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Integrating Actin and Myosin II in a
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Anotida Madzvamuse* and Benard Kipchumba Kiplangat
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This article presents a mathematical and computational model for cell migration that

couples a system of reaction-advection-diffusion equations describing the bio-molecular

interactions between F-actin and myosin II to a force balance equation describing the

structural mechanics of the actin-myosin network. In eukaryotic cells, cell migration is

largely powered by a system of actin and myosin dynamics. We formulate the model

equations on a two-dimensional cellular migrating evolving domain to take into account

the convective and dilution terms for the biochemical reaction-diffusion equations, with

hypothetically proposed reaction-kinetics. We employ the evolving finite element method

to compute approximate numerical solutions of the coupled biomechanical model in two

dimensions. Numerical experiments exhibit cell polarization through symmetry breaking

which are driven by the F-actin and myosin II. This conceptual hypothetical proof-

of-concept framework set premises for studying experimentally-driven actin-myosin

reaction-kinetic network interactions with generalizations to multi-dimensions.

Keywords: cell migration, viscousmodel, reaction-advection-diffusion equations, force balance equation, evolving

finite element method

1. INTRODUCTION

Cell migration is fundamental in many biological processes and plays a key role in wound healing,
immune response, development of embryos, inflammation, cancer invasion among others [1–6].
According to experimental observations, cell migration in eukaryotic cells is powered by actin-
myosin system [7]. The actin cytoskeleton and its corresponding motor proteins play crucial role
in cell movement. Actin is a polymer that can exist in two forms: F-actin and G-actin forms [1, 5, 6].
It converts from inactive state (G-actin) to active state (F-actin) through a process called actin
polymerization and conversely from active state to inactive state through actin depolymerization
[1, 6, 8]. The regulatory proteins are responsible for these actin polymerization-depolymerization
processes [1, 8]. Actin polymerization promoting proteins such as nucleator proteins help in
creating new actin filaments [8]. On the other hand, actin depolymerization factor such as cofilin
is capable of binding to the actin filament causing it to disintegrate and form G-actin monomers
[1, 8]. Actin filaments have two distinct ends: a plus end called barbed end which is a fast growing
end and a minus end which is a slow growing end [7, 8]. Actin filaments can assemble structures
forming networks and bundles through interaction with motor proteins [9, 10]. These structures
produce cell protrusions called lamellipodia [6, 7, 11]. Actin cytoskeleton is therefore the main
structure that contributes actively to force generation and therefore drives cell movement [6, 12].

Actin filament is responsible for force generations that drive cell migration through two major
processes, namely: (i) rapid polymerization of actin network at the cell periphery through the
growth of lamellipodia [5, 6, 13–15]. This leads to expansion of the plasma membrane and
thus to the development of a contact area with the substrate and (ii) the development of stress
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fibers and networks that are contractile due to the action of
motor proteins that tend to slide actin filaments relative to each
other [6, 15]. The most abundant motor proteins is myosin II
[9, 16]. Myosin II is known to bind to actin filaments in the
cortex, crosslinking and contracting the actin filaments, causing
cortical tension and mechanical resistance, which drives the cells’
overall behavior. These active forces from polymerization of actin
and contraction of stress fibers are eventually transmitted to
substrates through adhesion sites, hence providing the necessary
forces required for cell propulsion [1, 12]. Similarly, new actin
polymerization occurs between the cortex and the membrane,
giving rise to outward pressure-driven cell membrane pseudopod
formation, while in other regions of the cell, cortical tension pulls
along the rest of the cell body (through contractility). All these
processes when combined appropriately lead to cell movement
and deformation. Cells are however not limited to crawling as
a means of migrating. It has been observed that cells can swim
while freely suspended in a fluid [17–19]. Infact, neutrophils can
migrate with little to no adhesion [20].

For many centuries, experimental biology has occupied the
minds of many researchers in the quest to understand the
complexity of cell motility. In recent decades, mathematical and
computationalmodeling has rapidly become an essential research
technique that has greatly contributed to the understanding of
the subject of cell motility [4]. The advantage of computational
modeling is that it can overcome intrinsic experimental
limitations and therefore allow for virtual experiments which
sometimes are impossible to carry out in reality. This
allows experimentalists to probe and pause new experimental
hypotheses. It is a fact that cell motility involves a large number of
proteins that interact together in a complex way [21]. Proposing
an accurate model to account for the vast molecular interactions
involved in cell motility is therefore a non-trivial activity. It is
also largely known that the interaction of actin with its associated
proteins is usually a major factor in the derivation of models
for cell motility [4]. Many models are built on the concept that
cell motility is composed of the following stages: protrusion,
adhesion and contraction [1]. The cell pushes out the front, then
it assembles tight adhesions to the surface at the leading edge and
weakens such adhesions at the rear and finally the cell develops
contractions that pull the weakly adherent rear toward the
strongly adhered front [4]. Hence, these involve biomechanical
interactions which describe the dynamical behavior between
intra- and extra-cellular processes to enable the cell to migrate.

There have been different strategies of modeling cell
migration in the last several decades. The first modeling
efforts were directed at quantifying actin treadmill and using
thermodynamics to understand the nature and magnitude of
the polymerization force [4]. These early works introduced
fundamental ideas that are still used in developing complex
models [4]. In [22], “Polymerization Brownian ratchet”
model was proposed to describe actin polymerization as rigid
mechanism which elongates by rectifying the Brownian motion
of the membrane. According to this model, when the end
of an actin filament comes into contact with a membrane,
the membrane would diffuse away and therefore create a gap
sufficient for monomers to be added. These ratchet models

used differential-difference equations [4, 22]. Later in [23], an
improvement was made to this model to consider the filaments
as elastic springs whose behavior is a function of the bending
modulus of the filament and the angle it makes with a load at
its tip. The thermal fluctuations of actin filaments displaces the
actin filaments from the membrane and creates a gap for the
elongation of the filament [23]. This model was able to predict
an optimal angle between the actin filament and the load for the
effective force transmission. In [24], ratchet models underwent
further development when it was suggested that some of the actin
filaments are attached to the surface they push. This model, the
‘tethered ratchet’ model, explains the mechanism by assuming
that the filament attach to the surface transiently, dissociating
fast and growing freely until getting capped and losing contact
with the surface altogether [24]. In [25–27], actin polymerization
and depolymerization were treated as stochastic processes.

In [28], a mathematical model that describes key details of
actin dynamics in protrusion associated with cell motility was
developed. This model was based on the dendritic-nucleation
hypothesis for lamellipodial protrusion in non-muscle cells such
as Keratocytes. An output of the model was a relationship
between the protrusion velocity and the number of filament
barbed ends pushing the membrane. They observed that this
relationship has a local maximum: too many barbed ends
deplete the available monomer pool and too few are insufficient
to generate protrusive force. Their result suggested that to
achieve rapid motility, some tuning of parameters affecting actin
dynamics must be operating in the cell [28].

Continuum models have also been developed to study cell
motility. These models can be classified as moving boundary
problems since a motile cell is a typical example of such a
class of partial differential equations. In many cases, the models
describing the biochemical interactions between the molecular
species are coupled to a momentum balance law that accounts for
the forces driving the migration of the cell. Examples of moving
boundary problems for cell migration include (but are not limited
to): a two-phase fluid model for cytosol and the actin network
in [29], a one-dimensional viscoelastic model of the cytoplasm
and active stress generation in [30], a one-dimensional model for
the actin distribution and its reaction in [31], a two-dimensional
elastic continuummodel in [32] and a cytomechanical model that
couples a force balance mechanical equation for actin network to
a reaction-diffusion equation for actin [33]. This cytomechanical
model was later extended in [34] where they used a cartesian
coordinate system.

