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Computational modeling is a common tool to quantitatively describe biological

processes. However, most model parameters are usually unknown because they cannot

be directly measured. Therefore, a key issue in Systems Biology is model calibration,

i.e., estimate parameters from experimental data. Existing methodologies for parameter

estimation are divided in two classes: frequentist and Bayesian methods. The first

ones optimize a cost function while the second ones estimate the parameter posterior

distribution through different sampling techniques. Here, we present an innovative

Bayesian method, called Conditional Robust Calibration (CRC), for nonlinear model

calibration and robustness analysis using omics data. CRC is an iterative algorithm based

on the sampling of a proposal distribution and on the definition of multiple objective

functions, one for each observable. CRC estimates the probability density function of

parameters conditioned to the experimental measures and it performs a robustness

analysis, quantifying how much each parameter influences the observables behavior. We

apply CRC to three Ordinary Differential Equations (ODE) models to test its performances

compared to the other state of the art approaches, namely Profile Likelihood (PL),

Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC), and Delayed

Rejection Adaptive Metropolis (DRAM). Compared with these methods, CRC finds a

robust solution with a reduced computational cost. CRC is developed as a set of Matlab

functions (version R2018), whose fundamental source code is freely available at https://

github.com/fortunatobianconi/CRC.

Keywords: parameter estimation, ODE models, Bayesian algorithms, robustness analysis, model calibration,

computational systems biology

1. INTRODUCTION

In recent years omics technologies have tremendously advanced allowing the identification and
quantification of molecules at the DNA, RNA and protein level [1, 2]. These high-throughput
experiments produce huge amounts of data which need to be managed and analyzed in order
to extract useful information [3]. In this context, mathematical models play an important role
since they process these data and simulate complex biological phenomena. The main purpose of
mathematical modeling is to study cellular and extracellular biological processes from a quantitative
point of view and highlight the dynamics of cellular components interactions [4]. Moreover, models
represent an excellent tool to predict the value of biological parameters that may not be directly
accessible through biological experiments because they would be time consuming, expensive or
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not feasible [5]. One of the most common modeling techniques
consists in representing a biological event, such as a signaling
pathway, through a system of Ordinary Differential Equations
(ODEs), which describes the dynamic behavior of state variables,
i.e., the variation of species concentration in the system as a
function of time [6]. Currently, the most used kinetic laws
in ODE models can be divided into three types: the law of
mass action, the Michaelis-Menten kinetic and the Hill function
[7, 8]. However, these equations contain unknown parameters
which have to be estimated in order to properly simulate
the model and represent the problem under study. Typically,
the calibration process of a model consists in the inference
of parameters in order to make output variables as close as
possible to the experimental dataset [9]. Hence, a calibrated
model can be used to predict the time evolution of substances
for which enough information or measures are not available.
The most common methodologies for parameter estimation can
be divided in two classes: the frequentist and the Bayesian
approach [5, 10]. Frequentist methods aim at maximizing the
likelihood function f (y|p), which is the probability density
of observing the dataset y given parameter values p [11].
Under the hypothesis of independent additive Gaussian noise
with constant and known variance for each measurement, the
Maximum Likelihood Estimation (MLE) problem is equivalent
to the minimization of an objective function, which compares
simulated and experimental data [12, 13]. Common objective
functions are the sum of squared residuals or the negative log-
likelihood [14]. When the variances of measurement noise are
not known, they are included in the likelihood as additional terms
to estimate [13]. Different optimization algorithms are then
employed to estimate the best parameter values. They implement
global and/or local techniques and return in output the best fit
between simulated and real data.

Since these optimization methods return only one solution for
the parameter vector, i.e., the best fit, then parameter estimation
is usually combined with identifiability analysis, in order to
assess how much uncertainty there is in the parameter estimate
[15]. Identifiability analysis is typically performed through the
computation of confidence intervals for all estimated parameters.
A confidence interval is the range where the true parameter
value is located with a certain frequency. In this context, Profile
Likelihood (PL) is a widely used data-based algorithm for
structural and practical identifiability analysis [16].

On the other hand, the Bayesian approach considers
parameters as random variables, whose joint posterior
distribution fP|y(p) is estimated through the Bayes theorem:

fP|y(p) =
f (y|p)fP(p)

f (y)
, where f (y) is the marginal density for y

and fP(p) is the prior probability density of parameters [17].
Through fP(p) it is possible to include a priori beliefs about
parameter values [18]. The joint posterior density automatically
provides an indication of the uncertainty of the parameter
inference and gives major insights about the robustness of
the solution [19]. Since computing the posterior distribution
analytically is usually not feasible, sampling based techniques are
used to estimate it [12, 17]. Two classes of sampling methods
widely used are the Markov chain Monte Carlo (MCMC) and

the Approximate Bayesian Computation Sequential Monte
Carlo (ABC-SMC) [12]. MCMC algorithms approximate the
posterior distribution with a Markov chain, whose states are
samples from the parameter space. Their major advantage is the
ability to infer the posterior distribution which is known only
up to a normalizing constant [20]. The ABC-SMC algorithms
evaluate an approximation of the posterior distribution through
a series of intermediate distributions, obtained by iteratively
perturbing the parameter space. Each iteration selects only
those parameters that give rise to a distance function under a
predefined threshold [21].

In this paper, our main purpose is to introduce a
new version of the standard ABC-SMC approach, called
Conditional Robust Calibration (CRC), for parameter estimation
of mathematical models.

As in all ABC-SMC methods, CRC is an iterative procedure
based on the parameter space sampling and on the estimation of
the probability density function (pdf) for each model parameter.

However, it presents different aspects that differentiate it from the
other existentmethodologies. The distinctive features of CRC are:

(i) a major control of the computational costs of the procedure,

(ii) the definition of multiple objective functions, one for each
output variable, (iii) the conditional robustness analysis (CRA)
[22], in order to determine the influence of eachmodel parameter
on the observables.

We validate this new methodology on different ODE models
of increasing complexity. Here we present the results of CRC
applied to threemodels, two with in silico noisy data and one with

experimental proteomic data. We also calibrate all the models

using the PL approach, through the software Data2Dynamics
(D2D) [23] and the standard ABC-SMC, through the ABC-

SysBio software [19].
Moreover, in order to provide a reliable and complete

comparison with the state of the art of this field, we also
apply the Delayed Rejection Adaptive Metropolis (DRAM)

algorithm through the MCMC toolbox [24, 25] to all the

models presented in the Results section. DRAM combines
two well-known strategies that are common in the MCMC
schemes: adaptive Metropolis samplers and delayed rejection
[24]. However, DRAM is not the only algorithm that improves
the standard MCMC sampler. As shown in [26], many other
similar and efficient methodologies are very popular in the
literature. Since the underlying concept of these methodologies
is the sampling from a proposal distribution, the common
objective of this class of methods is to speed-up and improve
the performance of the MCMC sampler. Some examples are the
Multiple TryMetropolis (MTM) algorithm [27] and the Adaptive
Gaussian Mixture Metropolis-Hastings [28, 29].

Our results show that CRC is successful in all examples
and that its innovation features are critical when calibrating
models with an high number of parameters and output
variables. Especially when compared to ABC-SMC, CRC does not
remain stuck in intermediate iterations because of its reduced
computational cost and it is able to estimate parameter values
of a model with an higher accuracy due to the definition of
objective functions specific for each output variable. Finally, it

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 July 2020 | Volume 6 | Article 25

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Bianconi et al. A Bayesian Methodology for Model Calibration

also introduces the concept of conditional robustness that is
different from standard identifiability.

2. MATERIALS AND METHODS

2.1. ODE Model
Consider a deterministic ordinary nonlinear dynamical system:

ẋ(t) = f (x(t), u(t), θ), x(0) = x0, x ∈ R
n, θ ∈ 2

y(t) = h(x(t), u(t), γ ), y ∈ R
m, γ ∈ R

s, u ∈ R
g

where x is the state space vector, u denotes the external input
vector, and y denotes the output responses of the system, i.e.,
the observables, which are usually derived from experimentally
observed data. The vector θ denotes the dynamical system
parameters, taking values in the parameter space 2, a subset
of the positive orthant R

q
>0. The vector function f is indeed

defined over the following sets: f (·) : Rn × R
g × R

q −→ R
n.

