
ORIGINAL RESEARCH
published: 28 August 2020

doi: 10.3389/fams.2020.00029

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 August 2020 | Volume 6 | Article 29

Edited by:

Xiaoming Huo,

Georgia Institute of Technology,

United States

Reviewed by:

Shuo Chen,

University of Maryland, Baltimore,

United States

Jianjun Wang,

Southwest University, China

*Correspondence:

Marek Rychlik

rychlik@arizona.edu

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 02 March 2020

Accepted: 03 July 2020

Published: 28 August 2020

Citation:

Rychlik M (2020) Deductron—A

Recurrent Neural Network.

Front. Appl. Math. Stat. 6:29.

doi: 10.3389/fams.2020.00029

Deductron—A Recurrent Neural
Network
Marek Rychlik*

Department of Mathematics, University of Arizona, Tucson, AZ, United States

The current paper is a study in Recurrent Neural Networks (RNN), motivated by the lack

of examples simple enough so that they can be thoroughly understood theoretically, but

complex enough to be realistic.We constructed an example of structured data, motivated

by problems from image-to-text conversion (OCR), which requires long-term memory to

decode. Our data is a simple writing system, encoding characters ’X’ and ’O’ as their

upper halves, which is possible due to symmetry of the two characters. The characters

can be connected, as in some languages using cursive, such as Arabic (abjad). The

string ’XOOXXO’ may be encoded as ’∨∧∧∨∨∧’. It is clear that seeing a sequence

fragment ’|∧∧∧∧∧|’ of any length does not allow us to decode the sequence as ’…XXX…’

or ’…OOO…’ due to inherent ambiguity, thus requiring long-termmemory. Subsequently

we constructed an RNN capable of decoding sequences like this example. Rather than

by training, we constructed our RNN “by inspection,” i.e., we guessed its weights. This

involved a sequence of steps. We wrote a conventional program which decodes the

sequences as the example above. Subsequently, we interpreted the program as a neural

network (the only example of this kind known to us). Finally, we generalized this neural

network to discover a new RNN architecture whose instance is our handcrafted RNN. It

turns out to be a three-layer network, where the middle layer is capable of performing

simple logical inferences; thus the name “deductron.” It is demonstrated that it is possible

to train our network by simulated annealing. Also, known variants of stochastic gradient

descent (SGD) methods are shown to work.

2010 Mathematics Subject Classification: 92B20, 68T05, 82C32.

Keywords: recurrent neural network, machine learning, Tensorflow, optical character recognition, image

processing

1. INTRODUCTION

Recurrent Neural Networks (RNN) have gained significant attention in recent years due to their
success in many areas, including speech recognition and image-to-text conversion and Optical
Character Recognition (OCR) [1, 2]. These are systems which respond to sequential inputs such
as time series. With skillfull implementation, they have the ability to react to the stimuli in real time
which is at the root of their applications to building intelligent systems. The classes of RNN which
memorize and forget a certain amount of information are especially interesting.

Yet, it is hard to find in literature examples of data which can be easily understood, and which
demonstrably require remembering and forgetting information to operate correctly. In this paper
we will provide such an example of data, define the related machine learning problem and solve

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2020.00029
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2020.00029&domain=pdf&date_stamp=2020-08-28
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rychlik@arizona.edu
https://doi.org/10.3389/fams.2020.00029
https://www.frontiersin.org/articles/10.3389/fams.2020.00029/full

Rychlik Deductron—A Recurrent Neural Network

it using typical machine learning tools. Our analysis will be
rigorous whenever possible, reflecting our mathematical and
computer science point of view. Thus, we will constantly
pivot between three subjects (math, computer science, and
connectionist artificial intelligence) hopefully providing an
insightful study, which can be continued in various directions by
the reader. We also included a number of exercises varying in the
degree of difficulty which should make reading more fun.

Several review-type survey articles on RNN exist, providing
a comprehensive discussion of various RNN architectures and
survey of results and techniques [3–5]. We do not attempt
to provide such a survey, but we rather focus on some key
aspects of the theory which we feel are not covered by existing
work. Specifically, in the current paper we are interested in
explaining the need for long-term memory, in addition to short-
term memory. In the last 20 years LSTM (Long-Short Memory)
RNNs have been applied to a variety of problems with artificial
intelligence flavor, in particular, speech-to-text conversion and
optical character recognition [6, 7]. We find that typical examples
used to illustrate LSTM are too complex to understand how the
network performs its task. In particular:

(1) Why is there a need for long and short term memory in
specific problems?