Another strategy is to use phase-field models as described
in these works [35–43]. In [44], a Keratocyte cell was modeled
as a two dimensional sheet with fixed area. The shape of the
cell membrane was determined by the interactions of various
forces including the surface tension, the bending forces and
the pressure that constraints the cell area. In [35, 36], a phase-
field model was used to simulate vesicles’ deformation and
tumbling while in [37, 38], the phase-field was used to study
the three dimension deformation of a vesicle membrane using
an energetic framework. An extension of this model to multi-
component vesicles was studied in [39]. In [41], a phase-
field model for the Keratocyte cell that couples actin flow and
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adhesion mechanism during cell migration was presented. In
the model, both myosin II contraction and actin polymerization
were treated as active stresses. The adhesion sites could switch
between the gripping mode and the slipping mode and their
dynamics were integrated with actin flow. They also included
tension and bending forces at the membrane. The various forces
involved in cell migration are then considered and translated into
velocity which then evolve the cell shape. Most recently, Moure
and Gomez [43] gave a comprehensive review of phase-field
models of individual and collective cell migration. They showed
individual cell migration in confined and fibrous environments
that highlight the mechanochemical interplay between the
cell and the extracellular environment. Phase-fields have been
adopted as one plausible numerical approach for handling
moving boundary problems by embedding the sharp moving
interface into a higher space-dimension which is fixed and then
defining a phase-field function that describes the location of the
cell (typically, 1 inside the cell) and (0 outside). The advantages of
employing phase-fields include (i) the reformulation of a moving
boundary problem onto a stationary domain and (ii) the method
allows for topological changes in cell shape (e.g., cell division).
On the other hand, phase-fields have disadvantages in that (i) by
embedding the model into a higher dimension, the problem is
now solved on a higher space dimension with one further partial
differential equation for the phase-field function which is used
to track the moving cell within the stationary and rather large
space domain, and that extra modeling is required if topological
changes are to be prohibited (for example by including a volume
constraint term in the momentum balance law for example).
Furthermore, refined meshes must be employed to resolve the
partial differential equations as the small interface width order
parameter is taken small. In this study, we will resort to modeling
the sharp interface rather than the diffuse-interface formulation,
for the moving boundary problem which is embedded naturally
in the two-space dimension where a momentum balance law
model is posed.

There exists many other noteworthy studies that have been
carried out to model cell motility. Recently, a multiscale
computational model coupling fluid mechanics, solid mechanics,
and pattern formation was developed to simulate fully 3D,
pseudopod-driven motility of amoeboid cells through a fluid
filled porous medium [20]. The results and analysis presented
showed a strong coupling between cell deformability and ECM
properties. In [45], both two and three dimensions (2D and
3D) cell motility models were simulated using an activator-
inhibitor system coupled with an evolving surface finite element
method. In [46], a phase-field model for a 3D amoeboid cell
was studied, including an activator-inhibitor system to describe
the cell biochemistry, transport equations to describe cytosolic
biochemistry dynamics and hydrodynamic drag to describe
adhesive forces. Simulations were performed in 2D for cells
navigating around obstacles on a substrate and in 3D for cells in
rigid periodic cylindrical fibrous networks. In [47], a 2Dmodel of
motile cells was developed using an immersed-boundary method
that resolves cell deformation, internal and external fluid flow
and a reaction-diffusion system in the entire volume of the cell
while in [48], a 2D model also using an immersed-boundary

method in which the cytoskeleton is represented as a dynamic
network of springs immersed in a fluid was presented. In
[49], a deformable cell driven under a prescribed axisymmetric
oscillating force in an unbounded medium was considered. A
phase field approach to simulate migration of neutrophils in
3D in response to external cues was presented in [50]. In [51],
a moving mesh finite element method for the approximate
solution of coupled bulk-surface reaction-diffusion equations on
an evolving two dimensional domain was studied. They used a
moving mesh partial differential equation and generated bulk
and surface meshes. They applied the method to model the two-
way interaction of a migrating cell with an external chemotactic
field. In [52, 53], a Filament Based LamellipodiumModel (FBLM)
which is a two-dimensional, anisotropic, two-phase model
derived from microscopic description was studied. This model
describes the actin network in terms of two transversal families of
parallel filaments stabilized by cross-links and substrate adhesion.
In [54], the FBLM was extended to investigate the effects of
myosin polymers. The basic assumption here being that pairs of
crossing actin filaments may be connected by myosin filaments.

Recently, Mackenzie et al. [55] investigated mass conservation
property of a fully discrete finite element approximation
of an ALE reformulation of a bulk-surface system on an
evolving domain applied to a problem on cell polarization and
chemotaxis on a moving domain. In this work, moving mesh
methods were employed to move the internal mesh given the
knowledge of the surface boundary through Dirichlet boundary
conditions. In their work, the flow velocity generated by the
force balance equation is assumed to be continuous across
the boundary, thereby giving rise to global deformation of
the mesh. Applications to cell polarization include the recent
work by Cusseddu et al. [56] where the bulk-surface finite
element method is used to generate numerical simulations
over simple and complex geometries for the bulk-surface wave
pinning model in 3-dimensions. In [57], a three-dimensional
model for chemotactic motion of amoeboid cells was proposed.
It accounted for the interactions between the extracellular
substances, the membrane-bound proteins and the cytosolic
components involved in the signaling pathway that lead to cell
motility. Most recently, Moure and Gomez [58] studied the
role of the cell nucleus in 2D cell migration where they used a
computational model of fish keratocytes.

Our model is highly non-linear and is defined on a
continuously evolving domain representing the cell. The non-
linearity of the model makes it difficult to obtain analytical
solutions. Numerical methods are therefore a good choice in
solving these models. Numerical methods for partial differential
equations consist of two parts: a space discretization to transform
the system of partial differential equations into a system of
ordinary differential equations and a time discretization to
transform the system of ordinary differential equations into a
system of linear or non-linear algebraic equations depending
on the time discretisation scheme applied. Finally, techniques
from numerical linear algebra can be employed to solve the
resulting system of linear equations. For the system of non-linear
equations, a linearization for the non-linear terms is required
in order to use numerical linear algebra. Space discretization
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methods include (but are not limited to) finite differences [59,
60], finite elements [61–63], boundary elements [64] among
other methods. The finite element method is well-known to
handle complex and evolving cellular domains and can be easily
generalized into multidimensions. It is a robust method that
has been widely used to model cell motility and other problems
involving reaction-diffusion equations in both stationary and
continuously deforming domains [65–73].

Several time discretization have been used to obtain solutions
for partial differential equations on both stationary and evolving
domains. Fully explicit methods require very small time steps
which result in computations that are expensive especially
when it comes to multi-dimensions. Ruuth [74] presented
different IMplicit-EXplicit (hence IMEX) schemes for solving
reaction-diffusion systems on stationary domains, and their
generalizations to growing domains were undertaken in [69].
The key essence of these schemes is that an implicit scheme is
applied to approximate the diffusive term and an explicit scheme
is used to approximate the reaction kinetics. The IMEX schemes
presented in [69, 74] include a first order semi-implicit backward
differentiation formula (1-SBDF) which applies a backward
differentiation formula to the diffusive term, Crank-Nicolson,
Adams-Bashforth (CNAB) which applies Crank-Nicolson to
the diffusive term and second order Adams-Bashforth to the
reaction terms, Crank-Nicolson Leap Frog (CNLF) which applies
something similar to Crank-Nicolson to the diffusive term and a
leap frog to the reaction terms, the second order semi-implicit
backward differentiation formula (2-SBDF), which applies a
second order formula to the diffusive term, the third order
semi-implicit backward differentiation formula (3-SBDF) which
applies a third order formula to the diffusive term and the
first order backward Euler finite difference scheme (1-SBEM)
which treats both the diffusive term and linear part of the
reaction term implicitly and non-linear part of the reaction semi-
implicitly. We note that the 1-SBDF, the 2-SBDF and the 3-SBDF
schemes are known to give strong decay of high frequency error
components while unfortunately the CNAB and CNLF schemes
are known to give a weak damping of high frequency error
components [74]. From numerical experiments, the 2-SBDF
is recommended as a good scheme to many two dimensional
problems [69, 74]. Recently, Madzvamuse and Chung [73] used
a fully implicit scheme to solve a system of bulk-surface coupled
reaction-diffusion equations. This scheme requires some special
linearization techniques as shown in [73]. For this work, it
is sufficient to apply the second order semi-implicit backward
differentiation formula (2-SBDF) to discretize in time, the system
of reaction-diffusion equations on the migrating cell, while
a first order forward Euler’s formula is used to update the
moving mesh.

