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In this paper we study the attractor of a parabolic semiflow generated by a singularly

perturbed PDE with a non-linear term given by a bistable potential, in an oval surface; the

Allen-Cahn equation being a prototypical example. An additional constraint motivated by

a variational principle for closed geodesics originally proposed by Poincaré arising from

geometric considerations is introduced. The existence of a global attractor is established

by modifying standard techniques in order to handle the constraint. Based on previous

work on the elliptic case, it is known that when the perturbation parameter tends to zero,

minimal energy solutions exhibit a sharp interface concentrated on a closed geodesic.

We provide numerical simulations using Galerkin’s method. Based on the analytical and

numerical results we conjecture that, when the perturbation parameter tends to zero

and for large times, the transition layers of the solutions of this PDE consists of closed

geodesics or a union of arcs of such geodesics, thus characterizing the structure of

the attractor.

Keywords: attractors, parabolic semiflow, closed geodesics, Galerkin method, oval surfaces

1. INTRODUCTION

The qualitative study of dynamical systems in infinite dimensions has been of fundamental
importance. In the case of dynamical systems associated with partial differential equations of
evolution having variational structure, many of the ideas and methodologies of gradient-like
systems can be extended to infinite dimensions. In particular, the study and characterization of
attractors is of special interest.

In this paper, we prove the existence of the global attractor of the parabolic equation
associated to:

− ǫ21u+W′(u) = 0, (1)

on an oval surface M1 (see Figure 1) where u : M → R, 0 < ǫ ≪ 1, 1 represents the Laplace–
Beltrami operator onM andW(u) is a non-linear term, which in particular includes the Allen-Cahn
non-linearity. The flow will be considered in a space of functions satisfying a geometric constraint
to be explained later.

Equation (1) arises in many contexts among which we may mention materials science,
superconductivity, population dynamics, and pattern formation.

An important case for W(u) is given by W(u) = (1 − u2)2, which has been widely studied
both analytically and numerically for example in Hutchinson and Tonewaga [1] and Padilla and
Tonewaga [2] and references therein.

1A closed and compact surface enclosing a strictly convex set in R
3.
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FIGURE 1 | Example of an oval surface in R
3.

In a bounded domain � ⊂ R
n, n ≥ 2, with suitable initial

and boundary conditions, in Bronsard and Kohn [3], it is shown
that, when ǫ → 0, the solution u of (1) separates� in two regions
where u ≈ 1 and u ≈ −1, respectively, and the transition layer,
moves with normal velocity equal to its principal curvatures.
A similar behavior occurs on an oval surface for non-trivial
solutions of (1). Using results in Hutchinson and Tonewaga [1]
and Padilla and Tonewaga [2], in Garza-Hume and Padilla [4]
it is established that, when ǫ → 0, non-trivial minima of the
corresponding energy function (with a suitable restriction) have
a transition layer located at the shortest closed geodesic.

This fact is obtained using the variational structure of
the problem, because (1) is the Euler Lagrange equation of
the functional:

Eǫ(u) =

∫

M

(

ǫ

2
|∇u|2 +

1

ǫ
W(u)

)

, (2)

in a suitable functional space.
For ǫ → 0, functions u with uniformly bounded energy

Eǫ(u) < E0, can be proved to be close to ±1 in most of
the domain, except for a transition curve. The proof follows
from a classical result in differential geometry due to Birkhoff
that guarantees the existence of a closed geodesic on a surface
diffeomorphic to the sphere (see Poincaré [5] where the
corresponding variational principle was first conjectured, later
demostrated by Berger and Bombieri [6]):

Proposition 1. Suppose that γ is a closed curve on M that
under the Gauss map, g, divides the unit sphere in two parts
of equal measure. Assume further that among all the curves
satisfying the above conditions, γ has minimal length. Then γ is
a closed geodesic.

This fact suggests a natural constraint for the problem under
consideration. The function u belongs to the space of functions
that satisfies:

∫

S2
u(g−1(y))dy = 0, (3)

where g is the Gauss map.
On the other hand, solutions of (1) correspond to stationary

points of the associated gradient flow:

ut = ǫ1u−
1

ǫ
W′(u). (4)

The main goal of this paper is show the existence of the
attractor of the associated parabolic equation to (1) (i.e., Equation
4), and conjecture its structure in terms of functions that
possess transition layers determined by closed geodesics or arcs
of geodesics. In other words, given any initial condition, the
corresponding parabolic semiflow determined by (4) approaches
a function with transitions in geodesics. This will be done by
considering the special case in which M = S2 and W(u) =

(1− u2)2. This will simplify both the analysis and the numerics.
From now on we consider solutions of (4) satisfying the

constraint (3). Under the above restrictions, it becomes:

∫

S2
u = 0, (5)

which will be incorporated into the equation later on as a
Lagrange multiplier. As a first step, we will proof the existence
of an attractor for (4) under the constraint (5). We will recall
some standard facts in dynamical systems theory, Sobolev spaces
on Riemannian manifolds as well as Gronwall’s inequality, which
are presented in the following section. This is done for the
sake of completeness and to introduce notation and may be
skipped by readers familiar with dynamical systems and analysis
on manifolds.