(2) How does one discover good neural network architectures?
Are there general approaches?

(3) Are neural networks interpretable?

Let us further define the problem of interpretability of a neural
net model. This problem has become central in current research
[8]. The essence of a neural model is captured in a (typically) large
set of parameters, the weights, which is often beyond the human
ability of comprehension of data. In particular, the significance
to the application domain is often a mystery, and the user must
treat the model as a black box. On the other hand, conventional,
imperative computer programs can be understood, and are often
constructed by the domain experts, thus capturing the essential
knowledge of the domain as a set of rules. Given a neural net
model, can we develop the underlying rule system?

In order to address these questions, we construct:

(1) a simple, synthetic dataset which captures the essential
features of the OCR problem for cursive scripts, such
as Arabic;

(2) a simple, yet powerful RNN architecture suitable for solving
the OCR problem;

(3) a process of discovery of RNN architectures, in which
the essential step is a transition between a “conventional”
algorithm and a “connectionist” solution in the form of
RNN; it is important that the process can be carried out in
both directions:

(a) the process provides a method to define RNN
architectures, starting with a conventional (imperative,
rule based) program to solve simple instances of the
application domain problem;

(b) the process provides an interpretation of an RNN, in the
form of a computer program that could be written and

understood by a human programmer; the construction of
the program must be automated.

While the above outline will be addressed in significant detail,
several other directions will be deferred to future papers.
In particular, the current paper will not contain large-scale
“real life” applications of the deductron architecture. However,
significant evidence has accumulated already, demonstrating
that the deductron may be used in place of well-known RNN
architectures, LSTM andGRU, with similar, and sometimes better
outcomes. In particular, the deductron architecture is not a toy
architecture and it can be used in real applications. Examples are
described in section 11. Notably, a detailed example in which
we use deductron as an LSTM replacement is presented in
section 11.2.

2. THE W-LANGUAGE AND LONG-TERM
MEMORY

In order to have a suitable example of data, we constructed a
simple (artificial) writing system (we will call it the W-language,
or “wave language”), encoding characters ’X’ and ’O’ as their
upper halves, i.e., ∨ and ∧ (this is possible due to reflectional
symmetry of ’X’ and ’O’ and no other two Latin characters would
do). The characters can be connected, as in some languages. Thus,
’XOOXXO’ is encoded in our alphabet as ’∨∧∧∨∨∧’. Hence, the
written text looks like a sequence of waves, with one restriction: a
wave that starts at the bottom (top), must end at the bottom (top).

Let us explain the fact that decoding sequences of characters
requires long-term memory. It is clear that seeing a sequence
fragment ’|∧∧∧∧∧|’ of any length does not allow us to decode
the sequence as ’. . . XXX. . . ’ or ’. . .OOO . . . ’ due to inherent
ambiguity. Thus, it is necessary to remember the beginning of the
“wave” (bottom or top) to resolve this ambiguity. Hence the need
for memory; in fact, we need to remember what was written an
arbitrarily long time ago in order to determine whether a given
sequence should be decoded as a sequence of ’X’ or as a sequence
of ’O’.

Having invented our (artificial) writing system, we construct
an RNN (in some ways similar to LSTM) capable of decoding
sequences like the examples provided above, with 100% accuracy
in the absence of errors. In the presence of errors, the accuracy
should gracefully drop off, demonstrating robustness; this will
not be pursued in the current paper.

What we will focus on is a construction of the RNN network

in an unusual, and hopefully enlightening way. Rather than

proposing a network architecture in a “blue skies research”
fashion (or looking at prior work), we wrote a conventional
program which decodes the sequences as the example above,
operating on a binary image representation, with vertical
resolution of three pixels. Subsequently, we re-interpreted the
program as a neural network, and thus obtained a neural network
“by inspection” (the only non-trivial example of this sort we are
aware of). We then generalized this neural network to discover a
new RNN architecture whose instance is our handcrafted RNN.
It turns out to be a three-layer network, where the middle layer

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

is capable of performing simple logical inferences; thus the name
deductron will be used for our newly discovered architecture.