The focus of this work is to incorporate both actin and myosin
II as well as convective terms in a reaction-diffusion model for
cell motility where the models are posed on a moving domain
with a sharp moving interface boundary. Our model involves a
reaction-diffusion equation that considers myosin II activity in
driving cell motion. We consider generalized reaction kinetics
to model polymerization and depolymerization processes, where
the kinetics take into account positive feedback from actin
filaments. We formulate a system of reaction-diffusion equations

to describe the actomyosin spatiotemporal dynamics during cell
migration that in turn drives the actin filament structure here
described by a viscous mechanical model in the absence of cell
membrane and adhesion forces, hence our model is simpler than
its phase-field counterpart [41]. Since the actomyosin system
is always contained inside the cell and does not cross the cell
boundary, we consider zero-flux boundary conditions. These
boundary conditions ensure that biochemical concentrations do
not flow across the boundary allowing for self-organization of
the molecular species within the cell. The proposed framework
is an alternative numerical or computational approach where
phase-fields have been employed to offer numerical solutions on
stationary domains which embed the migrating cell domain in a
higher space-dimension [41, 75]. This entails that we do not need
to solve an extra equation for the phase-field function that is used
to track the moving boundary. Hence, our main contribution
is the development of an evolving finite element method for
solving the moving boundary problem posed on its physical
domain that is moving. We note that in the literature, different
numerical methods have been adopted but the use of evolving
finite elements for solving models that couple biomechanics with
biochemistry are very few [71, 72]. Furthermore, there is no
need to employ refined mesh around the interface to resolve
the numerical solution of the moving boundary problem within
the small region encompassing the moving interface [76]. Our
model is able to show expansion, contraction and deformation
of the cell following actomyosin activity, with no substantial
changes in shape. Our results are consistent with biological
observations involving the migration of Keratocytes which are
known to migrate with minimal changes in shape. Our simpler
model captures the symmetry breaking process from a unit-circle
shape to a polarized shape with a well-defined front and back in
the absence of membrane and adhesion forces [56].

Hence, the structure of this article is as follows: in section
2, we present the model equations for cell migration and carry
out non-dimensionalization of the model system. In section 3,
we present a detailed moving finite element method (also now
known as the evolving finite element method) and discretize in
time to arrive at fully discrete equations. We also describe how
we solve the discrete system of equations. We present various
numerical results from our simulations in section 4. Finally, we
conclude and outline future research directions in section 5.

2. A VISCOUS MODEL FOR CELL
MIGRATION

We model the network of actin filaments in the cell as a viscous
gel with active stresses generated from the action of actin and
myosin II. The viscous model for cell migration considered in
this work comprises of a system of reaction-advection-diffusion
equations coupled to a force balance mechanical equation. Our
current model does not include cellular adhesion and membrane
forces that is brought about by tension and bending, which were
considered in [41, 75]. While adhesion plays an important role
in cell migration, it has been shown that motility can occur with
nearly no adhesion for example during cell swimming. Infact,
neutrophils can migrate with little to no adhesion [20].

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 August 2020 | Volume 6 | Article 26

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Madzvamuse and Kiplangat Viscous Model for Cell Migration

2.1. Model Formulation
Let �t ⊂ R

2 be a simply connected, bounded and continuously
deforming domain representing the cell shape at time t ∈ (0,T],
T > 0 and ∂�t be the boundary of the cell with normal n =

(n1, n2) at a point x(t). At any point x(t) = (x(t), y(t)) ∈ �t ,
let ρm = ρm(x(t), t) be the myosin II concentration, ρa =

ρa(x(t), t) be the F-actin concentration in �t and β = β(x(t), t)
be the actin flow velocity which we assume is identical to the
mesh/domain velocity of the cell. It must be noted that other
works exist [51, 55] where the flow velocity is different from
the mesh velocity. We note that points x(t) move with velocity
β(x(t), t), and that this velocity also describes the change of shape
as it is also the velocity of the boundary points, through the
continuity of boundary conditions. The model we consider is a
simpler version of previous models for cell migration [41, 75, 77]
and takes into account biochemical and mechanical structure
of the cell. It is a viscous model that couples a force balance
mechanical equation to reaction-advection-diffusion equations
for actin and myosin II as summarized below.

∇ ·
(

σν(x, t)+ σmyo(x, t)+ σpoly(x, t)
)

= 0, x ∈ �t , t ∈ (0,T],

(2.1a)

∂ρm

∂t
+ ∇ · (ρmβ) = ∇ ·

(

Dm(ρa)∇ρm
)

, x ∈ �t , t ∈ (0,T],

(2.1b)

∂ρa

∂t
+ ∇ · (ρaβ) = Da1ρa + f (ρa, ρ

cyt
a ), x ∈ �t , t ∈ (0,T],

(2.1c)

with initial conditions

ρm(x, 0) = ρ0m(x), x ∈ �0, (2.2a)

ρa(x, 0) = ρ0a (x), x ∈ �0. (2.2b)

To close the system, we apply zero-flux and stress-free boundary
conditions given by

∂ρm

∂n
=
∂ρa

∂n
= 0, x ∈ ∂�t , t ∈ (0,T], (2.3a)

σν · n = 0, x ∈ ∂�t , t ∈ (0,T], (2.3b)

and the terms in the reaction-diffusion system given by

f (ρa, ρ
cyt
a ) = kb

(

ρ2a

K2
a + ρ

2
a

+ ka

)

ρ
cyt
a − kcρa,

ρ
cyt
a =

ρtota −
∫

�t
ρa d�t

∫

�t
d�t

and Dm(ρa) =
D0
m

1+ ρa
KD

.

The terms ∇ · (ρmβ) and ∇ · (ρaβ) denote the convective and
dilution processes due to cell movement and growth and these
were not considered in some previous studies of this nature, for
example [33, 77]. Next, we introduce the quantities Dρm

Dt and
Dρa
Dt , known as the material derivatives of ρm and ρa and these

will be used throughout the sequel. The material derivatives are
defined as

Dρm

Dt
=
∂ρm

∂t
+ β · ∇ρm and

Dρa

Dt
=
∂ρa

∂t
+ β · ∇ρa,

respectively [62]. The reaction kinetics for the actin equation,

f (ρa, ρ
cyt
a ), depends on the F-actin ρa and G-actin ρ

cyt
a

concentrations [41, 75] and that G-actin is assumed to be well
mixed inside the cell [8]. Diffusion for myosin II Dm(ρa) is
assumed to depend on the F-actin concentration in such a way
that diffusion is reduced when F-actin concentration increases
[75]. We note that in the absence of F-actin, myosin II diffuses
with the constant rateD0

m. The constant Da is a positive diffusion
coefficient for F-actin [41, 75]. The terms σmyo(x, t), σν(x, t), and
σpoly(x, t) are the myosin II driven contractile, viscous, and actin
generated stresses, respectively, and are given by [41]

σmyo(x, t) = η0mρm(x, t)I, η
0
m ∈ R

+,

σν(x, t) =
ν0

2

(

∇β(x, t)+ (∇β(x, t))T
)

, ν0 ∈ R
+

and σpoly(x, t) = −η0aρa(x, t)δ(l)I, η
0
a ∈ R

+,

where 1
2

(

∇β(x, t)+ (∇β(x, t))T
)

represents the rate of strain
tensor, I is the identity tensor in two dimensions and δ(l) labels
the cell periphery. The constants ν0, η0m, and η

0
a are the shear

viscosity coefficient, myosin II contraction coefficient, and F-
actin protrusion coefficient, respectively. Table 1 shows a list
of all the model parameters used. We have prescribed zero-
flux boundary conditions to model spontaneous random cell
migration and set initial conditions for both actin and myosin II.
The polymerization stress only acts in the cell periphery. In order
to describe this stress, we will assume an initial domain of a disk
and specify that σpoly(x, t) only acts in the region which is some
distance l from the centre of the disk domain. With this we define
the function δ(l) to be of the form

δ(l) =











1 if the point x is such its distance from the origin of

the disk is more than l,

0 otherwise.

This means that far from the cell periphery, only the contractile
stress acts on the cell and close to the cell periphery both the
contractile and the actin generated polymerization stresses act on
the cell.
Remark

It must be noted that the model system (2.1a-2.1c), although
posed on a two-dimensional deforming domain, generalizes
immediately to three-dimensional volumes. Similarly, the
application of the evolving finite element method to the model
system also generalizes to three-dimensional volumes.

2.2. The Non-dimensionalized Model
We introduce non-dimensional rescaled variables as follows:

ρ̂m =
ρm

Ka
, ρ̂a =

ρa

Ka
, β̂ =

β

kbR
, t̂ = tkb,
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TABLE 1 | Dimensional parameters and their values as used in the model.