The observation function h(·) : Rn × R
g × R

s −→ R
m maps the

state variables to the vector of observable quantities y. Usually,
not all states of the system can be directly measured, so that
it is common to have m < n. Vector γ contains scaling and
offset parameters when measurements of the observables are
performed. Setting p = {θ , γ , x(0)}, p ∈ R

q+s+n, the model is
completely determined.We assume that the parameter vector p is
constant over time. We assume that data are collected at discrete
time points tj ∈ [t0, tk] and thus the generic data measure can be
written as:

y∗ij = yij + τij, i = 1, . . . ,m (1)

where yij is the measurement and τij is the unknown
measurement error.

2.2. General Theory
The parameter vector of a mathematical model can be considered
as a random variable P : P −→ R

(q+s+n), where P is the set
of all possible vectors in the parameter space and R

(q+s+n) is
the measurable space. Thus, a given vector p in the parameter
space is one of the possible realizations of P. Let fP(p) denote the
prior distribution. Our goal is to approximate the target posterior
distribution, fP|y(p) ∝ f (y|p)fP(p), where f (y|p) is the likelihood
density that describes the model. This is the pdf of the output
variables of the model when parameters are distributed according
to the prior fP(p). To this purpose, we develop CRC, a variant
of the ABC-SMC iterative algorithm. As it is well-established
in this class of techniques, at the beginning of each iteration
z, CRC samples parameters from a proposal distribution qz(p).
However, differently to standard ABC approaches, we generate
a fixed number NS of samples from qz(p) along the different
iterations. Then the fitting between observed and simulated data
is measured through the computation of a distance function.
CRC defines, at each iteration, multiple distance functions di,p,
each one associated with a single component of the output
function, without the employment of any summary statistic. The
distance functions defined above are the objective functions that
CRC reduces iteration by iteration until a convergence criterion
is met. Since parameter vector P is a random variable, di,p can be

considered a realization of the random variable Di that describes
the distribution of the distance function, corresponding to the
i-th output. The random variable Di models the distribution of
the error between simulated and real data when the parameter
are sampled. Accordingly, at each iteration we define a set
of thresholds ǫzi that specify the maximum accepted level of
agreement between each observable and the corresponding
simulated data. At each iteration we obtain different parameter
sets PS,ǫzi . Each set contains only those parameters that yield the
values of a specific distance function under the corresponding
threshold. Then, all these sets are intersected in order to obtain
a single parameter set, PS,ǫz , that ensures the compliance with
all the thresholds. PS,ǫz contains samples of the approximate
posterior distribution fP|PS,ǫz (p). As for other ABC methods, if
at the end of the z-th iteration a predefined stopping criterion
is not satisfied, another iteration of CRC is performed, sampling
from a new proposal distribution. Since the region of interest of
the approximate posterior distribution is the one with highest
probability, the proposal for the next iteration, qz+1(p), is
centered on the mode of fP|PS,ǫz (p). In order to increase the

frequency ofNS samples in this region, the boundaries of qz+1(p)
are tighter than those of qz(p). The algorithm terminates when
the thresholds are sufficiently small. The output of CRC is
fP|P

S,ǫζ
(p) where ζ is the number of the last iteration and its

mode p
ζ
m is the vector that reproduces the observed data with

the highest probability.

2.3. CRC Algorithm
Figure 1 sums up the main steps of the CRC algorithm.
1. Sampling the parameter space and the posterior

distribution. Generate a predefined number of samples NS

from the proposal distribution qz(p). If z = 1 the proposal
distribution is the prior fP(p). Let PS be the set of parameter
samples generated from qz(p). For each sample p ∈ PS, simulate
the model in order to compute a dataset y = [yi(tj)], i = 1, . . . ,m
and j = 0, . . . ,k. This dataset contains the samples of the
likelihood function.
2. Computation of the distance functions and pdf estimation.

For each p ∈ PS, as many distance functions as observables are
computed, i.e., di,p(yi, y

∗
i ), ∀i = 1, . . . ,m, where y∗i is the i-th

variable of the experimental dataset and yi is the sequence of
simulated values over time for that variable. Then the associated
densities are estimated using a kernel density approach. Let
denote with fDi (di,p) the pdf of Di, where Di is a transformation
from the random variable P and whose realizations are given
by di,p.
3. Parameter sets identification. For each distance function we
define a threshold ǫzi ≥ 0 which is the quartile of level α of
fDi (di,p) and we obtain the following subset:

T(ǫzi , di,p) = {di,p ≤ ǫzi :

∫ ǫzi

0
fDi (di,p)ddi = α}. (2)

Therefore T(ǫzi , di,p) induces the subset PS,ǫzi ∈ PS defined as:

PS,ǫzi = {p ∈ PS : di,p ∈ T(ǫzi , di,p)}. (3)
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FIGURE 1 | CRC algorithm. (A) The flowchart of CRC is divided in two main phases: model calibration and robustness analysis. (B) Detail of steps 3–5 of CRC. N1,

N2, and N3 represent three model observables that interact among each other. For each observable, a distance function di,p is computed and the corresponding pdf

fDi (di,p) is estimated. We are interested only in the low tail of each pdf, since it is the region where the model observables are closer to the experimental data. Then, all

the low tails are intersected among each other to identify PS,ǫz .

4. Intersection of Parameter Sets. Let denote ǫz =

{ǫz1 , ǫ
z
2 , . . . ,ǫ

z
i , . . . ,ǫ

z
m} the set of thresholds corresponding

to each observable at iteration z. We select the parameter
samples that satisfy the conditions specified in the previous step
simultaneously for all observables. This implies the definition of

the following subset of PS:

PS,ǫz = {

m
⋂

i=1

PS,ǫzi }. (4)
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Thus, in the parameter space, the accepted samples belong to the
approximate posterior distribution fP|PS,ǫz (p). Figure 1B clarifies
themeaning of Equation (4): conceptually, in this step we identify
and intersect the low tails of m distance function distributions,
fDi (di,p), in order to obtain, in the parameter space, the joint
conditional density fP|PS,ǫz (p). If the values of thresholds in ǫz

satisfy the stopping criterion, the algorithm terminates and the
output is fP|PS,ǫz (p). Otherwise go to step 6.
5. Update the proposal distribution. From fP|PS,ǫz (p) we select
the mode vector pzm. The proposal distribution of the subsequent
iteration, qz+1(p), is defined as:

qz+1(p) : = qz(p; pzm,U
z+1, Lz+1), (5)

where qz(p; pzm,U
z+1, Lz+1) is the proposal distribution at the

current iteration z.
Note that while the shape of the proposal distribution does

not change over the different iterations, the mean value and the
upper and lower boundaries of the proposal do. The mean value
is updated according to the mode pzm and the upper and lower
boundaries, respectively Uz+1 and Lz+1, are shrunk through the
following formula:

Uz+1 =
Uz + kU,1

kU,2
, Lz+1 =

Lz + kL,1

kL,2
(6)

where kU,1, kU,2, kL,1, and kL,2 are constants set by the
user. They regulate the percentage variation of the lower and
upper boundaries from the mode pzm. Once the new proposal
distribution is defined, restart from step 1.

In Table 1, the pseudocode associated to each step of the
algorithm is presented. In the next section there is a detailed
explanation of how the different tuning parameters have to be
properly set.

2.3.1. Tuning Parameters
In this section, we discuss the setting of the tuning parameters
of the proposed algorithm. First of all, it is necessary to choose a
sampling technique for the parameter space. The objective is to
generate a fixed number NS of samples that optimally cover the
entire parameter space defined by the proposal distribution. To
this purpose, we use Latin Hypercube Sampling (LHS) because

it divides the multidimensional parameter space in N
|p|
S regions

and guarantees that each region is represented by a single sample
[30, 31]. Since several studies indicate that log-transforming
the parameters usually yields a better performance, we use as
sampling schema the Logarithmic Latin Hypercube Sampling
(LoLHS) [32]. A comparison of the results of CRC using LHS
and LoLHS can be found in [33]. As for the number of samples
NS, it is fixed in advance taking into account the dimension of the
parameter space and the number of observables of the model.

