic
attractor regions seldomly occurs under the absence of weak
external signals. In this situation, the application of the external
signal acts as a perturbation that switches the orbit among the
attractors. Consequently, the induced chaos-chaos intermittency
synchronizes with the external signal. Under conditions without
chaos-chaos intermittency, the external signal is too weak to
induce the chaos-chaos intermittency. Conversely, because of the
inherent chaotic dynamics with a large disturbance, under high-
frequency conditions of chaos-chaos intermittency, the hopping
does not synchronize with a weak external signal. Another
fundamental characteristic of chaotic resonance is that the degree
of synchronization exhibits a unimodal maximum peak around
an appropriate signal strength at the frequency of the input
signal [54, 64, 65]. These characteristics are interpreted such
that chaotic resonance has resonance frequency as the resonance
phenomenon, and the stabilization of chaotic states by large
signal strength degrades the degree of synchronization [65].

3. CHAOTIC RESONANCE IN NEURAL
SYSTEMS

Previous studies on the dynamic behaviors of neural activity
have revealed that chaos exists at several hierarchical levels in
neural systems, ranging from the electrical response of a single
neuron to brain activity produced by neural assemblies [66–
68]. To identify the functionalities of chaos in neural systems,

previous studies evaluated chaotic resonance within them [22, 23,
54, 65]. Sinha constructed a neural population model composed
of excitatory and inhibitory neural populations, and the neural
activity of this model was indicated by the mean spiking rate [22].
This neural model exhibits chaos-chaos intermittency, which
synchronizes with the weak external signal, i.e., it induces a
chaotic resonance [22]. Moreover, we constructed chaos neural
networks as per the mean spiking rate model with several
embedded memory patterns; these networks exhibit chaos-chaos
intermittency among the stored memory patterns [23, 54, 65].
The degree of synchronization of the period for recalling the
memory against a weak input stimulus is maximized around
the emergence of the attractor merging crises [23, 54, 65].
Additionally, comparing the sensitivity of chaotic resonance with
that of stochastic resonance, chaotic resonance exhibits higher
sensitivity than stochastic resonance [23, 54, 65].

In actual neural systems, various types of neural coding forms
exist as well as the mean spiking rate coding, such as spike
timing coding and spike population coding (reviewed in [69]).
Spiking neural models have been widely utilized to describe
the dynamic behaviors of these neural coding forms and to
reveal the brain informatics mechanism [28, 70–72] (reviewed
in [69, 73]). Previously, several studies have identified chaotic
resonance in spiking neurons and spiking neural networks, such
as in the inferior olive neural systems for cerebellar learning
and in the Izhikevich neuron model [24–27, 30]. Spiking neural
systems do not exhibit chaos-chaos intermittency but rather
exhibit threshold characteristics for spike generation (reviewed
in [74]). During chaotic resonance in spiking neural systems, the
chaotic behavior against input signals induces spike-responses
that do not occur at specific times but rather vary for each
trial. In this manner, the distribution frequency of these spike
timings against the input signal becomes congruent with the
shape of the input signal [24–27, 30]. In addition to the mean
spiking rate models, the chaotic resonance in spiking neural
systems exhibits a unimodal maximum peak of signal response
at the appropriate input frequency. The signal response of chaotic
resonance is maintained under a weak strength of the input signal
where the chaotic state is present [25, 30]. Moreover, chaotic
resonance responses and their sensitivity maximize around the
edge between the periodic spiking state and chaotic spiking state
(called edge of chaos [75]) [25].

With large-scale neural fluctuations, observed as EEG, MEG,
and fMRI signals, the complexity of temporal behaviors of
brain activity reflects the ability of cognitive functions [76],
development [47], aging [44, 77, 78], and the pathology of
psychiatric disorders [45, 48, 79, 80] (reviewed in [40, 41,
81]). Previous studies considered the temporal complexity of
brain activity under the framework of stochastic resonance
(also called stochastic facilitation) (reviewed in [39]). Several
studies reported that these complex brain activities involve the
deterministic dynamical processes that reflect the internal brain
informatics process rather than the stochastic process [47, 77,
82, 83]. In addition to these studies based on physiological
data analysis, several model-based studies with spiking neural
networks demonstrated that network structures (e.g., synaptic
weight distribution and network topology) induce complex
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FIGURE 1 | Overview of stochastic resonance and the two types of chaotic resonance.

deterministic dynamical neural activities [72, 84]. These studies
may indicate the existence of chaotic resonance in a wide
range of brain activities and cognitive processes. Although it
is difficult to examine chaos with experimental time-series of
brain activity involving stochastic noise in high-dimensional
dynamical systems [85], future studies that assess the complexity
of neural activity will validate this speculation.