Having shown the existence of the attractor, some numerical
experiments are performed using the Galerkin method. A few
words are in order regarding the limitations of our numerical
approach. Even when in principle the method should be
applicable for any initial condition, we only considered some that
already exhibit a relatively well-defined interface. The aim of the
numerical simulations is to make plausible our conjecture on the
structure of the global attractor and a more detailed study of the
method is not carried out. As for the analytical approach, we
remark that the problem of establishing the existence of a global
attractor for other surfaces or manifolds in similar situations
seems to be a reasonable extension of the methods and ideas
here presented. In particular for the case of surfaces with non-
zero Euler characteristic as is done in Del Río et al. [14] for the
elliptic case.

2. GENERAL RESULTS

2.1. Semigroups of Operators
The notation and terminology used in this section is adapted
or quoted from Temam [7], although arguments and results in
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Sell and You [8] and Robinson [9] are also used. Since these are
standard results and references, no explicit references are made.

We will consider dynamical systems whose state is described
by an element u(t) of a metric space H. In most cases, and
in particular for dynamical systems associated with partial or
ordinary differential equations, the parameter t (the time or the
timelike variable) varies continuously in R or in some interval of
R. Usually the space H will be a Hilbert or Banach space.

The evolution of the dynamical system is described by a family
of operators S(t), t ≥ 0, that mapH into itself and enjoy the usual
semigroup properties:

{

S(t + s) = S(t) · S(s) ∀s, t ≥ 0.
S(0) = I, Identity in H.

(6)

If φ is the state of the dynamical system at time s, then S(t)φ is
the state of the system at time t + s, and

u(t) = S(t)u(0) (7)

u(t + s) = S(t)u(s) = S(s)u(t), s, t ≥ 0. (8)

The semigroup S(t) will be determined in our case by the solution
of a PDE. The basic properties of the operators S(t) which are
needed will be established in the next subsection but, for the time
being, we assume that:

S(t) is a continuous (non-linear) operator from H into itself

∀t ≥ 0. (9)

These operators may or may not be one-to-one; the injectivity
property is equivalent to the backward uniqueness property for
the dynamical system.When S(t), t > 0, is one-to-one we denote
by S(−t) its inverse which maps S(t)H onto H; we then obtain a
family of operators S(t), t ∈ R, which have the property (6) on
their domains of definition, ∀s, t ∈ R. It is clear that for t < 0,
the operators S(t), are not usually defined everywhere in H.

Definition 1. For u0 ∈ H the orbit or trajectory starting in u0 is
the set

⋃

t≥0 S(t)u0.

Definition 2. When it exists, an orbit or trajectory ending at u0
is the set

⋃

t≥0 S(−t)−1u0.

Definition 3. For u0 ∈ H or for A ∈ H, the ω-limit set of u0 (or
A) is

ω(u0) =
⋂

s≥0

⋃

t≥s

S(t)u0,

or

ω(A) =
⋂

s≥0

⋃

t≥s

S(t)A,

where closures are taken in H.

Definition 4. When it exists, the α-limit set of u0 ∈ H or
A ⊂ H is

α(u0) =
⋂

s≤0

⋃

t≤s

S(−t)−1u0,

or

α(A) =
⋂

s≤0

⋃

t≤s

S(−t)−1A.

Proposition 2. φ ∈ ω(A) if and only if there exists a sequence of
elements of φn ∈ A and a sequence tn → ∞ such that

S(tn)φn → φ as n → ∞. (10)

Remark 1. Analogously, φ ∈ α(A) if and only if there exists a
sequenceψn converging toψ inH and a sequence tn → ∞, such
that φn = S(tn)ψn ∈ A, ∀n.

Definition 5. A fixed point, or an equilibrium point is a point
u0 ∈ H such that

S(t)u0 = u0 ∀t ≥ 0.

2.2. Invariant Sets
We say that a set X ⊂ H is positively invariant for the semigroup
{S(t)}t≥0 if

S(t)X ⊂ X ∀t ≥ 0.

It is said to be negatively invariant if {S(t)}t≥0 if

S(t)X ⊃ X ∀t ≥ 0.

When the set is both positively and negatively invariant, we call it
an invariant set or a functional invariant set.