Parameters Description Value References

Da Actin diffusion coefficient 0.8µm2/s [41]

D0
m Max myosin II diffusion coefficient 2µm2/s [75]

ν0 Shear viscosity coefficient for actin 103 pNs/µm [78]

η0a F-actin protrusion coefficient 560pNµm2 [41]

η0m Myosin II contraction coefficient 100pNµm [41]

Ka Positive feedback threshold 1µm−2 [79]

ka Base polymerization rate 0.01 [79]

kc F-actin depolymerization rate 10 s−1 [79]

kb Overall polymerization rate 10 s−1 [79]

KD Myosin II diffusion threshhold 0.5µm−2 [75]

ρtota Total actin density 800 [41]

where R is the scaling factor for length. For notational simplicity,
we drop all hats and the resulting non-dimensionalized viscous
model for cell migration with non-dimensionalized parameters
given in Table 2 therefore reads

∇ ·
(

σν(x, t)+ σmyo(x, t)+ σpoly(x, t)
)

= 0, x ∈ �t , t ∈ (0,T],

(2.4a)

∂ρm

∂t
+∇ · (ρmβ) = ∇·

((

1

1+ aρa

)

∇ρm

)

, x ∈ �t , t ∈ (0,T],

(2.4b)

∂ρa

∂t
+ ∇ · (ρaβ) = d1ρa +

(

ρ2a

1+ ρ2a
+ ka

)

ρ
cyt
a

− eρa, x ∈ �t , t ∈ (0,T], (2.4c)

with initial conditions given by

ρm(x, 0) = ρ0m(x) , x ∈ �0, (2.5a)

ρa(x, 0) = ρ0a (x) , x ∈ �0, (2.5b)

and boundary conditions

∂ρa

∂n
=
∂ρm

∂n
= 0, x ∈ ∂�t , t ∈ (0,T], (2.6a)

σν · n = 0, x ∈ ∂�t , t ∈ (0,T], (2.6b)

with

ρ
cyt
a (t) =

ρtota −
∫

�t
ρa d�t

∫

�t
d�t

,

σmyo(x, t) = η1ρm(x, t)I, η1 ∈ R
+,

σν(x, t) = ∇β(x, t)+ (∇β(x, t))T ,

σpoly(x, t) = −η2ρa(x, t)δ(l)I, η2 ∈ R
+,

where ρa, ρm, and β are the dependent variables for this model.
The initial domain is now a disk with radius r = 1. Since the
polymerization force is assumed to work only in the periphery
of the cell [8], we let it act only in the region l ≥ 0.8. The
delta function δ(l) ensures that polymerization force only act in
this region.

3. THE EVOLVING FINITE ELEMENT
METHOD FOR SIMULATING THE VISCOUS
MODEL

We employ the evolving (moving grid) finite element method
to derive a numerical scheme for the non-dimensionalized
viscous model for cell migration. We use the evolving finite
elements [61] to discretize the viscous model in space and
apply a second order semi-implicit backward differentiation
formula (2-SBDF) [69, 74] to discretise the system of reaction-
diffusion equations in time. To update the mesh after solving the
equations in each timestep, we apply a first order forward Euler
method. Convergence analysis for the reaction-diffusion system
was undertaken on stationary domains (in the absence of the
viscous model) and second-order convergence was established
(results not shown). Demonstrating convergence for the full
viscous model is an open problem due to the non-linear coupling
between the mechanical and biochemical models. The evolving
finite element method is an efficient method that is able to
deal with complex and irregular geometries and has been
widely used for growing and deforming domains [67–69, 72].
From numerical experiments, the 2-SBDF is recommended as
an efficient numerical time integrating scheme for reaction-
diffusion equations. For more illustration on these, see for
example [74]. Further information on the implementation of
the evolving finite element method and time-integration can be
found in [80].

The evolving finite element method therefore involves the
following steps: derivation of weak formulation of the partial
differential equations, the finite element spatial discretization
to obtain a system of semi-discrete equations and a temporal
discretization to obtain fully discrete system of equations.

3.1. Derivation of the Weak Formulation
3.1.1. Weak Formulation of the

Reaction-Advection-Diffusion Equations

Reaction-advection-diffusion equations formyosin II and F-actin
are, respectively, given by

∂ρm

∂t
+ ∇ · (ρmβ) = ∇ ·

(

1

1+ aρa
∇ρm

)

, (3.1a)

∂ρa

∂t
+ ∇ · (ρaβ) = d1ρa +

(

k3ρ
2
a

1+ ρ2a
+ k4

)

ρ
cyt
a − eρa,

(3.1b)

where ρm = ρm(x(t), t) and ρa = ρa(x(t), t) are the myosin II
and F-actin concentrations, respectively, and β = β(x(t), t) =

(β1,β2) is the flow velocity of the actin network. Here, we note
that the reaction kinetics of F-actin only depends on ρa variable
and no reaction kinetics for the myosin II equation.
In order to obtain the weak formulation, we will rearrange (3.1a)
and (3.1b). We apply product rule for gradient to the advection
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TABLE 2 | Non-dimensional parameter values for the non-dimensionalized viscous model.

Parameters a k3 k4 d e b η1 η2 ρtot
a l

Value 2.0 500.0 5.0 0.4 500.0 500.0 0.02 0.112 10.0 0.8

terms and write the equations as

∂ρm

∂t
+ β · ∇ρm + ρm∇ · β = ∇ ·

(

1

1+ aρa
∇ρm

)

, (3.2a)

∂ρa

∂t
+ β · ∇ρa + ρa∇ · β = d1ρa

+

(

k3ρ
2
a

1+ ρ2a
+ k4

)

ρ
cyt
a − eρa.

(3.2b)

We recall that the quantities ∂ρm
∂t + β · ∇ρm and ∂ρa

∂t + β · ∇ρa
are called material derivatives of ρm and ρa and are written as
Dρm
Dt = ∂ρm

∂t + β · ∇ρm and Dρa
Dt = ∂ρa

∂t + β · ∇ρa. Now, using
this definition for material derivatives above, we write (3.2a) and
(3.2b) as

Dρm

Dt
+ ρm∇ · β = ∇ ·

(

1

1+ aρ
∇ρm

)

, (3.3a)

Dρa

Dt
+ ρa∇ · β = d1ρa +

(

k3ρ
2
a

1+ ρ2a
+ k4

)

ρ
cyt
a − eρa, (3.3b)

respectively. In order to obtain the weak formulations, we
multiply (3.3a) and (3.3b) by sufficiently smooth functions
ψ1(x, t), ψ2(x, t) and integrate using Green’s formula [81, 82] in

the domain �t and use the boundary conditions ∂ρa
∂n = ∂ρm

∂n = 0.
This yields

∫

�t

(

ψ1
Dρm

Dt
+ ψ1ρm∇ · β

)

d�t

= −

∫

�t

1

1+ aρa
∇ψ1 · ∇ρm d�t , (3.4a)

∫

�t

(

ψ2
Dρa

Dt
+ ψ2ρa∇ · β

)

d�t

= −

∫

�t

d∇ψ2 · ∇ρad�t

+

∫

�t

ψ2

((

k3ρ
2
a

1+ ρ2a
+ k4

)

ρ
cyt
a − eρa

)

d�t . (3.4b)

We further use the product rule for the time derivatives in the
Equations (3.4a) and (3.4b) and write

∫

�t

(

D(ψ1ρm)

Dt
− ρm

Dψ1

Dt
+ ψ1ρm∇ · β

)

d�t

= −

∫

�t

1

1+ aρa
∇ψ1 · ∇ρm d�t , (3.5a)

∫

�t

(

D(ψ2ρa)

Dt
− ρa

Dψ2

Dt
+ ψ2ρa∇ · β

)

d�t

= −

∫

�t

d∇ψ2 · ∇ρad�t

+

∫

�t

ψ2

((

k3ρ
2
a

1+ ρ2a
+ k4

)

ρ
cyt
a − eρa

)

d�t . (3.5b)