The next stage of our study is to pursue machine learning,
using the new RNN architecture. We considered two methods of
machine learning:

(1) Simulated annealing;
(2) Stochastic Gradient Descent (SGD).

In particular, we developed a training algorithm for the new
architecture, by minimizing a standard cost function (also called
the loss function in the machine learning community) with
simulated annealing. The training algorithm was demonstrated
to find a set of weights and biases of the neural network which
yields a decoder capable of solving the decoding problem for the
W-language. In some runs, the decoder is logically equivalent
to the manually constructed decoder. Thus, we proved that
our architecture can be trained to write programs functionally
equivalent to hand-coded programs written by a human. It is
possible to learn a decoding algorithm from a single sample of
length 30 (encoding the string ’XOOXXO’).

We also applied a different method of training the deductron
called back-propagation through time (BPTT) and known
to succeed in training other RNNs. This, and other back-
propagation based algorithms require computing gradients
of complicated functions, necessitating application of the
Chain Rule over complex dependency graphs. Modern tools
perform the gradient calculation automatically. One such tool
is Tensorflow [9]. We implemented machine learning using
Tensorflow and some programming in Python. We took
advantage of the SGD implementation in Tensorflow. In
particular, we used the Adam optimizer [10]. Using standard
steps, we demonstrated that the decoder for the W-language can
be constructed by learning from a small sample of valid sequences
(of length≈ 500).

Both simulated annealing and BPTT methods worked
with relative ease when applied to our problem of decoding
the W-language.

3. THE W-LANGUAGE AND WRITING
SYSTEM FORMALISM

In the current paper we study a toy example of a system for
sending messages like:

...XOOXXO...

The message is thus expressed as a string in alphabet consisting
of letters ’X’ and ’O’. However, we assume that the message is
transcribed by a human or a human-like system, by writing it on
paper, and scanning it to a digital image, e.g., like in Figure 1.

Letters ’X’ and ’O’ were chosen because they are symmetric
with respect to reflections along the horizontal axis. We assume
that the receiver of the message sees only the upper half of
the message, which could look like Figure 2. Thus, our effective
alphabet is

A = {∨,∧} .

However, when rendering the messages in this alphabet, we may
connect the consecutive characters, as in various script-based
languages, i.e., we write in cursive. The message is also subject
to errors of various kinds, resulting in something like Figure 3.
More severe errors could be, for instance, random bit flips, i.e.,
the input message could be subjected to the binary symmetric
channel [11].

For the purpose of constructing a minimalistic example still
possessing the features of the motivating example, we think of
digitized representations of the messages, which are five pixels
tall. Thus, the “top” of the message is only three pixels tall, and
it consists of a sequence of vectors representing the columns
of the image. Let us introduce the vectors appearing in the
messages, first using standard mathematical notations, and their
pictorial equivalents:

0 =





0
0
0



 = , e1 =





1
0
0



 = , e2 =





0
1
0



 = ,

e3 =





0
0
1



 = .

These are the vectors which may occur if we are precisely
observing the rules of calligraphy of our messages, as illustrated
by Figure 1. We adopt the following convention:

Convention 1 (Increasing direction of index). The following rules
will be adhered to throughout the paper:

(1) In the mathematical notation, components of (column) vectors
are numbered by an index that increases downwards (the usual
“textbook” convention);

(2) In the corresponding pictorial representation the index
increases upwards.

Based on the experiences of the readers of the drafts of this paper,
it is expected that the reader will need to refer to the above formal
convention when certain index calculations become confusing.

Our sample message ’XOOXXO’ is thus represented by the
sequence of vectors:

0, e3, e2, e1, e2, e3, e1, e2, e3, e2, e1, e2, e3, e2, e1, e3, e2, e1, e2,

e3, e2, e1, e2, e3, e1, e2, e3, e2, e1, 0.

We can also represent the message pictorially as a 3 × 30 image,
i.e., a matrix of bits, as in Figure 4A, obtained by concatenation of
pictorial representations of the vectors representing the message.
In Figure 4B we represent the image as raw data (a 2D matrix
of bits).