Definition 6. A set X ⊂ H is a invariant set for the semigroup
{S(t)}t≥0 if

S(t)X = X ∀t ≥ 0.

The simplest examples of invariant sets are equilibrium points,
heteroclinic orbits and limit cycles.

Lemma 1. Assume that for some subset A ∈ H, A 6= ∅, and for
some t0 > 0, the set

⋃

t≥0 S(t)A is relatively compact in H. Then
ω(A) is non-empty, compact, and invariant.

2.3. Absorbing Sets and Attractors
Definition 7. An attractor is a set A ∈ H that enjoys the
following properties:

1. A is an invariant set.
2. A possesses an open neighborhood U such that, for every

u0 ∈ U , S(t)u0 converges toA as t → ∞. This means that:

dist (S(t)u0,A) → 0,

as t → ∞.

The distance in (2) is understood to be the distance of a point
to a set:

dist (x,A) = inf
y∈A

d(x, y),

d(x, y) denoting the distance of x to y in H.
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Definition 8. If A is an attractor, the largest open set U that
satisfies (2) is called the basin of attraction of A. Alternatively,
we say thatA attracts the points of U .

Definition 9. It is said thatA uniformly attracts a set B ⊂ U if

d (S(t)B,A) → 0

as t → ∞.

d (B0,B1) is now the semidistance of two sets:

d(B0,B1) = sup
x∈B0

inf
y∈B1

d(x, y).

The convergence in the above definition is equivalent to the
following: for every ǫ > 0, there exists tǫ such that for t ≥

tǫ , S(t)B is included in Uǫ , the ǫ-neighborhood of A. When no
confusion can occur we simply say thatA attracts B.

Definition 10. We say that A ∈ H is a global (or universal)
attractor for the semigroup {S(t)}t≥0 if A is a compact attractor
that attracts the bounded sets of H (and its basin of attraction is
then all of H).

It is easy to see that such a set is necessarily unique. Also such
a set is maximal for the inclusion relation among the bounded
attractors and among the bounded functional invariant sets. For
this reason it is also called the maximal attractor.

In order to establish the existence of attractors, a useful
concept is the related concept of absorbing sets.

Definition 11. Let B be a subset of H and U an open set
containing B. We say that B is absorbing in U if the orbit of
any bounded set of U enters B after a certain time (which may
depend on the set):

{

∀ B0 ⊂ U B0 bounded

∃ t1(B0) such that S(t)B0 ⊂ B, ∀t ≥ t1(B0)

We say also that B absorbs the bounded sets of U .

The existence of global attractor A for a semigroup {S(t)}t≥0

implies that of an absorbing set. Indeed, for ǫ > 0, let Vǫ denote
the ǫ-neighborhood ofA (i.e., the union of open balls of radius ǫ
centered onA). Then, for any bounded set B0, d(S(t)B0,A) → 0
as t → ∞; hence d(S(t)B0,A) ≤ ǫ

2 for t ≥ t(ǫ) and S(t)B0 ⊂ Vǫ

for such t’s. This shows that Vǫ is an absorbing set.
Conversely, it is a standard result that a semigroup that

possesses an absorbing set and enjoys some other properties
possesses an attractor.

In order to prove existence of an attractor when the existence
of an absorbing set is known, we need further assumptions
on the semigroup {S(t)}t≥0, and we will make one of the
two following:

• The operators S(t) are uniformly compact for t large. By this we
mean that for every bounded set B there exists t0 which may
depend on B such that

⋃

t≥t0

S(t)B (11)

is relatively compact in H.

Alternatively, if H is a Banach space, we may assume that S(t)
is the perturbation of an operator satisfying (11) by a (non-
necessarily linear) operator which converges to 0 as t → ∞.
More precisely:

• If H is a Banach space and for every t, S(t) = S1(t) + S2(t)
where the operators S1(·) are uniformly compact for t large and
S2(t) is a continuous mapping from H into itself such that the
following holds:

For every bounded set C ⊂ H,

rc(t) = sup
φ ∈C

|S2(t)φ|H → 0 (12)

as t → ∞.
Of course, if H is a Banach space, any family of operator

satisfying (11) also satisfies (12) with S2 = 0.

Theorem 1. Assume that H is a metric space and that the
operators S(t) are given and satisfying (6), (9) and either (11) or
(12). We also assume that there exists an open set U and a bounded
set B of U such that B is absorbing in U .

Then the ω-limit set of B,A = ω(B), is a compact attractor
which attracts the bounded sets of U . It is the maximal bounded
attractor in U (for the inclusion relation).

Furthermore, if H is a Banach space, if U is convex, and the
mapping t 7→ S(t)u0 is continuous from R

+ into H, for every u0
in H; thenA is connected too.