Finally Reynold’s transport theorem [83] gives

d

dt

∫

�t

ψ1ρm d�t −

∫

�t

ρm
Dψ1

Dt
d�t

= −

∫

�t

1

1+ aρa
∇ψ1 · ∇ρm d�t , (3.6a)

d

dt

∫

�t

ψ2ρa d�t −

∫

�t

ρa
Dψ2

Dt
d�t

= −

∫

�t

d∇ψ2 · ∇ρa d�t

+

∫

�t

ψ2

((

k3ρ
2
a

1+ ρ2a
+ k4

)

ρ
cyt
a − eρa

)

d�t . (3.6b)

3.1.2. Weak Formulation of the Force Balance

Equation

The force balance equation on an evolving domain �t

representing the cell is given by

{

∇ ·
(

σν(x, t)+ σmyo(x, t)+ σpoly(x, t)
)

= 0, x ∈ �t , t ∈ (0,T],

σν · n = 0, x ∈ ∂�t , t ∈ (0,T],
(3.7)

where σν(x, t), σmyo(x, t), and σpoly(x, t) are the viscous, myosin
II driven, and F-actin generated stresses, respectively. In order to
write the weak formulation of the force balance above, we first
decouple the stresses into x and y directions as follows.















































σν(x, t) =





2 ∂β1
∂x

(

∂β2
∂x + ∂β1

∂y

)

(

∂β2
∂x + ∂β1

∂y

)

2 ∂β2
∂y



 ,

σmyo(x, t) =

(

η1ρm 0

0 η1ρm

)

,

σpoly(x, t) =

(

−η2ρaδ(l) 0

0 −η2ρaδ(l)

)

.

(3.8)
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The force balance equation in x and y directions is therefore

∂

∂x

(

2
∂β1

∂x

)

+
∂

∂y

(

∂β2

∂x
+
∂β1

∂y

)

+
∂(η1ρm)

∂x

−
∂

∂x

(

η2ρaδ(l)
)

= 0, (3.9a)

∂

∂x

(

∂β2

∂x
+
∂β1

∂y

)

+
∂

∂y

(

2
∂β2

∂y

)

+
∂(η1ρm)

∂y

−
∂

∂y

(

η2ρaδ(l)
)

= 0. (3.9b)

We then multiply the decoupled equations (3.9a) and (3.9b) by
sufficiently smooth functions ψ3,ψ4, respectively, use Green’s
formula to integrate in the domain and apply the stress free
boundary condition given. The boundary terms will vanish and
the weak formulation thus reads: find β1(x(t), t), β2(x(t), t) ∈

H1(�t) such that

∫

�t

(

2
∂ψ3

∂x

(

∂β1

∂x

)

+
∂ψ3

∂y

(

∂β2

∂x
+
∂β1

∂y

))

d�t

=

∫

�t

ψ3

(

∂f

∂x

)

d�t , (3.10a)

∫

�t

(

∂ψ4

∂x

(

∂β2

∂x
+
∂β1

∂y

)

+ 2
∂ψ4

∂y

(

∂β2

∂y

))

d�t

=

∫

�t

ψ4

(

∂f

∂y

)

d�t , (3.10b)

for sufficiently smooth functions ψ3,ψ4, where f = δ(l)η2ρa −
η1ρm.

We find it convenient to rewrite the right hand sides of
equations (3.10a) and (3.10b) such that we have the derivatives
of the shape function ψ3 and ψ4 instead of function f which
depends on the solution values. Applying Green’s Theorem [82]
to equations (3.10a) and (3.10b) gives

∫

�t

(

2
∂ψ3

∂x

(

∂β1

∂x

)

+
∂ψ3

∂y

(

∂β2

∂x
+
∂β1

∂y

))

d�t =

−

∫

�t

f
∂ψ3

∂x
d�t +

∫

∂�t

(

n1fψ3
)

dS, (3.11a)

∫

�t

(

∂ψ4

∂x

(

∂β2

∂x
+
∂β1

∂y

)

+ 2
∂ψ4

∂y

(

∂β2

∂y

))

d�t =

−

∫

�t

f
∂ψ4

∂y
d�t +

∫

∂�t

(

n2fψ4
)

dS, (3.11b)

where dS is the surface element and n = (n1, n2) is the outward
unit normal to the boundary.

3.1.3. Weak Formulation of the Coupled Problem

The weak formulation for the coupled problem is summarized
as follows:

find ρm(x(t), t), ρa(x(t), t), β1(x(t), t), β2(x(t), t) ∈ H1(�t)
such that

d

dt

∫

�t

ψ1ρm d�t −

∫

�t

ρm
Dψ1

Dt
d�t

= −

∫

�t

1

1+ aρa
∇ψ1 · ∇ρm d�t , (3.12)

d

dt

∫

�t

ψ2ρa d�t −

∫

�t

ρa
Dψ2

Dt
d�t

= −

∫

�t

d∇ψ2 · ∇ρa d�t

+

∫

�t

ψ2

((

k3ρ
2
a

1+ ρ2a
+ k4

)

ρ
cyt
a − eρa

)

d�t , (3.13)

and similarly for the force balance equation, we have

∫

�t

(

2
∂ψ3

∂x

(

∂β1

∂x

)

+
∂ψ3

∂y

(

∂β2

∂x
+
∂β1

∂y

))

d�t

= −

∫

�t

f
∂ψ3

∂x
d�t +

∫

∂�t

(

n1fψ3
)

dS, (3.14)

∫

�t

(

∂ψ4

∂x

(

∂β2

∂x
+
∂β1

∂y

)

+ 2
∂ψ4

∂y

(

∂β2

∂y

))

d�t

= −

∫

�t

f
∂ψ4

∂y
d�t +

∫

∂�t

(

n2fψ4
)

dS, (3.15)

for all sufficiently smooth functions {ψk}
4
k=1 ∈ H1(�t), where

f = δ(l)η2ρa − η1ρm.

3.2. Finite Element Discretisation
Numerical solutions for the weak formulations are defined in
an infinite dimensional space H1(�t). The essence of the finite
element method is to seek solutions in a finite dimensional space.

We let �h,t be the computational domain which is a
polyhedral approximation to �t . We define Th(t) to be a
triangulation of �h,t made up of non-degerate rectangular
elements Ki such that Th(t) =

⋃

i Ki. We call each Ki an element
of the mesh Th(t) where h is the diameter of the largest element.
For the mesh Th(t), we require that it is made up of a finite
number of elements and the elements must intersect along a
complete edge, or at a vertex or not at all. The space discretisation
is carried out using quadrilateral elements and we seek piece-wise
linear approximation of the solution. We note that points in �h,t

nowmove with velocity βh = (βh1 ,β
h
2 ) and that

D
Dt now stands for

the material derivative with respect to the discrete flow velocity
βh. We define the finite element space Vh(t) by

Vh(t) =
{

vh(t) ∈ C0(�) : vh(t)|K is linear
}

. (3.16)

We will seek finite element solutions of the viscous model in this
space. The discretised version of (3.12–3.15) therefore reads: find

ρhm(x(t), t), ρ
h
a (x(t), t), β

h
1 (x(t), t),β

h
2 (x(t), t) ∈ Vh(t)
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such that

d

dt

∫

�h,t

ψh
1 ρ

h
m d�h,t −

∫

�h,t

ρhm
Dψh

1

Dt
d�h,t

= −

∫

�h,t

1

1+ aρha
∇ψh

1 · ∇ρhm d�h,t , (3.17)

d

dt

∫

�h,t

ψh
2 ρ

h
a d�h,t −

∫

�h,t

ρha
Dψh

2

Dt
d�h,t

=

∫

�h,t

ψh
2

((

k3(ρha )
2

1+ (ρha )
2
+ k4

)

ρ
cyt,h
a − eρha

)

d�h,t

−

∫

�h,t

d∇ψh
2 · ∇ρha d�h,t , (3.18)

and similarly for the force balance equation, we have

∫

�h,t

(

2
∂ψh

3
∂x

(

∂βh1
∂x

)

+
∂ψh

3
∂y

(

∂βh2
∂x +

∂βh1
∂y

))

d�h,t (3.19)

= −
∫

�h,t
f h
∂ψh

3
∂x d�h,t +

∫

∂�h,t
n1f

hψh
3 dS,

∫

�h,t

(

∂ψh
4

∂x

(

∂βh2
∂x +

∂βh1
∂y

)

+ 2
∂ψh

4
∂y

(

∂βh2
∂y

))

d�h,t (3.20)

= −
∫

�h,t
f h
∂ψh

4
∂y d�h,t +

∫

∂�h,t
n2f

hψh
4 dS,

for all {ψh
k
}4
k=1 ∈ Vh(t), where

f h = δ(l)η2ρ
h
a − η1ρ

h
m. (3.21)

We define a basis function for the space Vh(t) by φi(x, t) ∈ Vh(t)
for i = 1, 2, ...,Nh such that

φi(xj, t) =

{

1 if i = j,

0 if i 6= j,
(3.22)

where xj(t) is the jth nodal point of the mesh and Nh is the
total number of degrees of freedom of the nodes. We seek finite
element approximations of the form

ρhm(x, t) =

Nh
∑

j=1

ωj(t)φj(x, t), ρ
h
a (x, t) =

Nh
∑

j=1

ρj(t)φj(x, t),

βh1 (x, t) =

Nh
∑

j=1

Uj(t)φj(x, t), β
h
2 (x, t) =

Nh
∑

j=1

Vj(t)φj(x, t).