Then, at each iteration the choice of the threshold values
strictly depends on two constraints. First of all, in order to
approximate the posterior distribution, tolerances have to be
set so that ǫzi ≤ ǫz−1

i . According to [22, 34], to generate a
reliable non-parametric estimation of the conditional density, at
least 1,000 samples of PS,ǫz are necessary. Thus, tolerances ǫzi

TABLE 1 | CRC algorithm: pseudocode of a generic iteration z of the algorithm.

Inputs: ODE model, Experimental data

1: z:= Current iteration number

2: if z=1 then

3: qz (p) : = fP (p)

4: else

5: update the proposal distribution → qz (p) : = qz−1(p;pz−1
m ,Uz, Lz )

6: end if

7: generate PS → NS samples from qz (p) in parameter space P

8: for each p in PS do

9: integrate the model → y = [yi (tj )], i = 1, . . . ,m and j = 0, . . . ,k

10: distance functions computation → di,p(yi , y
∗
i ), ∀i = 1, . . . ,m

11: end for

12: for each yi , i = 1 to m do

13: density estimation of Di → fDi (di,p)

14: threshold definition → ǫzi ≥ 0

15: identification of T (ǫzi ,di,p) → {di,p ≤ ǫzi :

∫ ǫz
i

0 fDi (di,p)ddi = α}

16: identification of PS,ǫz
i
→ {p ∈ PS :di,p ∈ T (ǫzi ,di,p)}

17: end for

18: generate PS,ǫz → {
⋂m

i=1 PS,ǫzi }

19: joint conditional density estimation → fP|PS,ǫz (p)

20: select the mode vector of fP|PS,ǫz (p) → pzm

21: if stopping criterion is satisfied then

22: terminate: fP|PS,ǫz (p) and its mode pzm are the results found by the algorithm

23: else

24: update Uz, Lz and the proposal distribution accordingly

25: increase z and restart from the beginning

26: end if

are chosen in order to ensure that the cardinality of PS,ǫz is at
least 1,000.

Moreover, different combinations of tolerances may lead
to the fulfillment of this condition. Therefore, as a guideline,
threshold values can be chosen so that the number of accepted
samples for each distance function di,p(yi, y

∗
i ) is similar as much

as possible for all output variables. As the number of iteration
increases, thresholds progressively shift toward zero and, as in
the standard ABC-SMC method [35], this guarantees that the
approximate posterior distribution fP|PS,ǫz (p) evolves toward the
desired posterior distribution fP|y(p).

The constraints explained above regarding the choice of the
thresholds are also influenced byNS. For a given set of thresholds
ǫz , the higher the value ofNS the higher is the cardinality of PS,ǫz .
Thus, increasing NS, it is more likely to reach lower threshold
values that satisfy |PS,ǫz | > 1, 000. However, NS has also great
impact on the computational cost of CRC and, for these reasons,
its choice is a trade-off between the accuracy of the posterior
estimation and the efficiency of CRC.

Another tuning parameter of CRC is the definition of the
distance function that is used to measure the level of agreement
between simulations and experimental data.

Here, we propose two different distance functions that can be
used as objective functions when running CRC. The first one,
called Absolute Distance Function (ADF), is the l-norm sum, over
the whole time points set, of the distance between simulated and
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real data. Equation (7) formalizes it:

ADFi =

k
∑

j=1

||yi(tj)− y∗ij||l i = 1, . . . ,m. (7)

As an alternative, Equation (8) normalizes the error between
simulated and real data with the corresponding point in the
dataset. Moreover, the summation is divided by the number of
available time points, thus Equation (8) represents the mean
percentage error on each time point.

ANDFi =
1

k

k
∑

j=1

||yi(tj)− y∗ij||l

y∗ij
i = 1, . . . ,m. (8)

In this paper we set l = 1, thus we use an l1 norm, because
it is robust to measurement noise, i.e., outlier-corrupted data
[36]. The criterion that guides the user in the choice of the best
distance function regards the range of variation of the available
data. For a given absolute error (Equation 7), the corresponding
percentage error (Equation 8) produces a bias. Thus, Equation (8)
is preferred when the model and data are normalized.

Finally, as explained above, parameters kU,1, kU,2, kL,1, and kL,2
in Equation (6) determine the percentage shrinkage of the lower
and upper boundaries of the proposal distribution. Iteration
by iteration the percentage distance of the lower and upper
boundaries of fP(p) from the mode value is reduced.

In CRC the number of necessary iterations is not known
a priori because the algorithm terminates when the stopping
criterion is satisfied.

2.4. Conditional Robustness Analysis
The goal of the second phase of CRC is to perform a conditional
robustness analysis (CRA) in order to identify which parameters
mostly influence the output variables behavior [22]. To this
purpose, we apply the conditional robustness algorithm in [22,

37]. Starting from p
ζ
m, i.e., the mode in the parameter space

obtained in the last CRC iteration, we sample the parameter space
using LHS and choosing as evaluation functions the distance
functions di,p ∀i = 1, . . . ,m previously defined during the
calibration process. For each distance function, we define two
thresholds ηLi ≥ 0 and ηUi ≥ 0 which are the quartiles of level
β and λ respectively, obtaining the following subsets:

T(ηLi , di,p) = {di,p ≤ ηLi :

∫ ηLi

0
fDi (di,p)ddi = β}, (9)

T(ηUi , di,p) = {di,p ≥ ηUi :

∫ +∞

ηUi

fDi (di,p)ddi = λ}. (10)

Thus, T(ηLi , di,p) and T(ηUi , di,p) contain values of the distance
functions di,p that are, respectively smaller and larger than
the defined thresholds ηLi and ηUi . Therefore, T(η

L
i , di,p) and

T(ηUi , di,p) induce two subsets in the parameter space PS:

PS,ηLi
= {p ∈ PS : di,p ∈ T(ηLi , di,p))}, (11)

PS,ηUi
= {p ∈ PS : di,p ∈ T(ηUi , di,p)}. (12)

The resulting conditioning sets are:

PS,ηL = {

m
⋂

i=1

PS,ηLi
}, PS,ηU = {

m
⋂

i=1

PS,ηUi
}. (13)

PS,ηL and PS,ηU define two regions in the parameter space, whose
samples belong to the distributions fP|PS,ηL (p) and fP|PS,ηU (p).

The two conditional densities are employed in the calculation
of the Moment Independent Robustness Indicator (MIRI) [22,
34] according to the following formula:

µ =

∫

|fP|PS,ηL (p)− fP|PS,ηU (p)|dp. (14)

Vector µ contains MIRI values of all the components of
parameter vector p. Due to its definition, the MIRI value of
each parameter is included in the interval [0, 2]. MIRIs measure
the level of intersection between the two pdfs included in
the calculus: the higher the resulting value and the more well
separated are the conditional densities. Parameters with higher
values of the MIRI have a major impact on output variables
because there is a larger shift between the two conditional
densities used for MIRI calculation. This means that different
ranges of values for parameters with an high MIRI value lead
the model observables to completely different behaviors. On the
other hand, parameters with a low MIRI value do not affect the
observables because their conditional densities overlap.

2.5. Benchmarking Algorithms
In this section, we give a brief overview of three methods against
which CRC is compared: Approximate Bayesian Computation
Sequential Monte Carlo (ABC-SMC), Profile Likelihood (PL),
and Delayed Rejection Adaptive Metropolis (DRAM).

2.5.1. ABC-SMC
Since the CRC algorithm is a novel version of the standard ABC-
SMC, in the current section we keep the mathematical notation
consistent for those variables that have the same meaning.