The proof of this theorem is carried out through several steps,
which can be found in Temam [7].

2.4. Sobolev Spaces in Riemannian
Manifolds
The notation and terminology used in this section can be found
in Hebey [11] and Aubin [12].

Let (M, g) be a smooth Riemannian manifold. Given k an
integer, and p ≥ 1 real, set

C
p

k
(M) =

{

u ∈ C∞(M) :∀j = 0, . . . , k,

∫

M
|∇ ju|pdν(g) <∞

}

.

When M is compact, one clearly has that C
p

k
(M) = C∞(M) for

any k and any p ≥ 1. For u ∈ C
p

k
(M), set also

||u||Hp

k
=

k
∑

j=0

(∫

M
|∇ ju|pdν(g)

)1/p

.

We define the Sobolev space H
p

k
as follows:

Definition 12. Given (M, g) a smooth Riemannian manifold, k
an integer, and p ≥ 1 real, the Sobolev spaceH

p

k
is the completion

of C
p

k
with respect to || · ||Hp

k
.

Note here that one can look at these spaces as subspaces of
Lp(M), in which the norm of Lp(M), || · ||p is defined by

||u||p =

(∫

M
|u|pdν(g)

)1/p

.
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Definition 13. Given (E, ||·||E) and (F, ||·||F) two normed vector
spaces with the property that E is a subspace of F, we say that the
embedding of E in F is compact if bounded subsets of (E, || · ||E)
are relatively compact in (F, ||·||F). This fact is written as E ⊂⊂ F.

This means that bounded sequences in (E, || · ||E) possess
corvergent subsequences in (F, || · ||F). Clearly, if the embedding
of E in F is compact, it is also continuous, i.e., if there existsC > 0
such that for any x ∈ E, ||x||F ≤ C||x||E.

The following theorem is needed in order to prove the
existence of the attractor of the equation in consideration.

Theorem 2. Let (M, g) be a smooth, compact Riemannian n-
manifold. For any real numbers 1 ≤ q < p and any integers
0 ≥ m < k, if 1/p = 1/q− (k−m)/n, then H

q

k
(M) ⊂⊂ H

p
m(M).

In particular, for any q ∈ [1, n), H
q
1(M) ⊂⊂ Lp(M) where

1/p = 1/q− 1/n.

The first part of the above theorem has the
following consequence:

Corollary 1. For any q ∈ [1, n), Hn
1 (M) ⊂⊂ H

q
1(M), thus

Hn
1 (M) ⊂⊂ Lp(M) for all p ≥ 1.

2.5. Differential Inequalities
The following inequality is derived from Gronwall’s lemma and
will be used later on.

Lemma 2. Let y a positive absolutely continuous function on
(0,∞) which satisfies:

y′ + γ yp ≤ δ,

with p > 1, γ > 0, δ ≥ 0. Then, for t > 0,

y(t) ≤

(

δ

γ

)1/p

+ (γ (p− 1)t)−1/(p−1).

Proof: If y(0) ≤ (γ /δ)1/p, then y(t) ≤ (γ /δ)1/p, ∀t ≥ 0. If y(t) >
(γ /δ)1/p, then there exists t0 ∈ (0,∞) such that y(t) ≥ (γ /δ)1/p

for 0 ≤ t ≤ t0, and y(t) ≤ (γ /δ)1/p for t ≥ t0.
For t ∈ [0, t0] we write z(t) = y(t) − (γ /δ)1/p ≥ 0 and since

(a+ b)p ≥ ap + bp for a, b ≥ 0, p > 1, we have

yp = (z + (γ /δ)1/p)p ≥ zp + γ /δ.

Hence

z′ + γ zp ≤ y′ + γ
(

yp −
γ

δ

)

≤ 0,

and then by integration

z(t)p−1 ≤
1

z
1−p
0 + γ (p− 1)t

≤
1

γ (p− 1)t
,

This implies the desired result for t ∈ [0, t0], and since, this
inequality holds for t ≥ t0, the lemma is proved.

3. EXISTENCE AND STRUCTURE OF
ATTRACTOR

The main result is the following in which the existence of a global
attractor is shown for equation (4) subject to constraint (5).

Theorem 3. The semigroup {S(t)}t≥0 associated with (4) - (5)
possesses a maximal attractor which is bounded in H2

1(S
2),

compact and connected in L2(S2). Its basin of attraction is the
whole space L2(S2), and attracts bounded sets of L2(S2).

Proof: The existence of a solution proposed equation is
equivalent to finding the minimum of:

infEǫ(u) = inf

∫

M

(

ǫ

2
|∇u|2 +

1

ǫ
W(u)

)

for all u ∈ H2
1(M), subject to the constraint:

G(u) =

∫

M
u(y)f (y) = 0,

where f (y) is the Jacobian determinant of the transformation of
S2 intoM. This determinant can be considered to be positive, and
this factor is the Gaussian curvature in y.