We note that the shape function φj is a function of time t. We will
make use of the following Lemma:

Lemma: Transport property of the basis functions: The finite
element space on the discretized domain is a space of continuous
piece-wise linear functions whose nodal basis functions have the
remarkable property

Dφi(x, t)

Dt
|K = 0 (3.23)

on element K for all φi where the derivative denotes the material
derivative [84].

3.2.1. Semi-discrete Equations for the

Reaction-Advection-Diffusion Equations

In equations (3.17) and (3.18), we substitute {ψh
l
(x, t)}2

l=1 by

φi(x, t), i = 1, 2, ...,Nh and ρ
h
m, ρ

h
a by their corresponding finite

element approximations and use (3.23).
This gives

d

dt





Nh
∑

j=1

∫

�h,t

φi(x, t) · φj(x, t)ωj(t) d�h,t





= −

Nh
∑

j=1

∫

�h,t

∇φi(x, t) · ∇φj(x, t) ωj(t)

1+ a
∑Nh

k=1 ρk(t)φk(x, t)
d�h,t ,

and

d

dt





Nh
∑

j=1

∫

�h,t

φi(x, t) · φj(x, t)ρj(t) d�h,t





= −d

Nh
∑

j=1

∫

�h,t

∇φi(x, t) · ∇φj(x, t) ρj(t) d�h,t

−e

Nh
∑

j=1

∫

�h,t

φi(x, t) · φj(x, t)ρj(t) d�h,t

+k4amon(t)

∫

�h,t

φi(x, t) d�h,t

+k3amon(t)

∫

�h,t

φi(x, t)
(

∑Nh
j=1 ρj(t)φj(x, t)

)2

1+ (
∑Nh

j=1 ρj(t)φj(x, t))
2

d�h,t ,

respectively, for all i = 1, 2, ...,Nh. The parameter amon(t)
represents the well mixed actin monomers concentration at

time t and corresponds to the integral
∫

�h,t
ρ
cyt,h
a d�h,t . Now,

integrating over �h,t yields the semi-discrete equations for the
reaction-advection-diffusion equations as

d

dt

(

M(t)ω(t)
)

= −S(ρ(t))ω(t), (3.24)

d

dt

(

M(t)ρ(t)
)

= −(dK(t)+ eM(t))ρ(t)+ amon(t)k4H(t)

+ k3amon(t)L(ρ(t)), (3.25)

where ω(t) = (ω1(t),ω2(t), ...,ωNh
(t))T and ρ(t) =

(ρ1(t), ρ2(t), ..., ρNh
(t))T are the solution vectors and amon(t)

is actin monomers concentration at time t. M(t) is the time-
dependent global mass matrix, K(t) is the time-dependent global
stiffness matrix, H(t) is the time-dependent global force vector
and S(ρ(t)) and L(ρ(t)) are the time-dependent matrix and
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vector, respectively, which are functions of the solution vectors.
These are given by.

M(t) = {mij(t)} : mij(t) =

∫

�h,t

φi(x, t) · φj(x, t)d�h,t ,

K(t) = {kij(t)} : kij(t) =

∫

�h,t

∇φi(x, t) · ∇φj(x, t)d�h,t ,

S(ρ(t)) = {sij(t)} : sij(t) =

∫

�h,t

∇φi(x, t) · ∇φj(x, t)

1+ a
∑Nh

k=1 ρk(t)φj(x, t)
d�h,t ,

L(ρ(t)) = {li(t)} : li(t) =

∫

�h,t

φi(x, t)
(

∑Nh

k=1 ρk(t)φk(x, t)
)2

1+ (
∑Nh

k=1 ρk(t)φj(x, t))
2

d�h,t ,

H(t) = {hi(t)} : hi(t) =

∫

�h,t

φi(x, t)d�h,t .

3.2.2. Semi-discrete Equations for the Force Balance

Equation

In (3.19) and (3.20), we substitute {ψh
l
(x, t)}4

l=3 by φi(x(t), t), i =

1, 2, ...,Nh and βh1 , β
h
2 , ρ

h
m, ρ

h
a by their corresponding finite

element approximations and integrate over �h,t . The semi-
discrete equation in x-direction will be

Nh
∑

j=1

∫

�h,t

(

2
∂φi

∂x

(

∂φj

∂x
Uj(t)

)

+
∂φi

∂y

(

∂φj

∂x
Vj(t)+

∂φj

∂y
Uj(t)

))

d�h,t =

−

∫

�h,t

(

f h(x(t))
∂φi

∂x

)

d�h,t +

∫

∂�h,t

(

n1f
h(x(t))φi

)

dS,

(3.26)

for all i = 1, 2, ...,Nh and can be rearranged as

Nh
∑

j=1

∫

�h,t

(

2
∂φi

∂x

∂φj

∂x
+
∂φi

∂y

∂φj

∂y

)

Uj(t)d�h,t

+

Nh
∑

j=1

∫

�h,t

∂φi

∂y

∂φj

∂x
Vj(t)d�h,t =

−

∫

�h,t

(

f h(x(t))
∂φi

∂x

)

d�h,t +

∫

∂�h,t

(

n1f
h(x(t))φi

)

dS,

(3.27)

for all i = 1, 2, ...,Nh. We note that (3.27) can be written as

a11(t)U1(t)+ a12(t)U2(t)+ · · · + a1Nh
(t)UNh

(t)+ b11(t)V1(t)

+ · · · + b1Nh
(t)VNh

(t) = F11(t),

a21(t)U1(t)+ a22(t)U2(t)+ · · · + a2Nh
(t)UNh

(t)+ b21(t)V1(t)

+ · · · + b2Nh
(t)VNh

(t) = F12(t),

...

aNh1(t)U1(t)+ · · · + aNhNh
(t)UNh

(t)+ bNh1(t)V1(t)

+ · · · + bNhNh
(t)VNh

(t) = F1Nh
(t),

where aij(t), bij(t), and F1i (t) are integrals over �h,t given by

A(t) =
{

aij(t)
}

: aij(t) =

∫

�h,t

(

2
∂φi

∂x

∂φj

∂x
+
∂φi

∂y

∂φj

∂y

)

d�h,t ,

B(t) =
{

bij(t)
}

: bij(t) =

∫

�h,t

∂φi

∂y

∂φj

∂x
d�h,t ,

F1(ρ(t),ω(t)) =
{

F1i (t)
}

: F1i (t) = −

∫

�h,t

(

f h(x(t))
∂φi

∂x

)

d�h,t

+

∫

∂�h,t

(

n1f
h(x(t))φi

)

d∂�h,t .