ABC methods are a set of Bayesian methods for parameter
estimation and model selection. They can be used to evaluate
posterior distributions without having to calculate likelihoods.
These methods are based on a comparison between observed
and simulated data and thus are particularly useful when the
likelihood function is too costly to evaluate [35]. ABC approaches
usually proceed by: (i) sample a parameter vector p from a
proposal distribution q(p); (ii) simulate a dataset y(t) from the
model having parameters p; (iii) calculate a summary statistic s of
the observables y of the model; (iv) calculate a distance function
dp(s,s

∗) between simulated and experimental data and accept
p only if dp(s, s

∗) ≤ ǫ where ǫ is the tolerance level. Usually
the distance function is defined on the full dataset. The simplest
ABC algorithm is the ABC rejection sampler that implements the
points described above in a single iteration, thus sampling the
parameters only from the prior fP(p) [38]. An improvement of
the first version of ABC algorithm is ABC based onMarkov chain
Monte Carlo (ABC-MCMC algorithm), that exploits a Markov
chain to explore the parameter space [39]. Conversely, ABC-
SMC is a particular class of ABC algorithms based on SMC
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sampling, which seeks to uncover an approximation of the true
posterior distribution in a sequential manner through a series of
intermediate distributions. It proceeds with the following steps:

• define a tolerance schedule ǫ1 > ǫ2 > . . . ǫT ≥ 0;
• at the first iteration, sample parameter values, called particles,

from a prior distribution, until N particles are obtained for
which the distance is smaller than ǫ1; for each particle is then
computed a weight;

• for the further iterations, a particle is sampled from the
previous population and perturbed with a perturbation kernel,
until N accepted particles are selected. Weights are calculated
for all accepted particles;

• the same procedure described above is repeated until N
particles are selected in the last population.

The last population is the approximation of the posterior
distribution fP|y(p). The ABC-SMCmethod is fully implemented
in the ABC-SysBio software, a Python package for parameter
estimation and model selection in the ABC framework [19]. A
variant of the standard ABC-SMC algorithm is its population-
based version, ABC-PMC [21]. The main feature of ABC-PMC
algorithms is the adaptive calculation of the distance function
and of the threshold at each iteration, based on the previous
iteration’s simulations.

2.5.2. Comparison Between ABC-SMC and CRC
Since CRC is a novel version of ABC-SMC, in this section we
highlight the main differences between the two algorithms.

First of all, in the ABC-SMC algorithm, both the number
of iterations and the threshold schedule have to be chosen in
advance before running the whole procedure. Moreover, the total
number of samples generated at each iteration is not known. The
framework of the algorithm requires to specify the number of
parameter samples, N, whose corresponding distance functions
are below the threshold of the current iteration. Thus, for each
iteration it is not known how many times the model will be
integrated and, as the threshold is decreased, more samples are
required to meet the constraint. The combination of these two
aspects of the algorithm does not guarantee that the desired
level of agreement between experimental and simulated data will
be reached in a reasonable amount of time. In CRC, on the
other hand, the approach is overturned. The number of samples
NS, that are generated at each iteration, is fixed and, on the
contrary, the thresholds are not fixed in advance but they are
chosen dynamically iteration by iteration. This guarantees that
the time to perform each iteration is limited and at the end of each
iteration a user defined stopping criterion is evaluated in order to
decide whether or not to start again from the beginning.

Another relevant difference between the two algorithms is
that CRC defines a distance function for each output variable
without the employment of any summary statistic. ABC-SMC,
on the contrary, defines a unique distance function regardless of
the number of output variables of a model and it is often used
with summary statistics. The effect of defining a single distance
function has a great impact in the accuracy of model calibration
especially when the model has an high number of parameters
and/or output variables.

Finally, in the ABC-SMC framework, once a particle is
sampled from a population it is perturbed with a kernel
before simulating the model and if that particle is accepted a
corresponding weight is computed (mathematical details are in
[35]). As a consequence, in ABC-SMC, the way each population
is updated iteration by iteration strictly depends on the kernel,
that also influences the speed of convergence. In CRC, on
the other hand, it is not used any perturbational kernel and
at the end of each iteration, once the set PS,ǫz is identified,
the empirical conditional density fP|PS,ǫz (p) is estimated. The
proposal distribution of the next iteration is updated using the
mode of the distribution cited above and, through Equation (6),
the percentage of variation from the mode of each parameter
is shrunk.

2.5.3. Profile Likelihood (PL)
PL is a framework for parameter estimation and uncertainty
analysis that belongs to the frequentist class. As in the Bayesian
approach, the starting point is the likelihood function that
needs to be estimated. Assuming independent additive Gaussian
noise with constant variance, maximizing the likelihood means
minimizing the Residual Sum of Squares (RSS), commonly
denoted as χ2(p) where p is the estimated parameter vector. An
optimization algorithm is commonly used to perform estimation.
It can be deterministic, stochastic or hybrid [12]. In the class of
stochastic algorithms, examples of commonly used methods are
the so-called Genetic Algorithms (GA) and Simulated Annealing
(SA). GA are iterative searching methods based on a natural
selection process that mimics biological evolution. Starting from
an initial population, at each iteration, a new population is
generated until it evolves toward the optimal solution [40]. SA
mimics the process of heating amaterial and then slowly lowering
the temperature. It is a particular application of the Metropolis-
Hastings algorithm. At each iteration a new point is generated
and accepted according to an acceptance function, based on the
temperature parameter [41]. Among deterministic algorithms,
nonlinear least-squares (lsqnonlin) is considered one of the fastest
and most reliable for common problems in Systems Biology [11,
13]. LHS can be used for setting initial parameters in a multi-start
approach in order to avoid local optima as much as possible. For
a performance analysis of optimization procedures see [11]. Once
an optimal parameter set is obtained, it is important to assess the
influence of all parameters on model behavior. The confidence
interval [σ−

i , σ+
i ] of a parameter is a measure of its identifiability.

It means that the true value of a parameter is located within
this interval with a given probability α. To compute confidence
intervals, PL is one the most employed algorithms. It is based on
the following formula:

χ2
PL(pi) = minj 6=i[χ

2(p)], (15)

which means that, for each parameter pi, the function χ2 is
reoptimized with respect to all parameters pj 6=i. The process starts
from the best fit and stops when the fit becomes unacceptable or
a certain stopping criterion is met. At the end of it, a profile for
each parameter is obtained. A parameter is declared structural
non-identifiable if it has a flat profile, while it is practical non-
identifiable if it has a minimum but the profile flattens out in one
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of the directions of χ2 (increasing or decreasing direction of pi).
In all the other cases, a parameter is considered identifiable [14].

The PL methodology works by transforming the parameter
space from linear to logarithmic.Moreover, it has different tuning
parameters that can be set by the user. It is possible to choose
the lower and upper bounds for the parameters, the maximum
number of steps along the profile for each parameter as well as the
maximum and minimum step size. Moreover, in the likelihood
function, the measurement noise is modeled as normal or log-
normal distribution and it can be fitted simultaneously to the
dynamical model.

2.5.4. DRAM
DRAM algorithm is an improved and modified version of
the standard Metropolis-Hastings (MH) algorithm [24]. This
algorithm belongs to the Markov Chain Monte Carlo (MCMC)
methods, which approximate the posterior distribution of the
parameter vector through a Markov chain [42]. One of the
advantages of such methods is the possibility of sampling
from an arbitrary pdf known up to a normalizing constant.
DRAM is a strategy to combine the Delayed Rejection (DR)
and Adaptive Metropolis (AM) estimators. When a candidate
parameter sample is rejected, DRAMfinds a new point exploiting
also the information about the rejected one. In DR, given pn as
the current position of the chain, the first proposal move, hn,1 is
performed as in MH and thus it is accepted with probability:

αn,1(pn, hn,1) = min

(

1,
f (hn,1|y)qn,1(hn,1, pn)

f (pn|y)qn,1(pn, hn,1)

)

, (16)

where qn,1(·) is the proposal distribution. The probability
distribution f (hn,1|y) is computed as f (hn,1|y) = f (y|hn,1)π(hn,1),
where f (y|hn,1) is the likelihood and π(hn,1) is the prior function.
In case of rejection of the proposed sample, the second move
depends both on the current state of the chain and on the
rejected sample. This expedient gives the name “Delayed” to
the DR algorithm. The delayed mechanism can be iterated
and interrupted at any stage. The mathematical details of the
algorithm are presented in [43]. As in DR, also AM takes into
account the history of the chain when the covariance matrix of
the proposal distribution is updated. After an adaptation period
n0, AM assumes a Gaussian proposal distribution centered at
the current state of the chain pn and updates the covariance
according to the following formula:

Cn =

{

C0 n ≤ n0
sdCov(p0, . . . ,pn−1)+ sdǫId n ≥ n0,

(17)

where C0 is the initial covariance, sd depends on the dimension d
of the parameter vector, ǫ is a constant chosen very small and Id
the d-dimensional identity matrix. In [24], the authors propose
one of the ways to combine the two approaches explained above.
DRAM includes AM in the DR framework as follows:

• at the first DR stage the proposal is adapted as in AM, where
the covariance matrix C1

n is estimated from the collected
samples of the chain;

• at the i-th stage Ci
n = γiC

1
n, where γi is a freely chosen

scale factor.