For fixed ǫ > 0, the existence of this minimum is
a consequence of this functional satisfies the Palais–Smale
condition (see Struwe [13]), is bounded below and the constraint
defines a closed lineal subspace.

On other hand it should be noted that:

d

dt
Eǫ(u) = −ǫ

∫

S2
u2t ≤ 0. (13)

This last statement ensures the existence of a global solution for
t > 0. This is sufficient to define the associated semiflow to
given equation.

Another way to verify the above statement, is to first prove
the existence and uniqueness of a solution of (4)–(5) subject to a
suitable initial condition; then the backward uniqueness in order
to show existence for all t ∈ R. Finally apply the theorem 4 for
the characterization of global attractor.

In the usual way, we shall see the existence of an absorbent set
in L2(S2) and subsequently, the compactness of the mentioned
semigroup, according to theorem 1.

The Euler–Lagrange equation associated to (2) with the
constraint (3) (for each ǫi), contain a Lagrange multiplier λi
as follows:

ut − ǫi1u+
4

ǫi
(u3 − u)+ λif = 0. (14)

In Del Río et al. [14], it is shown that these multipliers are
bounded. This fact will be used later.

In order to prove the existence of an absorbing set in L2(S2),
we multiply (2) by u and integrate over S2. Using Green’s formula
we obtain:

1

2

d

dt
||u||2

L2
+ǫi

∫

S2
|∇u|2+

∫

S2

(

4

ǫi
(u4 − u2)+ λifu

)

= 0, (15)
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where || · ||L2 denotes the norm L2(S2).
By a standard corollary (see for instance 1)H2

1(S
2) ⊂⊂ L2(S2),

therefore there exists a constant c0 such that ||u||L2 ≤ c0||u||H2
1
,

and there exists a c1 such that:

∫

S2
|u|2 ≤ c1

∫

S2
|∇u|2. (16)

An estimate of the third integral in (15) is required, for which the
following inequality is used:

−λifu ≤
1

2
λ2i f

2 +
1

2
u2,

and by Hölder’s inequality, for a C > 0:

∫

S2

(

4

ǫi
− λifu

)

≤

(

4

ǫi
+

1

2

)∫

S2
u2 +

1

2
λ2i

∫

S2
f 2

≤ C

√

∫

S2
u4 + C,

and for certain A, B > 0:

∫

S2

(

4

ǫi
(u4 − u2)+ λifu

)

≥
4

ǫi

∫

S2
u4 − C

√

∫

S2
u4 + C =

4

ǫi

(
√

∫

S2
u4 − A

)2

− B.

Thanks to (15) and the previous relationship, we conclude that
there exists a c′1 > 0 such that:

1

2

d

dt
||u||2

L2
+ ǫi

∫

S2
|∇u|2 +

∫

S2

(

4

ǫi
u4 − c′1

)

≤

1

2

d

dt
||u||2

L2
+ ǫi

∫

S2
|∇u|2 +

∫

S2

(

4

ǫi
(u4 − u2)+ λifu

)

= 0.

Thus:

1

2

d

dt
||u||2

L2
+ ǫi

∫

S2
|∇u|2 +

∫

S2

(

4

ǫi
u4 − c′1

)

≤ 0,

this meaning that:

1

2

d

dt
||u||2

L2
+ ǫi

∫

S2
|∇u|2 +

∫

S2

(

4

ǫi
u4
)

≤ 4πc′1. (17)

According to (16) concluded from (17), there exists a c′2 =

2(4πc′1) such that:

d

dt
||u||2

L2
+

2ǫi

c21
||u||2

L2
≤ c′2.

By using the classical Gronwall lemma, we obtain that:

||u(t)||2
L2

≤ ||u0||
2
L2
exp

(

−
2ǫi

c21
t

)

+
c′2c

2
1

2ǫi

(

1− exp

(

−
2ǫi

c21
t

))

.

Therefore:

lim sup
t→∞

||u(t)||L2 ≤ ρ0, ρ
2
0 =

c′2c
2
1

2ǫi
.

There exists an absorbing set B0 in L2(S2), namely, any ball of
L2(S2) centered at 0 of radius R > ρ0, as if B is a bounded set of
L2(S2), included in a ball B(0,R) of L2(S2), then S(t)B ∈ B(0, ρ′0)
for t ≥ t0(B, ρ

′
0), with

t0 =
c21
2ǫi

ln

(

R2

(ρ′0)
2 − ρ20

)

.