This means we can split the left hand side of the above system of
equations into two parts: one with Uj(t) and the other with Vj(t).
Similarly, the y-direction of the force balance equation is

Nh
∑

j=1

∫

�h,t

∂φi

∂x

∂φj

∂y
Uj(t)d�h,t

+

Nh
∑

j=1

∫

�h,t

(

∂φi

∂x

∂φj

∂x
+ 2

∂φi

∂y

∂φj

∂y

)

Vj(t)d�h,t =

−

∫

�h,t

(

f h(x(t))
∂φi

∂y

)

d�h,t +

∫

∂�h,t

(

n2f
h(x(t))φi

)

dS,

(3.28)

for all i = 1, 2, ...,Nh, and expanded as

c11(t)U1(t)+ c12(t)U2(t)+ · · · + c1Nh
(t)UNh

(t)+ d11(t)V1(t)

+ · · · + d1Nh
(t)VNh

(t) = F21(t),

c21(t)U1(t)+ c22(t)U2(t)+ · · · + c2Nh
(t)UNh

(t)+ d21(t)V1(t)

+ · · · + d2Nh
(t)VNh

(t) = F22(t),

...

cNh1(t)U1(t)+ · · · + cNhNh
(t)UNh

(t)+ dNh1(t)V1(t)

+ · · · + dNhNh
(t)VNh

(t) = F2Nh
(t),
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with cij(t), dij(t), and F2i (t) integrals over �h,t given by

C(t) =
{

cij(t)
}

: cij(t) =

∫

�h,t

∂φi

∂x

∂φj

∂y
d�h,t ,

D(t) =
{

dij(t)
}

: dij(t) =

∫

�h,t

(

∂φi

∂x

∂φj

∂x
+ 2

∂φi

∂y

∂φj

∂y

)

d�h,t .

F2(ρ(t),ω(t)) =
{

F2i (t)
}

: F2i (t) = −

∫

�h,t

(

f h(x(t))
∂φi

∂y

)

d�h,t

+

∫

∂�h,t

(

n2f
h(x(t))φi

)

d∂�h,t .

These systems of equations can be written more compactly in
matrix-vector form as follows




























a11 a12 · · · a1Nh
b11 b12 · · · b1Nh

a21 a22 · · · a2Nh
b21 b22 · · · b2Nh

...
...

. . .
...

...
...

. . .
...

aNh1 aNh2 · · · aNhNh
bNh1 bNh2 · · · bNhNh

c11 c12 · · · c1Nh
d11 d12 · · · d1Nh

c21 c22 · · · c2Nh
d21 d22 · · · d2Nh

...
...

. . .
...

...
...

. . .
...

cNh1 cNh2 · · · cNhNh
dNh1 dNh2 · · · dNhNh

























































U1(t)
U2(t)
...

UNh
(t)

V1(t)
V2(t)
...

VNh
(t)





























=































F11(ρ(t),ω(t))
F12(ρ(t),ω(t))

...
F1Nh

(ρ(t),ω(t))

F21(ρ(t),ω(t))
F22(ρ(t),ω(t))

...
F2Nh

(ρ(t),ω(t))































, (3.29)

where aij, bij, cij and dij are functions of time t. The vectors

(U1(t), U2(t) , · · · ,UNh
(t))T and (V1(t), V2(t) , · · · ,VNh

(t))T

are the solution vectors. We let

A =











a11 a12 · · · a1Nh

a21 a22 · · · a2Nh

...
...

. . .
...

aNh1 aNh2 · · · aNhNh











, B =











b11 b12 · · · b1Nh

b21 b22 · · · b2Nh

...
...

. . .
...

bNh1 bNh2 · · · bNhNh











,

C =











c11 c12 · · · c1Nh

c21 c22 · · · c2Nh

...
...

. . .
...

cNh1 cNh2 · · · cNhNh











, D =











d11 d12 · · · d1Nh

d21 d22 · · · d2Nh

...
...

. . .
...

dNh1 dNh2 · · · dNhNh











,



















U(t) = (U1(t), U2(t) , · · ·UNh
(t))T ,

V(t) = (V1(t), V2(t) , · · ·VNh
(t))T ,

F1(t) = (F11(ρ(t),ω(t)), F
1
2(ρ(t),ω(t)) , · · · , F

1
Nh
(ρ(t),ω(t)))T ,

F2(t) = (F21(ρ(t),ω(t)), F
2
2(ρ(t),ω(t)) , · · · , F

2
Nh
(ρ(t),ω(t)))T ,

and write (3.29) in block-vector form as
(

A(t) B(t)
C(t) D(t)

)(

U(t)
V(t)

)

=

(

F1(ρ(t),ω(t))
F2(ρ(t),ω(t))

)

. (3.30)

We also note from (3.27) and (3.28) thatC(t) = (B(t))T and write
(3.30) as

(

A(t) B(t)
(B(t))T D(t)

)(

U(t)
V(t)

)

=

(

F1(ρ(t),ω(t))
F2(ρ(t),ω(t))

)

. (3.31)

We let

A(t) =

(

A(t) B(t)
(B(t))T D(t)

)

, ξ (t) =

(

U(t)
V(t)

)

, F =

(

F1(ρ(t),ω(t))
F2(ρ(t),ω(t))

)

,

and have the following semi-discrete equation for the force
balance equation.

A(t)ξ (t) = F(ρ(t),ω(t)). (3.32)

3.2.3. Semi-discrete Equations for the Coupled

Problem

The semi-discrete equations for the reaction-advection-diffusion
and the force balance equation are of the form.

d

dt

(

M(t)ω(t)
)

= −S(ρ(t))ω(t), (3.33)

d

dt

(

M(t)ρ(t)
)

= −(dK(t)+ eM(t))ρ(t)+ amon(t)k4H(t)

+ k3amon(t)L(ρ(t)), (3.34)

A(t)ξ (t) = F(ρ(t),ω(t)). (3.35)

3.3. Fully Discrete Model
To obtain fully discrete equations for the coupled problem, we
discretise the time interval (0,T] into a finite number N of
uniform sub-intervals with sub-interval size τ = tn+1 − tn and
write tn = τn. From the semi-discrete equations

d

dt

(

M(t)ω(t)
)

= −S(ρ(t))ω(t), (3.36)

d

dt

(

M(t)ρ(t)
)

= −(dK(t)+ eM(t))ρ(t)+ amon(t)k4H(t)

+ k3amon(t)L(ρ(t)), (3.37)

we employ the 2-SBDF as follows

3M(tn+1)ω(tn+1)− 4M(tn)ω(tn)+M(tn−1)ω(tn−1)

2τ

= −S(ρ(tn))ω(tn+1),

and

3M(tn+1)ρ(tn+1)− 4M(tn)ρ(tn)+M(tn−1)ρ(tn−1)

2τ

= −dK(tn+1)ρ(tn+1)

+ 2
(

−eM(tn)ρ(tn)+ k4amon(t
n)H(tn)+ k3amon(t

n)L(ρ(tn))
)

−
(

−eM(tn−1)ρ(tn−1)+ k4amon(t
n−1)H(tn−1)

+k3amon(t
n−1)L(ρ(tn−1))

)

.
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For (3.35), we compute A(t) and F(ρ(t),ω(t)) at time step tn as
follows

A(tn)ξn+1 = F(ρ(tn),ω(tn)).

The above equations yield the following fully discrete equations

(

3M(tn+1)+ 2τS(ρ(tn))
)

ω(tn+1) = 4M(tn)ω(tn) (3.38a)

−M(tn−1)ω(tn−1),
(

3M(tn+1)+ 2dτK(tn+1)
)

ρ(tn+1) = 4M(tn)ρ(tn)

−M(tn−1)ρ(tn−1)

+4τ
(

−eM(tn)ρ(tn)+ k4amon(t
n)H(tn)+ k3amon(t

n)L(ρ(tn))
)

−2τ
(

−eM(tn−1)ρ(tn−1)+ k4amon(t
n−1)H(tn−1)

+k3amon(t
n−1)L(ρ(tn−1))

)

, (3.38b)

A(tn)ξn+1 = F(ρ(tn),ω(tn)), (3.38c)

with τ as the time-step size, ρ(tn+1) and ω(tn+1) are the actin
filaments and myosin II solutions at time tn+1 and ξn+1 is the
velocity solutions at time tn+1.

3.3.1. One-Step Backward Euler Scheme

We will need solutions at the last two time steps in order
to implement the 2-SBDF. We therefore implement a one-
step backward Euler method to solve for ρ(t1) and ω(t1) and
then proceed with 2-SBDF scheme. A one-step backward Euler
scheme for (3.33) and (3.34) is given by.