TABLE 2 | Features of the models.

Model Total parameters Unknown parameters States Outputs Data points

M1 4 2 2 2 8

M2 11 7 5 2 22

M3 93 53 40 16 96

To estimate the initial model parameters, DRAM performs the
function fminsearch() when the model has a single observable.
Otherwise, initial parameter values have to be set by the user by
trial and error or according to the prior knowledge.

The initial estimate of the error variance needs to be set by
the user. Then, it can be estimated as an extra model parameter,
by setting a prior distribution for it. A convenient choice is the
conjugate inverse chi-squared distribution, in case of Gaussian
error model.

The combination of DR and AM improves the efficiency and
the efficacy of both techniques reciprocally. On the one hand, AM
guarantees an acceptable level of efficiency of DR evenwhen there
is not a good proposal distribution while, on the other hand, DR
accelerates the adaptation process.

RESULTS

We test our novel proposed algorithm in three different models:
Lotka-Volterra model (M1), EpoR system (M2), and signaling
pathway of p38MAPK in multiple myeloma (MM) (M3). Table 2
synthesizes the models features. M1 is characterized by an
oscillatory behavior of both output variables, M2 is used in
synthetic biology and contains initial conditions and scale
factors to estimate while M3 is a high-dimensional model based
on experimental proteomics data. All the simulations were
performed on a Intel Core i7-4700HQ CPU, 2.40 GHz 8, 16 GB
memory, Ubuntu 16.04 LTS (64 bit).

2.6. Lotka-Volterra Model (M1)
2.6.1. Model Description
The first model is the classical Lotka-Volterra model, which
describes the interaction between the prey species x1 and the
predator species x2 through the parameters a and b:

ẋ1(a, t) = ax1(t)− x1(t)x2(t), x1(0) = 1,

ẋ2(b, t) = bx1(t)x2(t)− x2(t), x2(0) = 0.5,

y(a, b, t) = [x1(t), x2(t)].

(18)

The model parameter vector to estimate is p = [a, b], p ∈ R
2.

Both nominal values of parameters are set to 1. The observables
are both variables x1 and x2.

To calibrate the model, we generate an in silico noisy dataset
in the same way described by [35], i.e., sampling eight values
of the output variables at the same specified time points and
adding Gaussian noise N (0, (0.52)) (Table S1). Simulating the
measurement noise with Gaussian noise is standard practice in
mathematical modeling [5, 12, 35].
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TABLE 3 | Tuning parameters and results of CRC in model M1.

Iteration (z) Lz Uz pzm ǫzx1 ǫzx2 MSEx1 MSEx2

1 0.1 10 [0.37, 0.96] 7.3 6 0.71 0.54

2 0.55 5.5 [0.81, 1.26] 5.8 4 0.38 0.2

3 0.775 3.25 [0.84, 1.11] 5 3.4 0.35 0.19

4 0.8875 2.125 [0.98, 1.07] 4 3 0.22 0.16

5 0.9437 1.5625 [1.01, 1.07] 3.4 2.7 0.2 0.14

6 0.9718 1.2813 [1.06, 1.06] 3.1 2.7 0.19 0.13

The second and third column show, respectively, the lower and upper boundaries of qz (p).

The fourth column reports the mode vector pzm computed at the end of each iteration and

used to center the proposal distribution of the subsequent iteration. In the fifth and sixth

columns the threshold schedule is reported and in the last two columns the resulting MSE

for each observable is shown.

2.6.2. CRC Results
The tuning parameters of CRC are set as follows:

• the number of fixed samples in the parameter space is set to
NS = 104 for each iteration;

• Equation (7) ∀i = 1, . . . 2 is chosen as distance function
between experimental and simulated data;

• the prior distributions for a and b are taken to be log-uniform:
a, b ∼ log − U(0.1, 10);

• kU,1 = kL,1 = 1 and kU,2 = kL,2 = 2 in all iterations.

According to Equation (7), the distance between the noisy
dataset and the nominal solution is 3.09 for species x1 and
2.6 for species x2. Thus, the objective of the calibration is to
obtain realizations of Dx1 and Dx2 that are close, respectively,
to 3.09 and to 2.6. For this reason, the algorithm terminates
when the two corresponding thresholds become sufficiently
close to these two values. In order to do that, we perform
six iterations of CRC. In the sixth iteration ǫ6x1 and ǫ6x2 are
very close to the reference values presented above (3.09 and
2.6). This demonstrates that CRC reaches the desired level of
agreement between simulated and experimental data. Table 3
sums up the tuning parameters and the results of CRC along the
six iterations.

Figures 2A,B display the time behavior of output variables
x1 and x2 when parameters belong to the final subset PS,ǫ6 .
The model simulations are shown together with the noisy
dataset, proving both the validity and robustness of the solution.
Figure 2C shows how the subset of accepted particles PS,ǫz

changes during the execution of CRC.
CRC is fast in model calibration since the time simulation

decreases from 288 s for the first iteration until 202 s for the
last one. After model calibration, the CRA is applied in order to
compute MIRIs for the parameters. We perturb the mode vector

p
ζ
m = [1.06, 1.06] generating 104 samples of the parameter space.

The lower and upper boundaries of the sampling are fixed equal
to 0.1 and 10 and the probabilities β and λ are both fixed to 0.1,
following the guidelines in [22]. For both parameters, we obtain
that MIRIs have values around 1, meaning that a and b have
approximately the same influence on the two output variables
(Figure S3).

2.6.3. PL Results
First of all, we estimate parameter values using three different
optimization algorithms, available in the software D2D [13]:
lsqnonlin, genetic algorithms (GA), and simulated annealing
(SA). In this example, both the default lsqnonlin and GA correctly
fit the model yielding the same results, while SA totally fails in
parameter estimation. The default method lsqnonlin estimates
parameter a equal to 1.07 and parameter b equal to 1.05. Using
these parameter values, the MSE is equal, respectively, to 0.19 for
x1 and to 0.13 for x2. In order to evaluate the identifiability of
model parameters and to assess their confidence intervals, we also
calculate the PL. All tuning parameters of the algorithm are left
to their default values. PL estimates as identifiable both model
parameters (Figure S5). PL employs few seconds for parameter
estimation and less than a minute for identifiability analysis of
both parameters.

2.6.4. ABC-SMC Results
The application of the standard ABC-SMC method to the M1
model and the results obtained are comprehensively explained
in [35]. In five steps the procedure converges to the considered
threshold. In the 5-th iteration, parameter a has a median of 1.05
and a 95% interquartile range of [1, 1.12] whiifble parameter b
has a median of 1 and a 95% interquartile range of [0.87, 1.11]
[35]. When parameters are equal to their median values, MSEx1
is 0.28 andMSEx2 is 0.19.

2.6.5. DRAM Results
We apply DRAM to the M1 model varying the initial parameter
values in the interval [0, 10], the initial error variance in the
interval [0.01, 1] and the corresponding prior weight in the
interval [1, 5]. The error variance is then estimated by setting
options.updatesigma = 1. Moreover, in order to perform a
reliable comparison with CRC, we set the number of simulations
equal to 104 and the boundaries of the parameters between [0,
10]. In all cases, the chains are stable and close to the nominal
parameter values after one run. For the sake of brevity, we show
only the results for initial error variance set to 0.1, prior weight
set to 3 and initial parameter values equal to 0, 5, and 10. The
time employed to apply the algorithm on the M1 model is about
3 minutes. Detailed results of DRAM are in S1 File.