In order to prove the uniform compactness of operators, we
proceed using by an argument proposed by B. Nicolaenko
(see Temam [7]) and making use of the absorbent
set in L2(S2) whose existence was established in the
previous paragraph.

By Holder inequality:

∫

S2
u4 ≥

1

4π

(∫

S2
u2
)2

.

Analogously to (15), we conclude that:

y′ + γ y2 ≤ δ,

where y = ||u||2
L2
, γ = 1

π
, δ = 8πc′1. Lemma 2 shows that:

y(t) ≤
(γ

δ

)1/2
+

1

γ t
, ∀t > 0.

Let ρ2 be a real number greater than (γ /δ)1/2 and

T0 =
1

γ

(

ρ22 −
(γ

δ

)1/2
)−1

.

The above relations show that for any set B of L2(S2), bounded
or not, S(t)B is included in the ball B2 centered at 0 of radius ρ2,
if t ≥ T0, thus demostrating the existence of an absorbent set in
H2
1(S

2). The uniform compactness of operators S(t) follows from
the fact that a bounded set B is included in a ball B(0,R) for all
t ≥ t0, that which is bounded inH2

1(S
2) and relatively compact in

L2(S2) (corollary 1). The existence of the global attractor follows
from theorem 1.

Having shown the existence of a global attractor,
the question of characterizing its structure arises. This
question can be answered provided there is a suitable
Lyapunov functional.

Definition 14. A Liapunov functional for {S(t)}t≥0 on a set F ⊂

H is a continuous function F :F → R such that:

1. For each uo ∈ F , the function t → F(S(t)u0) is
non-increasing.

2. If F(S(τ )u1) = F(u1) for some τ > 0, then u1 is a fixed point
of {S(t)}t≥0, i.e., S(t)u1 = u1, ∀t > 0.
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FIGURE 2 | Spherical coordinates using longitude θ and latitude φ.

The following standard theorem establishes the structure of
the attractor.

Theorem 4. Let there be a given semigroup {S(t)}t≥0 which enjoys
the properties (6), (7). We assume that there exists a Lyapunov
functional as in the definition 14, and a global attractor A ⊂ F .
Let E denote the set of fixed points of the semigroup. Then

A = M+(E).

Furthermore, if E is discrete, A is the union of E and of the
heteroclinic curves joining points of E and

A =
⋃

z∈E

M+(z).

Remember that,M+(X) is the set (maybe empty) of points u∗,
which belongs to an orbit {u(t), t ∈ R} such that d(u(t),X) → 0
as t → ∞.

The details of this proof can be found in Temam [7] theorem
4.1 in chapter 7, Robinson [9] theorem 10.13, Ladyzhenskaya [17]
theorem 3.2, or Sell [8] theorem 72.1.

4. THE EQUATION IN S2

Once the existence of an attractor is proved, in this section
we provide a numerical method for its characterization. In this
implementation the Galerkin method is used.

S2 is parametrized with spherical coordinates by
(r cos θ cosφ, r sin θ cosφ, r sinφ), where 0 ≤ θ ≤ 2π y −π

2 ≤

φ ≤ π
2 (see Figure 2).

Then, the Laplacian in these coordinates is given by:

1u =
1

r2 cosφ

(

∂

∂r

(

(r2 cosφ)(1)
∂u

∂r

)

+
∂

∂θ

(

(r2 cosφ)

(

1

r2 cos2 φ

)

∂u

∂θ

)

+
∂

∂φ

(

(r2 cosφ)

(

1

r2

)

∂u

∂φ

))

=
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 cos2 φ

∂2u

∂θ2
+

1

r2
∂2u

∂φ2
−

tanφ

r2
∂u

∂φ
.

Using r = 1 in the above expression, the Laplace–Beltrami
operator in S2 is obtained:

1u =
1

cos2 φ

∂2u

∂θ2
+
∂2u

∂φ2
− tanφ

∂u

∂φ
.

Then (4) becomes:

∂u

∂t
− ǫ

(

1

cos2 φ

∂2u

∂θ2
+
∂2u

∂φ2
− tanφ

∂u

∂φ

)

−
4

ǫ
u(1− u2) = 0.

(18)
By implementing Galerkin’s method, we can approximate the
attractor. This is done by projecting Equation (18), with a suitable
initial condition on a finite dimensional subspace, thus reducing
it to a system of ordinary differential equations. The details are
provided in the next section.

5. GALERKIN METHOD

The idea is to obtain a finite dimensional reduction of (18). One
way to do this is using Galerkin method, which will be described
below (for more details see Kythe et al. [15] and Evans [10]).