(

M(t1)+ τS(ρ(t0))
)

ω(t1) = M(t0)ω(t0), (3.39)
(

M(t1)+ dτK(t1)
)

ρ(t1) = (1− eτ )M(t0)ρ(t0)

+ τk4amon(t
0)H(t0)+ τk3amon(t

0)L(ρ(t0)). (3.40)

3.3.2. Displacements of the Nodes

We now describe how the nodes of the mesh will be displaced
to obtain a new nodal location. The position of any new node
will be a function of its current position and the amount of
displacement it has achieved. Let tn+1 = tn + τ and consider
the points x(tn) ∈ �h,tn and x(tn+1) ∈ �h,tn+1 in the respective
domains. We can define a first order linear approximation of the
flow velocity as follows:

ξ (x(tn), tn) =
x(tn+1)− x(tn)

τ
. (3.41)

This means that the new domain can be approximated by

x(tn+1) = x(tn)+ τξ (x(tn)), (3.42)

where ξ (x(tn)) is the solution of the force balance equation at
time tn. We note that the mesh is updated at each time step and
that τξ (x(tn)) is the displacement from point x(tn) to x(tn+1).
Thus, the new nodal position will be given as the sum of the
current node and its displacement. It must be observed that (3.42)
is simply an update of the mesh from one time level to the other,
hence a first order forward Euler scheme is sufficient.

4. NUMERICAL RESULTS

The resulting numerical scheme is a coupled system of linear
equations. To implement the discretization, we use deal.II library
which is an open source and efficient finite element library
written in C++ [85]. The coupled systems of linear equations
are solved using a preconditioned conjugate gradient (PCG) and
generalized minimal residual (GMRES) methods [86–88].

Let t = nτ , where τ denotes the time-step size and n the
number of time-steps. We consider the unit disk �0 as the initial
domain and subdivide this domain using quadrilateral elements.
We would like to make a note that our numerical method was
validated for convergence and stability for the case of a stationary
non-migrating cell (results not shown). We showed that the 2-
SBDF method used to solve the system of reaction-diffusion
equations is a second order.

We only exhibit simulations of an evolving cell. We used a
finite element mesh with 5185 quadrilateral elements and applied
a 2-SBDF scheme with time-step τ = 10−3 to compute solutions
to final time t = 4. The parameters used for the simulations are
displayed in Table 2. The solution for this model is in the form
of F-actin and myosin II concentrations and the speed of the
cell |(βh1 ,β

h
2 )|. F-actin and myosin II solutions are the solution

of the reaction-advection-diffusion equations (2.4b) and (2.4c)
while speeds of the cell come from solution of the force balance
equation (2.4a). We begin simulations on a unit disk to represent
the cell at initial time with zero initial speed. Initial conditions
are random perturbations about ρa = ρm = 1.0 as shown in
Figure 1.

We observe that the initial conditions chosen determine the
dynamics of F-actin and cell shape. Choosing a perturbation
about ρa = 1.0 as the initial condition for ρa variable leads
to a uniform expansion of the cell. Figure 2 shows one set of
solution set with initial data for the concentrations as random
perturbation about ρm = 1 and ρa = 1 and all other parameters
as in Table 2. In Figure 2C, we observe that the solution βh

has its highest value around the points where x2 + y2 = 0.8.
These correspond to the points where δ(l) is discontinuous.
Figure 2D shows change in area with time of the evolving cell.
We varied the initial condition for ρa variable. Choosing a non-
zero concentrations of ρa = 1.0 only in one half of the cell
leads to symmetry breaking where the cell identifies its front
and rear. This leads to an irregular expansion of the cell and
hence in a directed migration of the cell toward the direction
with high F-actin concentrations. Figures 3A–E is a solution
set when considering initial data for myosin II as random
perturbation about ρm = 1, initial condition for ρa non-zero
only in one half of the cell and all other parameters as in Table 2.
Figures 3E,F show the initial mesh and mesh at the end of the
simulation, respectively.

Actin changes from its active state (F-actin) to inactive
state (G-actin) and vice-versa through polymerization and
depolymerization processes and hence the total amount of
actin is conserved at all time as shown in Figure 4A. F-actin
assembles together causing expansive stress on the cell.We varied
the parameter for total amount of actin, ρtota , in the cell by
considering three cases: ρtota = 10, increasing the parameter
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FIGURE 1 | Initial conditions for the variables. We begin simulations by considering initial concentrations of the variables, respectively, as random perturbations about

(A) ρm = 1.0, (B) ρa = 1.0, and (C) stationary cell at initial time. Blue signifies lowest values while red highest values.

FIGURE 2 | Graphical display of numerical solution illustrating a growing cell at time t = 4. This is a case when considering initial condition as random perturbations

about ρa = ρm = 1.0. Blue signifies lowest values while red signifies highest values. (A) solution for ρm variable, (B) solution for ρa variable, (C) cell speed at final time

showing higher speeds as the concentration of F-actin increases, and (D) area of the growing cell as a function of time showing increase in area of the cell with time.

to ρtota = 16 and decreasing the parameter to ρtota = 5. We
observed that the more the total amount of actin, the more
the expansion of the cell. Figures 4B–D show change in the
area of the evolving cell with time as a result of varying the
parameter ρtota . In our model, myosin II only diffuses inside
the cell and therefore no reaction kinetics involving myosin
II variable.

5. CONCLUSION AND FUTURE
DIRECTIONS

In this work, we considered an alternative approach to classical
phase-fields approach by formulating the model equations on
a sharp interface moving boundary problem for a single cell
migrating on a two-dimensional moving domain. The problem
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FIGURE 3 | Graphical display of numerical solution illustrating a migrating cell at time t = 4 when considering a non-zero initial condition of ρa = 1 only in one half of

the cell. Blue signifies lowest values while red signifies highest values. (A) Solution for ρm variable, (B) solution for ρa variable and (C) cell speed at final time.

Polymerization of actin leads to cell deformation where the cell expands more in the regions with higher actin filament concentrations. (D,E) are the finite element

meshes of the simulations at initial and final times, respectively, which have been enlarged for clarity.

involves a system of reaction-diffusion equations posed on
a growing domain, where the velocity of the moving actin
filaments is identical to the flow velocity of the domain and this
velocity is modeled by a momentum balance equation within
a viscous framework. In this approach the flow of the actin
network is treated as a Newtonian fluid. We then employed
the evolving finite element method to provide numerical
approximate solutions of the model equations on the physical
Lagrangian moving domain. This method does not allow for
topological changes in cell shape unlike the phase-fieldmodel and
also does not require a sufficiently refined mesh close to the sharp
moving boundary interface. Furthermore, the method renders
itself naturally to three-dimensional extensions.

Actin filaments and myosin II are the main sources of stresses
in the cell and are responsible for driving cell migration. We
varied the parameter for total actin and observed a linear
relationship between the cell expansion and total amount of
actin. The more the total amount of actin, the more the
expansion. A decrease in the total amount of actin beyond a
certain threshold leads to cell shrinking. Myosin II is responsible
for cell contraction. By varying the contraction coefficient for
myosin II, we observed contraction of the cell. The initial

condition also played a role in the dynamics of cell migration.
We considered two sets of initial conditions for the F-actin and
myosin II variables. A random perturbation about ρa = 1 led
to uniform expansion of the cell where the periphery of the cell
expanded or contracted uniformly. By considering a non-zero
initial concentration of F-actin only in one half of the cell, we
observed a directed growth of the cell where the cell expanded
in the direction with more actin concentration and began to
migrate in that direction. The findings and conclusion from
our work is therefore as follows: in the absence of advection
of actin and myosin II and domain evolution, the biochemical
model for F-actin and myosin II will reach steady state and that
the actomyosin system is responsible for driving cell migration.
Some of the parameters and variables that are important in the
dynamics of cell migration are: the initial conditions for F-actin,
the total amount of actin inside the cell, the contraction and
polymerization coefficients.

In this paper, no rigorous numerical convergent analysis
has been undertaken due to the complex nature of the
coupling between mechanics and biochemistry during domain
growth and this aspect forms part of our current studies.
Furthermore, extensions of this work include the introduction
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FIGURE 4 | (A) Conservation of mass for actin with total amount of actin as ρtota = 10, (B) area of the growing cell as a function of time for the case ρtota = 10 as

shown in Table 2, (C) area of the cell with an increased total amount of actin ρtota = 16 while all other parameters in Table 2 held constant and (D) decreasing area of

the cell with a reduced total amount of actin ρtota = 5 while all other parameters in Table 2 held constant.

of a mechanism for volume constraint or conservation,
incorporation of cell adhesion and membrane forces, cell-to-cell
interactions, extensions to many cells, cell migration through
obstacles and formulating experimentally driven actomyosin
reaction dynamics, just to mention a few.
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