2.7. EpoR System (M2)
2.7.1. Model Description
The ODE model presented in this section is taken from the
Erythropoietin Receptor (EpoR) [44]. The model represents the
catalysation of a substrate S by an enzyme E that is activated
via two steps by an external ligand L [45]. This reaction cascade
produces a product P whose dynamical behavior is the purpose
of the model prediction. Generally the concentration over the
time of the product P cannot be measured directly. Let denote
with p = [k1, k2, k3, initE, initS, scaleE, scaleS], p ∈ R

7, the set of
parameter to estimate. The nominal values of model parameters
are p = [0.1, 0.1, 0.1, 10, 5, 4, 2]. The equations of the model,
the corresponding initial conditions and the observables together
with the dataset used for model calibration are reported in
S1 File.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 July 2020 | Volume 6 | Article 25

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Bianconi et al. A Bayesian Methodology for Model Calibration

FIGURE 2 | Results of CRC for model M1. (A,B) The red line is the time behavior of output variables when the parameter vector is equal to p6
m (see Table 3); red dots

are the experimental data; the gray area represents the uncertainty in the temporal behavior of observables when parameters vary between the 2.5th and 97.5th

percentile of their corresponding conditional pdfs. (C) Scatter plot of the sample distribution of fa|PS,ǫz (a) (x-axis) vs. fb|PS,ǫz (b) (y-axis) in all iterations.

TABLE 4 | CRC parameters for model M2.

Iteration (z) Lz Uz ǫz1 ǫz2

1 0.01 100 51 31

2 0.02 50 50 31

3 0.04 25 46 30.9

4 0.08 12.5 40 30.3

5 0.16 6.25 33.5 29.1

6 0.32 3.125 25 27.5

7 0.64 1.5625 15.5 22

8 0.82 1.2813 13.4 10

9 0.91 1.1406 13 5.75

The first column reports the iteration number z, the second and the third ones the

boundaries of the proposal distribution qz (p) in each iteration and the fourth and the fifth

ones the values of the two thresholds ǫz1 and ǫz2.

2.7.2. CRC Results
The prior distributions for all the model parameters are supposed
log-uniform with the lower and upper boundaries set equal to
L1 = 0.01 and U1 = 100. The number of fixed samples in
the parameter space is NS = 105. We choose Equation (7) as
distance function to evaluate the error between nominal and
noisy data for the outputs of the model. According to the selected
distance function, the errors between the nominal data points
and the experimental ones are equal to 12.78 for y1 and 5.6 for
y2. They represent the target thresholds to reach at the end of
the last iteration in order to assert the success of CRC. To this
purpose, we perform nine iterations of CRC in order to make the
two thresholds close enough to their corresponding target values.
Table 4 shows the boundaries of the proposal distribution in each
iteration. These values are obtained by setting kU,1 = kL,1 = 0,
kU,2 = 2, and kL,2 = 0.5 for the first seven iterations and
kU,1 = kL,1 = 1 and kU,2 = kL,2 = 2 for the eighth and ninth
iterations. Table 4 also shows the obtained thresholds for each
performed iteration of CRC.

In the ninth iteration, ǫ91 and ǫ92 are very similar
to the target values presented above. This proves that
CRC estimates a parameter vector that guarantees

the desired level of agreement between simulated and
experimental data. The mode vector in output from CRC

is p
ζ
m = [0.11, 0.02, 0.08, 34.93, 2.99, 1.12, 3.37]. The model

simulation using as parameter vector the mode p
ζ
m has an MSE

of 18.24 and 0.32 for y1 and y2 respectively. Figures 3A,B show
the time behavior of both output variables when the parameter

vector is set equal to the mode p
ζ
m.

Moreover, regions in gray are the confidence bands of
observables when parameter values are chosen between the 2.5-
th and 97.5-th percentile of their corresponding conditional
pdfs fP|PS,ǫ9 (p). In S1 File, additional details of fDy1

(dy1 ,p) and

fDy2
(dy2 ,p) and the estimated conditional pdfs of parameters are

reported. CRC is quite fast since it employs about 8 min (527 s)
to complete one iteration.

Once the model has been correctly calibrated, we perform a
robustness analysis in order to find those parameters that most
affect the behavior of the output variables. We perturb the mode

vector p
ζ
m with Linear LHS using 105 samples. The lower and

upper boundaries of the sampling are fixed equal to 0.01 and 100
respectively. Using the guidelines reported in [22] we fix the level
of probabilities β and λ to 0.1. In Figure 3C the resulting MIRIs
are shown. MIRIs corresponding to initial conditions parameters
and scale factors are close to their maximum value and are much
higher than those of the kinetic ones. This means that initial
conditions and scale factors have major impact on observables
compared to the kinetic parameters. We repeat the entire
procedure ten times, obtaining ten independent realizations in
order to ensure the invariance of results.

2.7.3. PL Results
The calculation of PL for M2 is presented in [45] where the
authors reported that PL takes < 1 min per parameter on a 1.8
GHz dual core machine. The parameter vector estimated through
the PL is p̂ = [0.087, 0.019, 0.37, 10.05, 4.97, 4.027, 2.1]. The MSE
obtained through the PL approach is 10.06 and 0.3 for y1 and y2,
respectively. As regards the identifiability analysis, according to
the PL approach, parameter k2 is classified as structurally non-
identifiable, parameter k3 is practically non-identifiable and the
others are assessed to be identifiable. More details of the PL
results are provided in S1 File.
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FIGURE 3 | Results of CRC for model M2. (A,B) Time behavior of output variables. Red dots are the noisy experimental data [45]; blue lines are the simulations of the

observables of the model when the parameter vector is set equal to the mode p
ζ
m; gray regions are the confidence bands when parameter values are chosen between

the 2.5-th and 97.5-th percentile of their corresponding conditional pdfs fP|P
S,ǫ9

(p). (C) Boxplots of the MIRIs in output from the CRA for the seven model parameters

and all the 10 independent realizations.

2.7.4. ABC-SMC Results
ABC-SMC input parameters are set in order to resemble those of
CRC. The distance function is defined as:

d((y1, y2), (y
∗
1 , y

∗
2)) =

2
∑

i=1

11
∑

j=1

|yi(tj)− y∗ij| =

2
∑

i=1

ADFi. (19)

Under the hypothesis of parameters having a prior uniform
distribution in [0, 100], we try to perform nine iterations of ABC-
SMC. Thus, we set fP(p) = U(0, 100) and z = 1, . . . ,9. The
thresholds for all the iterations are chosen as the sum, over y1
and y2, of the two corresponding thresholds obtained from the
application of CRC (Table 4). At each iteration, we select 1,000
particles of the parameter space under the desired threshold.
The algorithm could not come to an end in a reasonable time
and it finds parameter samples only until the 7-th iteration. In
order to quantify the precision of the ABC-SMC approach, we
perform simulations of the model, setting the parameter vector
equal to the median of the ABC-SMC results. The MSE using
these parameter values is 103 and 20 for y1 and y2, respectively.
Further results of ABC-SMC are shown in S1 File.