We consider the problem:

∂u

∂t
− ǫ

(

1

cosφ2
∂2u

∂θ2
+
∂u

∂φ2
− tanφ

∂u

∂φ

)

−
4

ǫ
u(1− u2) = 0

on S2 × (0,T] (19)

u(θ ,φ) = g(θ ,φ) en S2 × {t = 0}. (20)

Assume that the funtions wk = wk(θ ,φ), (k = 1, . . .) are smooth,
{wk}

∞
k=1

is an orthogonal basis of H2
1(S

2) and an orthonormal

basis of L2(S2). For instance, we could take {wk}
∞
k=1

to be the

complete set of eigenfunctions of1 in S2.
Fix now a positive integer m. We will look for an

approximation um of the form

um(t) = u(x, t) =

m
∑

k=1

dkm(t)wk, (21)

where we will select the coefficients dkm(t), (0 ≤ t ≤ T, k =

1, . . . ,m) so that:

dkm(0) = (g,wk) (22)
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and

(u′m(t),wk)+ B[um(t),wk; t] = (f(t),wk). (23)

Here (·, ·) denotes the inner product in L2(S2), ′ =
d
dt
,B[um,wk; t] is the bilinear form:

−

∫

S2

(

ǫ

(

1

cosφ2
∂2um(t)

∂θ2
+
∂2um(t)

∂φ2
− tanφ

∂um(t)

∂φ

)

−
4

ǫ
um(t)

)

wk, (24)

and

f(t) = −
4

ǫ
(um(t))

3. (25)

Thus, we look for a function um of the form (21) that satisfies the
projection (23) of problem (19)–(20) onto the finite dimensional
subspace spanned by {wk}

m
k=1

.
By the standard theorem on existence and uniqueness

of systems of ordinary differential equations, we have the
following result:

Theorem 5. For each integer m = 1, 2, . . ., there exists a unique
funtion um of the form (21) satisfying (22), (23).

Functions wk, will be selected via the method of separation of
variables, applied to the equation 1u = 0 on S2, i.e., we assume
that u = 2(θ)8(φ), where we have:

1

cos2 φ

∂2u

∂θ2
− tanφ

∂u

∂φ
+
∂2u

∂φ2
= 0,

1

cos2 φ
2′′8− (tanφ)28′ +28′′ = 0,

1

cos2 φ
2′′8 = (tanφ)28′ −28′,

1

cos2 φ
2′′8 = 2[(tanφ)8′ −8′′],

2′′

2
= −

cos2 φ[8′′ − (tanφ)8′]

8
.

The corresponding solutions for 2 are of the form sine and
cosine, while those corresponding to 8 are solutions to the
Legendre equation, in which the substitution x = sinφ has been
made. Thus, we use the associated Legendre polynomial denoted
by P(k, l, x), which is defined by:

P(k, l, x) =
(−1)k

l! · 2l
· (1− x2)

m
2 ·

dk+l

dxk+l
(x2 − 1)l, (26)

where k ≥ 0 and l ≤ k. (For more details see Arfken [16]).
According to the above condition (5) we choose the functions

um as:

um =

m
∑

k=1

ak,lm (t) sin(kθ)P(k, l, sin(φ))+bk,lm (t) cos(kθ)P(k, l, sin(φ)),

(27)

withm = 1 and ǫ = 0.001, (23) becomes:

1110.33a1,01 (t)3 + a1,01 (t)
(

− 1973.92+ 1110.33a1,11 (t)2

+ 1110.33b1,01 (t)2

+ 370.11b1,11 (t)2
)

+ 740.22a1,11 (t)b1,01 (t)b1,11 (t)

+ 4.9348
d

dt
a1,01 (t) = 0,

1110.33a1,11 (t)3 + a1,11 (t)
(

− 1973.82+

1110.33a1,11 (t)2 + 370.11b1,01 (t)2 + 1110.33b1,11 (t)2
)

+

740.22a1,01 (t)b1,01 (t)b1,11 (t)+ 4.9348
d

dt
a1,11 (t) = 0,

1110.33b1,01 (t)3 + 1110.33a1,01 (t)2b1,01 (t)+ 370.11a1,11 (t)2b1,01 (t)+

740.22a1,01 (t)a1,11 (t)b1,11 (t)+b1,01 (t)
(

−1973.92+1110.33b1,11 (t)2
)

+

4.9348
d

dt
b1,01 (t) = 0,

1110.33b1,11 (t)3 + b1,11 (t)
(

− 1973.82+ 1110.33a1,01 (t)2+

1110.33b1,11 (t)2
)

+740.22a1,01 (t)a1,11 (t)b1,01 (t)+370.11a1,01 (t)2b1,11 (t)

+ 4.9348
d

dt
b1,11 (t) = 0. (28)

6. NUMERICAL RESULTS

If the initial condition (22) is

a1,01 (0) = 0, a1,11 (0) = 1, b1,01 (0) = 0, b1,11 (0) = 0, (29)

we obtain

a1,01 (t) = 0, b1,01 (t) = 0, b1,11 (t) = 0,

a1,11 (t) =
65794

√

2435101734+ 1893748702 exp
(

− 9869100
12337 t

)

,

and

u1 =
65794

√

2435101734+ 1893748702 exp
(

− 9869100
12337 t

)

sin(θ)

P(1, 1, sinφ).

