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Complexity and Chimera States in a
Ring-Coupled Fractional-Order
Memristor Neural Network
Shaobo He*

School of Physics and Electronics, Central South University, Changsha, China

At present, dynamics and coupled control of fractional-order non-linear systems are

arousing much interest from researchers. In this paper, the fractional-order derivative

is introduced into an improved memristor neural system. The dynamics of the

fractional-order memristor neural model are investigated by means of bifurcation

diagrams, Lyapunov exponents, and phase diagrams. To discuss the dynamical behavior

of a fractional-order memristor neuron in a network, we construct a ring network of

neurons and capture the spatiotemporal patterns of the neurons in the network in

the presence of different excitations. Finally, the chimera state is observed, and the

complexity of the network is analyzed. The analysis shows that the complexity algorithm

provides a new approach for the dynamical analysis of the network.

Keywords: neuron model, fractional calculus, bifurcation, chimera states, complexity

1. INTRODUCTION

Forming networks is the nature of the world. There are many different examples of networks
around us, such as social networks, electric power grids, the Internet, highways or subway systems,
and neural networks [1–3]. Among these, a network of non-linear systems is an independent
research branch and has become more and more important in the non-linear research field.
Especially, the spatiotemporal behaviors of chaotic systems have been found to be interesting, and
there are also many real applications based on these novel chaotic systems [4, 5]. Meanwhile, since
neural systems can also be chaotic, spatiotemporal behaviors in the neural network have aroused
much research interest [6]. The chimera state means that there is coexistence of synchronization
and asynchronization in the network. There are many biological phenomena that can be explained
by chimera states, such as unihemispheric sleep and brain disorders. For chimera states in a network
of non-linear systems, Sajad’s group has done a lot of remarkable work [7–10]. Meanwhile, the
chimera states in different integer-order networks have been investigated, such as bursting neurons
[11], ephaptically coupled bursting neurons [12], memristive neuron networks [13, 14], and three-
dimensional locally coupled systems [15]. Moreover, there have also been many other studies on
this topic [16–18].

Since the fractional-order calculus currently provides a more accurate mathematical tool for
physical modeling, it has been widely used in many different research fields, such as non-uniform
diffusion [19], boundary effects [20], and elastic deformation [21]. By introducing the fractional-
order calculus to the network, the fractional-order network is designed. There are many different
methods for connecting non-linear systems to build a fractional-order network. For instance, Chen
et al. [22] analyzed the cluster synchronization of complex dynamical networks with fractional-
order dynamical nodes by employing the stability theory of fractional-order differential systems.
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As a result, fractional-order complex networks with non-linear
systems have been investigated theoretically [23, 24]. However,
coupled control is themost direct way to build a network [25–27].
Because there are few references regarding numerical analysis
of a fractional-order network, especially when chimera states
exist, it is interesting to investigate chimera states in the coupled
fractional-order network.

Complexity measurement provides an effective way to analyze
the dynamics of chaotic systems by using the generated non-
linear time series. Many different complexity analysis methods
have been proposed, such as ApEn (approximate entropy) [28],
SampEn (sample entropy) and FuzzyEn (fuzzy entropy) [29],
SCM (statistical complexity measure) [30], the C0 algorithm
[31], and SE (spectral entropy) [32]. These methods estimate
the complexity of non-linear time series from different angles.
When a chaotic system has higher complexity, this means that
the system can be chaotic; otherwise, the system is periodic
or convergent. As a matter of fact, the results for complexity
measure match well with those of the corresponding Lyapunov
exponents analysis [33, 34]. For networks, there are also
generated time series, but there are few articles on the complexity
of networks. Thus, determining how to estimate the complexity
of a network is an interesting topic.

The rest of this paper is organized as follows. In section 2,
a fractional-order neural model and its dynamics are analyzed.
In section 3, the formation and dynamics of the coupled neural
network are investigated. Finally, section 4 summarizes the
whole analysis.