2.7.5. DRAM Results
As in model M1, we run DRAM varying the initial error variance
between [0.001,1] and the corresponding prior weight between
[1, 5], and then we sample and estimate the error variance. Initial
conditions were chosen close to nominal parameter values, i.e.,
[0.5, 0.5, 0.5, 8, 7, 5, 3]. As in CRC, the number of simulations
is set to 105, the number of run performed is nine and the
parameter boundaries are [0, 100]. We run DRAM using, in
one case, a Gaussian prior for all parameters and, in the other
case, a lognormal prior. DRAM results are fairly stable against
the different values of the initial error variance and the prior
distribution. The chains of the first three parameters, k1, k2,
and k3, equally span all the values in the interval [0, 100] and
accordingly the pdfs for those parameters are almost uniformly
distributed, meaning that this parameters are classified as non
identifiable. On the other hand, the chains corresponding to the
other model parameters converge and are stable around specific
values. This is also clearer from the corresponding pdfs that show
a peak around the estimated value. Here, we report the results
obtained in the final run with a lognormal prior, a prior weight
set to 1 and an initial error variance that varies between 0.001 and

1. DRAM employs about 15 min to complete one run. In S1 File,
figures of DRAM results are provided.

2.8. Multiple Myeloma Model (M3)
2.8.1. Model Description
M3 is the ODEmodel proposed in [46]. The mathematical model
is defined to help study the roles that various p38MAPK isoforms
play in MM. It has 40 ODEs, built using only the law of mass
action, and 53 kinetic parameters (S1 File). According to Peng et
al. [46], data associated to the model are the output of a Reverse
Phase Protein Array (RPPA) experiment [2], where MM cell lines
were analyzed to detect the activity of proteins active in various
p38 MAPK signaling pathways. RPPA was performed on the
following cell lines: four different RPMI 8226 MM cell sublines
with stable silenced expression of p38α, p38β , p38γ , and p38δ,
respectively, as well as an RPMI 8226 MM stable cell subline
transfected with empty vector as the negative control. Cells were
treated with arsenic trioxide (ATO), bortezomib (BZM) or their
combination. RPPA analyzed a total of 80 samples and measured
153 proteins at six different time points. The proteins whose
phosporylation level was included both in the pathway and in
the experiment are 16. All RPPA data are normalized based on
the initial concentration value. For this reason, initial conditions
of proteins in the ODE model are all set to 1, i.e., x(0)=1.
Parameters to estimate are only the kinetic ones, i.e., p ∈ R

53.
In [46], available data for model calibration belongs to the p38δ
knockdown cell line treated with BZM. The corresponding RPPA
dataset is presented in Table S13.

2.8.2. CRC Results
For model M3, we set tuning parameters of CRC in the
following way:

• the number of parameter samples NS is equal to 10
6;

• for each output variable, Equation (8) is chosen as distance
function;

• the prior of each kinetic parameter is supposed to be log −

U(0.1, 10);
• kU,1 = kL,1 = 1 and kU,2 = kL,2 = 2 in all iterations.

Six iterations of CRC are performed, using the threshold schedule
reported inTable 5. At the end of the process, themaximum error
between simulated and experimental data is only of the 16%.
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FIGURE 4 | CRC results for model M3. (A) The blue line is the time behavior of observables when the parameter vector is equal to p6
m (see Table S25); red dots are

the RPPA data [46]; the gray area reproduces the variation of the temporal behavior when parameters vary between the 2.5-th and 97.5-th percentile of their

corresponding conditional pdfs fP|P
S,ǫ6

(p). On the top of each plot, the MSE between the associated model simulation and the data is reported. (B) Boxplot of MIRIs

for the estimated parameter values, along the 10 independent realizations performed.
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TABLE 5 | Threshold schedule of distance functions for model M3.

Iteration (z)

1 2 3 4 5 6

RasGTP 0.7 0.4 0.3 0.2 0.1 0.08

pPI3K 0.7 0.4 0.3 0.2 0.1 0.06

pp38 0.7 0.4 0.3 0.15 0.13 0.09

pPDK1 0.8 0.5 0.3 0.2 0.1 0.06

pAKT 0.3 0.2 0.15 0.12 0.095 0.088

pmTOR 0.5 0.3 0.2 0.13 0.1 0.088

pRaf1 0.7 0.4 0.2 0.15 0.1 0.08

pMEK12 0.7 0.4 0.3 0.2 0.1 0.08

pERK12 0.6 0.4 0.2 0.1 0.05 0.04

pP70S6k 0.5 0.3 0.2 0.15 0.1 0.08

pcJUN 0.6 0.3 0.2 0.15 0.12 0.12

BCLXL 1 0.7 0.5 0.3 0.2 0.15

BAX 0.8 0.6 0.5 0.35 0.2 0.15

pNFkB 0.6 0.4 0.25 0.2 0.18 0.16

cPARP 0.7 0.4 0.3 0.2 0.15 0.12

The distance functions are di,p (yi , y
∗
i ), ∀i = 1, . . . ,16.

Figure 4A shows the time behavior of output variables at
the end of the calibration, along with experimental data points.
The figure proves that the algorithm is successful in finding a
robust solution (S1 File). As regards the application of CRA, we
perturb the parameter space in the interval having as lower and
upper boundaries 0.01 and 100, respectively and centered around
the final mode vector p6m, generating 106 parameter samples. In
Figure 4B, MIRIs are presented for each parameter. As expected,
not all parameters have a strong impact on the observables since
the number of output variables is small compared to all kinetic
parameters. For instance, parameters kRaf 1_pPI3K , kERK12_pp38,
kBAX_pp38, kIKK_pAKT , kPARP_BAX , kcPARP_BCLXL have all a MIRI
value under 0.2. On the other hand, about a fifth of the
total number of parameters has MIRI values above 1.6 (e.g.,
parameters kGFR, kpGFR, kShc_pGFR, kpPI3K , kpAKT , kpRaf 1_pAkt ,
kpMEK12, kERK12_MEK12, kpERK12, kpP70S6K , kpJNK), meaning that
they have high influence on the outputs. We repeat the entire
procedure ten times, obtaining ten independent realizations in
order to ensure the invariance of results.

2.8.3. PL Results
First of all, through the D2D software, we calibrate the model
using lsqnonlin as optimization algorithm. To avoid local optima,
we execute a sequence of n = 100 fits using LHS. Moreover, we
also estimate model parameters using GA and SA. While GA is
not able to correctly reproduce experimental data, SA successfully
estimates the time behavior of output variables. To compute
confidence intervals, the maximum number of sampling steps in
both the increasing and decreasing direction of each parameter
is set to 200 while all the other tuning parameters of the method
are set to their default values. The upper and lower boundaries
of the parameter prior are set respectively to 10−5 and 103.
Results of parameter estimation and identifiability analysis are
shown in S1 File. The algorithm assesses that all parameters are

identifiable except for the following parameters: kP70S6K_pERK12,
kcPARP_BCLXL, kpJNK that are practically non-identifiable and
kpIRS1_pAKT is structurally non-identifiable. Nevertheless, the
results obtained are not so reliable since some parameters have
a confidence interval of only a single value (e.g., kIRS1_pGFR)
while others have an estimated value outside the corresponding
confidence region (e.g., kPDK1_pPI3K). The PL algorithm employs
less than one minute for parameter estimation and about 40 min
for identifiability analysis of all parameters.

2.8.4. ABC-SMC Results
Using the ABC-SysBio software, we fix ABC-SMC parameters
as follows:

• the distance function is defined as:

d(y, y∗) =
1

6

16
∑

i=1

6
∑

j=1

|yi(tj)− y∗ij|

y∗ij
=

16
∑

i=1

ANDFi; (20)

• the number of iterations is set to 6;
• the threshold fixed in each iteration is equal to the sum of all

thresholds fixed in CRC in the same iteration (see Table S29);
• the number of accepted particles at each iteration is set

to 1,000;
• all parameters to estimate are supposed to have a uniform prior

distribution: U(0.1,10);
• all the other parameters are left to their default values.

The application of ABC-SMC to the M3 model was very time
consuming and, after 10 days, it had not converged yet. Thus,
results are available only until the 4-th iteration (see S1 File).

2.8.5. DRAM Results
As in the previous examples, we run DRAM setting the number
of simulations equal to those of CRC (106) and the number
of run to six. The initial error variance, that is estimated, and
the corresponding prior weight are set equal to 0.1 and 10,
respectively. Initial values of parameters are all equal to 1 and the
parameter boundaries are [0, 10]. We run DRAM using both a
uniform and lognormal prior for all parameters. DRAM employs
about 3 h to complete one run and, in the end, most parameters
have a uniform distribution. In S1 File, we provide figures of
DRAM results after six run with a lognormal prior. We show the
chains and pdfs of the parameters and the time simulations of the
output variables of the model when parameters are equal to mean
of the corresponding chains.