Figure 3 show the behavior of u1 at different times (t = 0, t =
0.0001, t = 1).

If the initial condition is now,

a1,01 (0) = 0, a1,11 (0) = 0, b1,01 (0) = 0, b1,11 (0) = 2, (30)

then

a1,01 (t) = 0, a1,11 (t) = 0, b1,01 (t) = 0, b1,11 (t) =
4

√

9− 5 exp(−8000t)
,

and

u1 =
4

√

9− 5 exp(−8000t)
cos(θ)P(1, 1, sinφ).
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FIGURE 3 | Behavior of u1(t) for different values of t according to Equation (29). (A) Graph of u1(0). (B) Level curves of u1 (0). (C) Graph of u1 (0.001). (D) Level curves

of u1(0.001). (E) Graph of u1(1). (F) Level curves of u1 (1).
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FIGURE 4 | Behavior of u1 (t) for different values of t according to Equation (29). (A) Graph of u1(0). (B) Level curves of u1(0). (C) Graph of u1 (0.01). (D) Level curves of

u1(0.01). (E) Graph of u1 (0.02). (F) Level curves of u1(0.02).
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FIGURE 5 | Behavior of u2(t) for different values of t according to Equations (34)–(36). (A) Graph of u2(0). (B) Level curves of u2 (0). (C) Graph of u2(0.0055). (D) Level

curves of u1 (0.0055). (E) Graph of u2 (0.02). (F) Level curves of u2(0.02).
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Figure 4 show the behavior of u1 at different times (t = 0, t =
0.01, t = 0.02).

As mentioned in the previous section the legendre equation is
involved, we can also choose the Legendre polinomial as follows.
If the following functions are now chosen,

um =

m
∑

k=1

(

ak(t) sin(kθ)P(k, sin(φ))+ bk(t) cos(kθ)P(k sin(φ))
)

,

(31)
where P(k, sin(φ)) is the Legendre polynomial of k degree, with
m = 2 and ǫ = 0.01 the corresponding projection is,

1110.33a1(t)
3 +

(

−1973.92+ 1572.97a2(t)
2 + 1110.33b1(t)

2

+1592.97b2(t)
2
)

a1(t)+ 4.9348
d

dt
a1(t) = 0,

675.162a2(t)
3 +

(

−1357.61+ 1572.97a1(t)
2 + 1572.97b1(t)

2

+675.162b2(t)
2
)

a2(t)+ 3.392628
d

dt
a2(t) = 0,

1110.33b1(t)
3 +

(

−1973.92+ 1110.33a1(t)
2 + 1572.97a2(t)

2

+1572.97b2(t)
2
)

b1(t)+ 4.9348
d

dt
b1(t) = 0,

675.162b2(t)
3 +

(

−1357.61+ 1572.97a1(t)
2 + 675.162a2(t)

2

+1572.97b1(t)
2
)

b2(t)+ 3.392628
d

dt
b2(t) = 0. (32)

With the initial condition,

a1(0) = −0.877583, a2(0) = 0, b1(0) = 0, b2(0) = −0.479426,
(33)

we obtain the following expressions for u2 for the values
t = 0, t = 0.0055, and t = 0.02. Figure 5

shows the graph and level curves of u2 for the values
mentioned above.

u2(0) = −0.877583 sin(θ)P(1, sin(φ))

− 0.479426 cos(2θ)P(2, sin(φ)), (34)

u2(0.0055) = −1.2858 sin(θ)P(1, sin(φ))

− 0.1449 cos(2θ)P(2, sin(φ)), (35)

u2(0.02) = −1.3333 sin(θ)P(1, sin(φ)). (36)

7. CONCLUSIONS

All the numerical simulations show that the graph of the solution
on S2 approaches values close to 1 and −1 when t increases, as
can be seen in Figures 3A,C,E–5A,C,E found in grayscale color,
while in the Figures 3B,D, 4B,D, the transition layer (show in
red color) takes place along the level set θ = π which is a closed
geodesic (great circle). It can also be noted that in Figure 5B the
transition layer at the value t = 0 is not a straight line, but as t
increases, this curve becomes a straight line, θ = π , as mentioned
above. This suggests that, for ǫ sufficiently small, the attractor will
consist of functions concentrating in −1 or +1 with transitions
along great circles.
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