2. THE FRACTIONAL-ORDER NEURAL
MODEL AND ITS DYNAMICS

2.1. The Neural Model
Ma and Tang [35] proposed an improved neural model by
introducing additive variables describing magnet flux into the
original HR neuron model based on the mean field theory. The
neural model with memristor is defined by















ẋ = y− ax3 + bx2 − z + Iext − k1xρ (w)

ẏ = c− dx2 − y
ż = r [s (x+ 1.6) − z]
ẇ = x− k2w

, (1)

where x, y, z, and w are the system variables, and ρ (w) =

α + βw2 is the flux-controlled memristor. α and β are the fixed
parameters, which are given by α = 0.1, β = 0.06. Meanwhile,
the other parameters in the system are a = 1, b = 2.82, c = 1,
d = 5, r = 0.02, s = 4, k1 = −1, k2 = 0.5, Iext = 3.5.

By introducing the fractional calculus into the model, the
fractional-order neural model is denoted as















D
q
t0
x = y− ax3 + bx2 − z + Iext − k1xρ (w)

D
q
t0
y = c− dx2 − y

D
q
t0
z = r [s (x+ 1.6) − z]

D
q
t0
w = x− k2w

, (2)

where q is the fractional derivative order. In this paper, D
q
t0

is the Caputo fractional calculus, and its definition is given in
Definition 1.

Definition 1 Gorenflo and Mainardi [36]: The Caputo
fractional-order derivative definition is given by

D
q
t0
x(t) =

{

1
Ŵ(1−q)

∫ t
t0

ẋ(τ )
(t−τ )q

dτ , 0 < q < 1

ẋ(t), q = 1
, (3)

where q ∈ R+,m ∈ N, and Ŵ(·) is the Gamma function.

2.2. The Numerical Solution Algorithm
The Adam-Bashforth method (ABM) was proposed by Sun et al.
[37], and it is widely used to solve fractional-order non-linear
systems. Suppose that the fractional-order non-linear system is
defined as

{

D
q
t0
x(t) = f (x, x(t)), 0 ≤ t ≤ T

x(k)(0) = x
(k)
0 , k = 0, 1, 2, · · · ,

⌈

q
⌉

− 1
, (4)

where x(k)(0) = x
(k)
0 is the initial condition of the system, 0 < q ≤

1, ⌈·⌉ is the ceil function and D
q
t0
x(t) is the Caputo derivative.

According to Sun et al. [37], System (4) is equivalent to the
Volterra integral equation

x(t) =

⌈q⌉−1
∑

k=0

x
(k)
0

tk

k!
+

1

Ŵ(q)

∫ t

0
(t − τ )q−1f (τ , x(τ ))dτ , (5)

where

J
q
t x(t) =

1

Ŵ(q)

∫ t

0
(t − τ )q−1x(τ )d(τ ). (6)

Let h = T/N, tj = jh (j = 0, 1, · · · ,N ∈ Z+), the discrete solution
of system (4) is

xh(tn+1) =
⌈q⌉−1
∑

k=0

x
(k)
0

tkn+1

k!
+ hq

Ŵ(q+2)
f (tn+1, x

p

h
(tn+1))

+ hq

Ŵ(q+2)

n
∑

j=0
φj,n+1f (tj, xh(tj))

, (7)

in which

xp
h
(tn+1) =

⌈q⌉−1
∑

k=0

x
(k)
0

tkn+1

k!
+

1

Ŵ(q)

n
∑

j=0

ϕj,n+1f (tj, xh(tj)), (8)

ϕj,n+1 =
hq

q
[(n− j+ 1)q − (n− j)q], 0 ≤ j ≤ n, (9)

φj,n+1 =







nq+1 − (n− q)(n+ 1)q, j = 0

(n− j+ 2)q+1 + (n− j)q+1 − 2(n− j+ 1)q+1, 1 ≤ j ≤ n

1, j = n+ 1

.

(10)

In this paper, the ABM algorithm is implemented in Matlab to
solve the systems, and the function name is “FDE12.m”; this was
developed by Roberto Garrappa.
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FIGURE 1 | Phase diagrams and time series of the neural system with different values for derivative order q. (A) Phase diagram with q = 0.7; (B) time series with

q = 0.7; (C) phase diagram with q = 0.8; (D) time series with q = 0.8; (E) phase diagram with q = 0.9; (F) time series with q = 0.9; (G) phase diagram with q = 1.0;

(H) time series with q = 1.0.