We could consider “errors” obtained by inserting extra 0

vectors between e1 and e3 signaling a long break between symbols
’X’ and ’O’. We could repeat some vectors. Generally, the image
should consist of a number of “waves” and “breaks”. We note
that the “wave” portion of the pattern may be arbitrarily long.
However, a picture like Figure 5 cannot be interpreted as a long
sequence ’...XXXX...’ or ’...OOOO...’. We must go back to the last

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

FIGURE 1 | Handwritten sample representing string ’XOOXXO’.

FIGURE 2 | The top portion of the handwritten sample representing string ’XOOXXO’.

FIGURE 3 | The top portion of the handwritten sample representing string ’XOOXXO’, with some errors.

FIGURE 4 | Two equivalent representations of a W-language message, one of which could be produced on an ordinary typewriter. (A) Binary image of the message

‘XOOXXO’. (B) Binary image of the message ‘XOOXXO’ as raw bits; a typewriter equivalent of the above.

“break” (one of the transitions 0 → e1, 0 → e3, e2 → e1, e2 →
e3) which begins a run of ’O’ or ’X’. Thus decoding an image like
Figure 2 is very similar to decoding a sequence encoded using
Run Length Encoding (RLE), in which we code runs of characters

’X’ and ’O’. The transition tells us whether we are starting an ’X’
(∗ → e3, where ∗ denotes 0 or e2) or ’O’ (∗ → e1).

The image consists of a certain number of complete waves
possibly separated with breaks. A properly constructed complete

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

FIGURE 5 | A wave.

wave begins and ends in the same vector, either e1 or e3. It can
be divided into rising and falling spans. For example, a rising
span would be a sequence e1, e2, e2, e3, e3. That is, the non-zero
coordinate of the vector moves upwards. A break is simply a run
of 0 vectors. Such a run must be preceded and followed by e1
or e3. Since the rising and falling spans are of arbitrary length,
we must remember whether we are rising or falling, to validate
the sequence, and to prevent spans like e3, e2, e2, . . . , e2, e3 which
should not occur in a valid sequence. A complete wave starting
with e3 must begin with a falling span, and alternate rising and
falling spans afterwards, finally terminating with a rising span. In
order to decode a wave correctly as a sequence of ’X’ or ’O’, we
must remember whether we are currently rising or falling.

In short, we have to remember two things:

(1) Are we within ’X’ or ’O’?
(2) Are we rising or falling?

There is some freedom in choosing the moment when to emit a
character ’X’ or ’O’. We could do it as soon as we begin a rising or
falling span terminating in the vector which started the wave. Or
we can wait for completion of the span, e.g., when a rising span
ends and a falling span begins, or has a jump e3 → e1 or e3 → 0
(jump e3→ e2 would be an error).

There is a simple graphical model (a topological Markov chain,
also called a subshift of finite type) which generates all error-free
sequences which can be decoded in Figure 6. As we can see, the
states of the Markov chain correspond to the vectors 0, e1, e2,
and e3, except that vector e2 has two corresponding states: e±2 .
The state e+2 (e−2) can only be entered when we encounter vector
e2 on a rising (falling) span. Thus, the state e±2 is a state that
“remembers” whether it is on a rising or falling span. The total
number of states is thus 5.

In computer science and computer engineering the more
common term is finite state machine (FSM) or finite state
automaton. This is essentially a Topological Markov Chain with
distinguished initial and final states. Our Topological Markov
Chain generates complete expressions of the W-language iff
they start at 0, e1, or e3. Thus, initial and final states are these
three states.

Exercise 1 (Regular W-language generation). Draw a diagram,

analogous to Figure 6 which describes only those sequences

in which the rising and falling spans never stall, thus no

frame repeats. We can call the resulting language a strict W-
language. Assume that there are no breaks between symbols, i.e.,
connecting two consecutive ’X’ or ’O’ is mandatory. ♠

FIGURE 6 | The topological Markov chain which can be used to generate

training data for our network. A valid transition sequence should start and end

on one of the nodes: e1, e3, or 0. Thus, it cannot start or end at e±2 .

TABLE 1 | Recognizing character boundaries.