4. CONTROLLING CHAOTIC RESONANCE
BY EXTERNAL FEEDBACK SIGNALS

Although the internal system parameters cannot be adjusted
from outside the system, our proposed RRO-based method
induces chaotic resonance by adjusting the attractor merging
crisis [55]. This RRO-based method is expected to facilitate the
biomedical application of chaotic resonance [58, 59]. In this
section, we review the mechanisms for eliciting and controlling
chaotic resonance using the RRO-based method and the recent
progress in its application to neural systems.

Systems with chaos-chaos intermittency possess cubic map
structures in their dynamics [86, 87]. RRO feedback signals
control the conditions for the development of attractor merging
crisis by adjusting the local maximum and minimum values of
the map function [55, 59]. In particular, under the condition
of high-frequency chaos-chaos intermittency, RRO feedback
signals with positive feedback strength, including the effect of
reducing the absolute values of local maximum and minimum
of the map function, reduce the frequency of chaos-chaos
intermittency. Without the chaos-chaos intermittency, the RRO
feedback signals with negative feedback strength, including those
with the effect of increasing the local maximum/minimum of the
map function, induce chaos-chaos intermittency and enhance the
frequency of chaos-chaos intermittency. Consequently, in both

cases, the appropriate frequency of chaos-chaos intermittency
for chaotic resonance is achieved. Previously, various methods
were proposed for controlling the chaotic state by using external
perturbations, such as the Ott-Grebogi-Yorke method [88],
delayed feedback method [89, 90], and H∞ method [91]
(reviewed in [92]). These conventional chaos control methods
provide a transition for the conversion of chaotic states to stable
periodic states or stable fixed points. The RRO-based method not
only eliminates the chaotic state but also optimizes the chaotic
state for chaotic resonance. Initially, the RRO-based method was
adopted for a discrete cubic map system [55]; subsequently, the
RRO-based method has been applied to coupled chaotic systems
[56]. Moreover, in continuous chaotic systems, RRO feedback
signals based on dynamical behavior on the Poincaré section have
been developed, which can induce chaotic resonance [57].

As a potential application of the RRO-based method to
neural systems, we applied RRO feedback signals to a discrete
neural population model composed of excitatory and inhibitory
neural populations [55]. This neural model, proposed by Sinha,
possesses the cubic map structure in its dynamics and can
elicit chaos-chaos intermittency behaviors [22]. Through this
RRO mechanism, the frequency of chaos-chaos intermittency is
adjusted, and a chaotic resonance is induced [55, 59]. Compared
with conventional stochastic resonance induced by additive
noise, chaotic resonance induced by RRO feedback signals
exhibits a relatively high degree of synchronization against the
input signal and a high sensitivity against weak input signals
[59]. Moreover, additive noise for inducing stochastic resonance
only causes the development of the attractor merging crisis in the
non-chaos-chaos intermittency states, whereas the RRO feedback
signals can either induce or prevent the attractor merging
crisis by applying a negative or positive feedback strength,
respectively [59]. For these reasons, the RRO-based method has
higher adaptability to more varied attractor conditions than does
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additive noise in stochastic resonance. These advantages of the
RRO-based method might facilitate the development of chaotic
resonance instead of stochastic resonance in systems in which
the internal system parameters cannot be adjusted, especially
biological systems.

5. CONCLUSIONS

Based on the accumulation of studies over the past decades,
we reviewed the fundamental characteristics of chaotic
resonance. The recent studies, dealing with the complex
neural activity caused by the deterministic process and multiple
complex network structures, indicated the possibility that
chaotic resonance, rather than stochastic resonance/stochastic
facilitation, will become the framework for other studies to
understand the functionality of neural fluctuations. Moreover,
with regard to the application of chaotic resonance in biomedical
regions, our proposed RRO-based method might be utilized
for the enhancement of neural functionality, which, to date,
has restricted the application of stochastic resonance. Although
judging and controlling chaotic states is difficult inmany systems,
including actual neural systems, recently proposed analysis
methods for predicting and judging chaos [93–95] and future
studies will bring new insights to the functionality of neural
fluctuation and biomedical application of chaotic resonance.
Moreover, in future works, robust noise evaluation methods
for chaos under noisy environments and the development of

RRO-based methods against more physiological neural systems
are needed. Furthermore, as the extension of the RRO-based
method, the development of new methods for controlling
intermittent chaotic behaviors in systems with more complex
attractors, such as multiple structures for co-existing chaotic
attractors and limit cycles [96] will be important topics for future
studies. Not restricted to biomedical applications, chaotic neural
oscillations have been widely used in bio-inspired informatics
and robotics systems [97, 98]. In these systems, by not removing
the chaotic states but rather transiting the chaotic states to
the appropriate chaotic state according to each objective, the
RRO-based method might be a candidate for these controlling
methods. Therefore, as part of future studies, these aspects are
also important.
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