2.3. Complex Dynamics
Fix a = 1, b = 2.82, c = 1, d = 5, r = 0.02, s = 4,
k1 = −1, k2 = 0.5, and Iext = 3.5, and let q = 0.7,
q = 0.8, q = 0.9, and q = 1.0. The phase diagrams and
time series of the system are illustrated in Figure 1. Here, when
q = 1, the system is solved by the 4th-order Runge-Kutta
method. It can be seen that the system is chaotic with the
given parameters and derivative orders. Meanwhile, when the

derivative order q takes smaller values, there is less fluctuation
with time.

When q = 1 and q = 0.99, the parameter Iext varies
from 3.5 to 4.5 with a step size of 0.002. When q = 0.9, Iext
varies from 0.5 to 5.5 with a step size of 0.01. The bifurcation
diagrams and corresponding Lyapunov exponents (LEs) are
shown in Figure 2. When q < 1, LEs are obtained by means
of Danca and Kuznetsov [38], where the function [t, LE] =
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FIGURE 2 | Results of analysis of the dynamics of the system with different values of derivative order q and variation in Iext. (A) Bifurcation diagram with q = 1.0; (B)

LEs with q = 1.0; (C) bifurcation diagram with q = 0.99; (D) LEs with q = 0.99; (E) bifurcation diagram with q = 0.9; (F) LEs with q = 0.9.

FO_Lyapunov(ne, extf cn, tstart, hnorm, tend, xstart, h, q, out) is
used. However, when q = 1, the LEs of the system are estimated
by Wolf et al. [39]’s method, and the function [Texp, Lexp] =

lyapunov(n, rhsextf cn, fcnintegrator, tstart, stept, tend, ystart, ioutp)
is employed. The function lyapunov.m can be download from
theMathworks website.

The plots in Figure 2 show that the system has rich dynamics
with the variation of Iext . Compared with the integer-order case,

the fractional-order system has less periodic windows due to
the memory effect of the fractional-order calculus. In fact, the

Lyapunov exponents of the fractional-order chaotic system are
calculated based on the short memory effect of the fractional-
order calculus. Thus, the accuracy of the Lyapunov exponents is

not as good as in the integer-order case. Overall, the bifurcation
diagrams match well with corresponding the LEs, and the
derivative order q has an influence on the system dynamics.

2.4. The Multiscale SE Algorithm
In this section, the spectral entropy (SE) algorithm is employed to
analyze the complexity of the proposed SEIR system. For a one-
dimensional discrete time series {x(n) : n = 0, 1, · · · ,N − 1}, the
normalization entropy is estimated by Staniczenko et al. [32] and
He et al. [40]

SE
(

xL
)

=
1

ln (N/2)

N/2−1
∑

k=0

Pk ln (Pk), (11)
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where ln(L/2) is the entropy of a completely random signal. The
consecutive coarse-grained time series are constructed by Costa
et al. [41]

yτ (j) =
1

τ

jτ−1
∑

(j−1)τ

x(j), (12)

where 1 ≤ j ≤ [N/τ ], τ is the scale factor, which represents the
length of the non-overlapping window, and [·] denotes the floor
function. As a result, the multiscale complexity is defined as [40]

MSE =
1

τmax

τmax
∑

τ=1

SE(yτ ). (13)

In this paper, we set τmax = 25.
The variation of the complexity of the neural system with Iext

and different derivative order q values is investigated, and the
results are shown in Figure 3. Figure 3 shows that the complexity
of the system varies with parameter Iext . When q =1 and 0.91,
the system has higher complexity, while when q = 0.9, the
complexity of the system remains at a relatively low level, which
means that the system has lower complexity when its derivative
order is smaller than one. As shown in Figure 3, the results
of the complexity analysis agree well with the corresponding
Lyapunov exponents.

3. FORMATION AND DYNAMICS OF THE
NEURAL NETWORK

3.1. Formation of the Network
The ring network of neural systems is investigated numerically.
He et al. [26] investigated the synchronization of the ring
network of a fractional-order simplified Lorenz chaotic system.
The convergence of the network is investigated theoretically.
In this paper, state variables of the chaotic systems in each
node are coupled, and the numerical simulation results show
the synchronization of the systems. In this paper, we consider
different coupling methods: five different coupling methods
are introduced.