First column Second column Event

0 or e1 e3 Beginning of ’X’.

0 or e3 e1 Beginning of ’O’.

Exercise 2 (Higher resolution W-languages). Our W-language
uses vertical resolution of 3 pixels. Define language Wk in which
symbols are k pixels high. Consider the strict variant, also.♠

4. A CONVENTIONAL W-LANGUAGE
DECODING ALGORITHM

Our next goal is to devise a simple algorithm which will
correctly decode the sequences encoded in the W-language.
We emphasize that the algorithm is “conventional” rather than
“connectionist,” although the lines between these two approaches
to programming will be (deliberately) blurred in the following
sections. In order to correctly decode an image like in Figure 4A

processing it sequentially, by column, from left to right, we need
to detect and memorize the events associated with starting a
new character. The detection is possible by looking at a “sliding
window” of 2 consecutive column vectors. In Table 1 we listed
patterns of vectors in both columns that let us determine whether
we are starting a new character. Let

X =





x1,1 x1,2
x2,1 x2,2
x3,1 x3,2





Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

FIGURE 7 | Sliding windows at the boundary of two characters. (A) Window at the end of ’O’ and start of ’X’. (B) Window at the end of ’X’ and start of ’O’.

TABLE 2 | The meaning of z1 and z2.

Value of z1 Meaning Value of z2 Meaning

1 Beginning of ’X’ 1 Beginning of ’O’

0 Not beginning of ’X’ 0 Not beginning of ’O’

TABLE 3 | Character emission rules.

Conditions Value of z1 Value of z2 Action

x1,2 = 1 0 1 Emit ’X’

x3,2 = 1 1 0 Emit ’O’

All others ∗ ∗ Nothing

be the sliding window. We note that the matrix X is “upside
down” relative to the image in Figure 4A, due to conflicting
conventions. Matrices, like X and their mapping to computer
memory, are written starting with the first row at the top, and the
image in Figure 4A has the first row of pixels at the bottom. The
mapping of elements of matrix X to the pixels is made explicit in
Figure 7.

The beginning of ’X’ is thus detected by the logic statement:

x2,1 = 0 ∧ x3,1 = 0 ∧ x3,2 = 1

Similarly, the beginning of ’O’ is detected by the logic statement:

x2,1 = 0 ∧ x1,1 = 0 ∧ x1,2 = 1

These conditions can be expressed using auxiliary variables:

y1 = ¬x2,1 ∧ ¬x3,1 ∧ x3,2

y2 = ¬x2,1 ∧ ¬x1,1 ∧ x1,2

The event can be recorded and memorized by setting variables
z1 and z2 which indicate whether we are at the beginning of ’X’
and ’O’, respectively. By convention, the meaning of the values
of z1 and z2 is just given in Table 2. We also will use the vector
z = (z1, z2). Knowing z1 and z2 allows us to emit ’X’ or ’O’
when we encounter the extreme values e1 and e3. We observe
that ’X’ is emitted upon encountering a minimum in signal, i.e.,

Algorithm 1: A basic, handcrafted algorithm for decoding an
image representing a sequence of ’X’ and ’O’.

Require:

The input parameterX holds the sliding window of the image
with two consecutive columns.
Global variables z1, z2, emitX , emitO. ⊲ Variables must persist
outside this procedure.

Ensure:

emitX is set to 1 iff ’X’ is detected in the input, else it is set to
0;
emitO is set to 1 iff ’O’ is detected in the input, else it is set to
0.

1: emitX ← 0
2: emitO← 0
3: y1 = ¬x2,1 ∧ ¬x3,1 ∧ x3,2 ⊲ Set y1 if start of ’X’.
4: y2 = ¬x2,1 ∧ ¬x1,1 ∧ x1,2 ⊲ Set y2 if start of ’O’.