3. DISCUSSION

Here we present a novel Bayesian approach for parameter
estimation ofmathematical models that is used to fit omics data in
Systems Biology applications. The availability of high-throughput
data with the need to calibrate high dimensional models using
computational feasible algorithms, makes CRC a useful and
innovative procedure in the overview of the Bayesian parameter
estimation and robustness analysis. Our algorithm modifies the
standard ABC-SMC in order to increase the efficiency and the
reliability of the estimated parameter vector. Moreover, CRC
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TABLE 6 | Comparison between parameter estimation algorithms.

CRC ABC-SMC PL DRAM

Class Bayesian Bayesian Frequentist Bayesian

Output Mode of the final approximate Median of the final Optimal Mean values

parameter vector posterior distribution population parameter set of the MCMC chains

Uncertainty Posterior distribution Histogram Confidence interval Posterior distribution

Prior information Prior distribution Prior distribution None Initial parameter vector

Objective function One for each observable One for all observables One for all observables One for all observables

Robustness analysis Yes No No No

Models successfully calibrated M1, M2, and M3 M1 M1 and M2 M1

Computational cost M1: ∼ 5 min (per iteration) M1: ∼ 5 min M1: < 1 min M1: ∼ 3 min (per run)

M2: ∼ 8 min (per iteration) M2: Not converged M2: < 5 min M2: ∼ 15 min (per run)

M3: ∼ 70 min (per iteration) M3: Not converged M3: ∼ 40 min M3: ∼ 180 min (per run)

presents many distinctive improvements as compared to other
algorithms of the ABC-SMC family, such as ABC-PMC and
Adaptive-ABC [21].

We validated this new methodology in three ODE models,
each one with specific features, in order to demonstrate
the flexibility and reliability of our approach. In addition,
we compared CRC results with those obtained by methods
representing the state of the art of this field, i.e., the standard
ABC-SMC, PL, and DRAM. Table 6 summarizes the comparison
between CRC and the other benchmarking algorithms tested.

First of all, we tested all the calibration procedures in the
Lotka-Volterra model. We showed that all algorithms performed
well, but with some differences. CRC returns a reliable and robust
solution. Compared with ABC-SMC, we performed one more
iteration but the computational burden was almost irrelevant
since each iteration took about 5 min to complete. CRC also
finds a more precise solution and generates a remarkable minor
number of particles for sampling the parameter space. PL
succeeds in fitting the data when lsqnonlin and GA are used.
Then, through confidence intervals, it classifies both parameters
as identifiable, in accordance with MIRI values. DRAM, after
the initial adaptation period, finds acceptable points and a good
mixing of the chain, regardless of the choice for the tuning
parameter values.

Next we compared the results of CRC in the model presented
in [44, 45]. In this example, CRC finds an alternative solution of
the parameter vector compared to that of PL. PL fits the data
properly and fast and identifiability results are in accordance
with MIRI values. ABC-SMC fails in the calibration procedure
and it cannot go beyond the 7-th iteration, proving that it
cannot reach an error as low as the one of CRC. As regards
DRAM, the final results are in agreement with those of CRC.
The chains of parameters are not significantly affected by the
variation of the tuning parameters and, for most of them, the
chains converged generating a peak in the corresponding pdf.
For the first three kinetic parameters the estimated posterior
pdfs are uniformly distributed since the chains equally span
all the interval, meaning that they are non identifiable. As for
CRC, DRAM finds a different solution for the parameter vector.
However, the parameter vector estimated by DRAM is not able
to produce reliable time behaviors of the output variables and

as a consequence the experimental data feed to DRAM are not
well-recapitulated by the time behavior of the observables. This
is mainly due to the fact that in the given dataset there are many
missing values and DRAM filtered out all the observations with
at least one missing value. So the poor results in terms of time
behavior are not due to a lack of the algorithm itself but mainly
because it cannot deal with missing values, contrary to the other
benchmarking algorithms presented in this paper.

Finally, the last model is an high-dimensional ODE model
calibrated on real experimental data [46]. CRC was able to find
a set of parameter vectors that fit well experimental data. In
addition, robustness analysis highlights that about half of the
parameters influences most output variables. PL is successful in
model calibration but computation of confidence intervals gives
confounding results which do not allow a reliable comparison
with MIRI values. ABC-SMC fails in model calibration because
it remains blocked in the 5-th out of 6 iterations. Also DRAM
does not find a reliable solution since all the parameter chains are
not stable and, after 106 simulations, they span the interval [0, 10]
almost uniformly. Moreover, compared to CRC, it has an higher
computational cost.

In summary, the main disadvantage of the standard ABC-
SMC method is the time necessary to complete a simulation
which increases with the model dimension. The PL method is
fast in model calibration even for high dimensional models since
it implements an optimization algorithm. However, the returned
solution does not contain any information on the distribution
of parameters since it represents a single point in the parameter
space. Moreover, as shown in model M3, it may return improper
results in the computation of parameter profiles. As regards
DRAM, its results are highly affected by the initial values of the
parameters, which must be set from the beginning. This point is
crucial since in Systems Biology models most parameter values
are unknown and cannot be measured experimentally.

CRC is able to identify a stable and precise solution in all
test models, mainly because of some of distinctive features.
One of its main innovations is the use of a fixed number of
points for sampling the parameter space, which is initially chosen
by the user and does not change throughout iterations. As a
result, the model is always integrated NS times in each iteration.
Since most of the computational cost of an iteration of CRC is
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given by the integration of the model, CRC guarantees a limited
computational cost through the different iterations. On the other
hand, in other ABC-SMC methods, the computational burden is
substantial because the number of samples at each iteration is
not known a priori but strictly depends on the threshold value.
Since the threshold usually decreases at each step, the number
of generated samples could increase together with the simulation
time. However, compared to the frequentist approach, CRC has
always an higher computational cost since it requires multiple
subsequent iterations and multiple integrations of the model in
order to converge toward the final solution.

Moreover, another significant innovation introduced is the
definition of an objective function for each output variable.
This allows a model calibration that takes equally into account
all experimental endpoints. On the other hand, the other
techniques evaluate only a single and unique objective function,
which includes information about all observables. Even if
the introduction of multiple objective functions improves the
accuracy and the performances of CRC, it requires multiple
thresholds to be chosen by the user, at each iteration. As a
consequence, different combinations of the values of thresholds
could guarantee the fulfillment of the two constraints explained
in section 2.3.1 (ǫzi ≤ ǫz−1

i and |PS,ǫz | > 1000). In order to
overcome this drawback of CRC, it is possible to implement an
optimization strategy step that automatically computes, at each
iteration, the minimum value of each threshold that satisfies
the constraints explained above and potentially further policies
defined by the user. This disadvantage of CRC becomes more
relevant in models with an high number of output variables to
calibrate.

Finally, we also analyzed the robustness of model parameters
in a new way, taking inspiration from the CRA presented in [22].
This algorithm is based on the concept of robustness proposed
by Kitano [47], which defines it as the property of a system to
maintain its status against internal and external perturbations.
We employed CRA in order to quantify the robustness of the
model observables against the simultaneous perturbation of
the parameters.

Robustness analysis is useful for applications in cancer drug
discovery aimed at finding which node of a network could be
identified as novel potential drug target. Moreover, the concept
of robustness is slightly different from that of identifiability
introduced with the PL approach. A parameter that is declared
identifiable should have an high MIRI value since it has great

impact on the outputs behavior. On the other hand, if a parameter
is non-identifiable it is impossible to understand its influence
on the observables dynamical response, without performing
our robustness analysis. While ABC-SMC evaluates parameter
identifiability only through histograms of final parameter values
and DRAM computes the parameter posterior distribution,
CRC estimates conditional parameter densities, and performs
robustness analysis through the MIRI indicator that quantifies
the influence of each parameter on the behavior of interest.
Indeed, the higher the MIRI value the higher the impact of the
parameter on the entire set of observables. All the innovations
introduced with CRC are important for a successful calibration
of high dimensional nonlinear models in Systems Biology
applications based on omics data.
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