The first case is where the coupling item is the variable, and it
is defined as



































D
q
t0
xi = yi − ax3i + bx2i − z + Iext − k1xiρ (wi)

+D
2

1
∑

k=−1

(xk − xi)

D
q
t0
yi = c− dx2i − yi

D
q
t0
zi = r [s (xi + 1.6) − zi]

D
q
t0
wi = xi − k2wi

, (14)

where D is the coupling strength.

The second method is to couple the system using the state
variable y, and it is defined by



























D
q
t0
xi = yi − ax3i + bx2i − z + Iext − k1xiρ (wi)

D
q
t0
yi = c− dx2i − yi +

D
2

1
∑

k=−1

(

yk − yi
)

D
q
t0
zi = r [s (xi + 1.6) − zi]

D
q
t0
wi = xi − k2wi

, (15)

where D
2

1
∑

k=−1

(

yk − yi
)

is the coupling item.

The third method is to couple the system using the state
variable z, and it is defined by



























D
q
t0
xi = yi − ax3i + bx2i − z + Iext − k1xiρ (wi)

D
q
t0
yi = c− dx2i − yi

D
q
t0
zi = r [s (xi + 1.6) − zi]+

D
2

1
∑

k=−1

(zk − zi)

D
q
t0
wi = xi − k2wi

. (16)

Here,D is the coupling strength. The other two cases (Case 4 and
Case 5) are given by



























D
q
t0
xi = yi − ax3i + bx2i − z + Iext − k1xiρ (wi)

D
q
t0
yi = c− dx2i − yi

D
q
t0
zi = r [s (xi + 1.6) − zi]

D
q
t0
wi = xi − k2wi +

D
2

1
∑

k=−1

(wk − wi)

, (17)

and






























































D
q
t0
xi = yi − ax3i + bx2i − z + Iext − k1xiρ (wi)

+D
2

1
∑

k=−1

(xk − xi)

D
q
t0
yi = c− dx2i − yi +

D
2

1
∑

k=−1

(

yk − yi
)

D
q
t0
zi = r [s (xi + 1.6) − zi]+

D
2

1
∑

k=−1

(zk − zi)

D
q
t0
wi = xi − k2wi +

D
2

1
∑

k=−1

(wk − wi)

. (18)

Obviously, in the fifth method, the systems are coupled with all
the state variables.

The main difference between the five coupling methods is
that the coupling variables are different. In the existing literature,
scientists usually perform the coupling by all variables or just the
first variable of the non-linear system in each node. In this paper,
different coupling methods are considered, and how the coupling
method affects the dynamics of the network is investigated.

3.2. Chimera State in the Network
The system parameters are a = 1, b = 2.82, c = 1, d = 5,
r = 0.02, s = 4, k1 = −1, k2 = 0.5, Iext = 3.5. The number of
nodes is 100, and the initial conditions of the neural systems are
set at a random number between 0 and 1.

Firstly, it should be noted that if the derivative order q = 1,
the system is solved using the 4th-order Runge-Kutta method,
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FIGURE 3 | Analytical results for variation in the complexity of the system with Iext for different values of derivative order q.

while if q < 1, the network is solved by FDE12.m. The
results of the numerical analysis of the five cases with different
derivative order q values are illustrated in Figure 4, where the
state variable xi is used to draw the figures. Thus, these figures
show the time evolution of the network. When the color is
the same in the horizontal direction, it means that the output
of each node of the network is the same, and synchronization
exists in the network. Otherwise, asynchronization is observed
in the network. Moreover, the chimera state means that both
synchronization and asynchronization exist between different
nodes over time. It can be seen clearly from Figure 4 that
chimera states are observed in the network under different
conditions. Generally speaking, when all of the state variables
are coupled, the network synchronizes more easily. For instance,
in Case 5, when q = 0.9, 0.8, and 0.7, the whole network is
synchronized, but the chimera state is observed when q =

1. Meanwhile, compared with its integer-order counterpart,
the fractional-order network is easier to synchronize. As
shown in Figure 1, the dynamics of the neural system changes
with the derivative order q. When the derivative order q
decreases, the behaviors of the neural system become “simple."
This is the main reason that the fractional-order network has
less complexity.

Whether the coupled network is chaotic or not depends on the
state of the original neural system. If the original neural system
is chaotic, the network is chaotic. Otherwise, the network is not
chaotic. Take Case 5 as an example to show the dynamics of the
network; the results are shown in Figure 5, where q = 1 and
q = 0.9 for Figures 5A,B, respectively. The plots show that the xi
time series generated by the network are chaotic.When q = 1, the
time series from the network do not match each other well, which
means that the network is not synchronized. However, Figure 1B
shows that the trajectories of each net become the same over time,

and thus synchronization is found in the network. This can also
be verified in Figures 2, 3.

3.3. Complexity of the Network
The complexity analysis of networks is a new topic. Since the
non-linear systems in the network can also generate time series,
measurement of the complexity of the network is possible and
necessary. For a given network, if the complexity of each node is
different, this means that the states of nodes in the network are
different. This provides a novel tool for the analysis of a network
from a complexity point of view.

Here, the time series xi (i = 1, 2, · · · ,Num) from the network
are employed to estimate the complexity of the network. Num is
the number of nodes, and Num = 100. When the network has
high complexity, the network is chaotic, or at least that the nodes
in the network are not periodic or convergent. Meanwhile, if the
complexity of each node is different, the state of each node is
different. Thus, the chimera state or asynchronization exists in
the network.

The steps for complexity measurement of the network are
summarized as follows.

Step 1: Set the parameters and the coupling method of
the network.

Step 2: Set j = 1, q = 0.7 and suppose that the complexity
measure results are saved in matrix Comm.

Step 3: Estimate the complexity of time series xi, and the
complexity measure result is saved in Comm(j, i), where
i = 1, 2, · · · ,Num.

Step 4: Let j = j + 1, q = q + 1q, and repeat step 3 and step 4
until q = 1.

Step 5: Draw the contour plot of Comm.
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FIGURE 4 | Results of numerical analysis of the neural network with different derivative order q values and different cases.

FIGURE 5 | Time series of the network. (A) q = 14; (B) q = 0.9.

In this paper, 1q = 0.003.
The complexity of the five cases is analyzed, and the results

are shown in Figure 6. When q = 1, the network has higher
complexity than in the other cases. According to Figure 6, the

network has a chimera state or synchronization. Meanwhile, the
complexity of the network in Case 1 is analyzed by varying the
derivative order q from 0.7 to 1 with a step size of 0.003, and the
results are shown in Figure 7. Figure 7 shows that the complexity
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FIGURE 6 | Results of complexity analysis of the network under different cases. (A) Case 1; (B) Case 2; (C) Case 3; (D) Case 4; (E) Case 5.

FIGURE 7 | Results of complexity analysis of the network in Case 1 with

different derivative order q values.

of the network decreases with decrease in the derivative order
q. In conclusion, when a chimera state exists, the system may
have lower complexity measure values, which indicates that the
network sacrifices its complexity for this state. Moreover, for
this network with memristor, its complexity decreases with the
fractional-order derivative order q.

4. CONCLUSION

In this paper, the dynamics of an improved memristor neuron
system are investigated, and a network of ring-coupled

neurons is built with different coupling methods. The
dynamics of the neural system are analyzed by means
of LEs and bifurcation diagrams, and the network is
investigated numerically. The conclusions of this paper are
as follows.

1) The improved neural system has rich dynamics with the
system parameter Iext . When the system takes a smaller
derivative order, less fluctuation occurs in the generated
time series.

2) Five different coupling methods are introduced to connect
the network, and numerical analysis results show that the
chimera state exists in the network.When the derivative order
q takes a smaller value, it is easier to observe a chimera state
in the network.

3) Compared with the systems with q = 1, a network with q < 1
has much lower complexity. The fact is that, when there is
a chimera state and synchronization, the complexity of the
system is low.MSE is effective for estimating the complexity of
the network, and it provides a new tool for dynamical analysis
of the complex network.
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