5: if y1 then
6: z1 ← 1 ⊲ Remember we are in ’X’.
7: z2 ← 0 ⊲ And remember we are not in ’O’.
8: else if y2 then
9: z1 ← 0 ⊲ Remember we are not in ’X’.
10: z2 ← 1 ⊲ And remember we are in ’O’.
11: end if

12: emitX ← x1,2 ∧ z1
13: emitO← x3,2 ∧ z2

value e1, while ’O’ is emitted upon encountering a maximum, i.e.,
e3. Table 3 summarizes the actions which may result in emitting
a symbol. The action on every sliding window may result in
setting the value of z1 or z2 and/or emitting a symbol. Whether
the symbol is emitted or not will be signaled by setting a variable
emitX or emitO, respectively. In the algorithm, emitX and emitO
are global variables; their values persist outside the program. The
program tells the caller that an ’X’ or ’O’ was seen. The caller calls
the program on all frames (sliding windows) in succession, from
left to right.

It is clear that an algorithmwhich correctly performs decoding
should look like Algorithm 1. We divided the algorithm into
three sections, with horizontal lines. These sections nearly exactly
correspond to the three layers of the neural network (deductron),
which will be constructed from this program. Although we
designed our algorithm to use a sliding window, this is not

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

necessary (Hint: You can buffer your data from within your
algorithm, using persistent, i.e., global variables).

Exercise 3 (Elimination of sliding window). Design an algorithm
similar to Algorithm 1 which takes a single column (frame) of the
image as input. ♠

Exercise 4 (Pixel at a time). Design a similar algorithm to
Algorithm 1 which takes a single pixel as input, assuming vertical
progressive scan: pixels are read from bottom-to-top, and then
left-to-right. ♠

Exercise 5 (Counting algorithms). Count the number of
distinct algorithms similar to Algorithm 1. That is, count the
algorithms which:

(1) operate on a sliding window with 6 pixels;
(2) use two 1-bit memory cells;
(3) produce two 1-bit outputs.

Clearly, one of them is our algorithm.♠

Exercise 6 (The precise topological Markov chain). Note that
the transition graph in Figure 6 allows for generation of partial
characters ’X’ and ’O’. For example, the sequence:

0, e1, e
+
2 , e3, 0

would result in emitting an ’O’ by our program, but the ’O’
would never be completed. Prove that the transition diagram
in Figure 8 enforces completion of characters. In fact, prove
that this topological Markov chain is 100% compatible with
Algorithm 1. What is the role of superscripts “f” and “s”?♠

Exercise 7 (Deductron and Chaotic Dynamics). In this exercise
we develop what can be considered a custom pseudorandom
number generator, which generates valid sequences in the W-
language. It mimics the operation of a linear congruential random
number generator (e.g., [12], Chapter 3). This exercise requires
some familiarity with Dynamical Systems, for example, in the
scope of Chapter 6 of [13]. Figure 9 we have an example of a
simple chaotic dynamical system: a piecewise linear mapping
of an interval f :[0, 11) → [0, 11). This mapping is piecewise
expanding, i.e., |f ′(x)| > 1 except for the discontinuities. In
fact, f ′(x) ∈ {2, 4}. The intervals [k, k + 1), k = 0, 1, . . . , 8 are
in 1:1 correspondence with the states of the Markov chain in
Figure 8. This allows us to generate valid expressions of the W-
language by using the dynamics of f . We simply choose a random
initial condition x0 ∈ [0, 9) and create a trajectory by successive
applications of f :

xn+1 = f (xn).

Let kn be a sequence of numbers such that xn ∈ [kn, kn + 1)
for n = 0, 1, Let sn be the corresponding sequence of states
labeling the intervals, in the set

{es3,X , e
−
2,X , e1,X , e

+
2,X , e1,X , e

f
3,X , 0, e

s
1,O, e

+
2,O, e3,O, e

−
2,X , e

f
1,X}.

The idea is the second subscript (’X’ or ’O’) keeps track of which
symbol we are in the middle of. The superscript ± on e±2,X and

e±2,O keeps track of whether we are rising or falling, as before. The

superscripts ’s’ (for ’start’) and ’f ’ (for ’finish’) indicate whether we
are starting or finishing the corresponding character. Thus, es3,X

means we are starting an ’X’, and e
f
3,X means we are finishing an

’X’. The difference is that a finished character must be followed by
a blank or the other character, and must not continue the same
character. Prove that s0, s1, . . . , sn, . . . is a valid sentence the W-
language. Conversely, show that for every such sentence there
is an initial condition x0 ∈ [0, 11) reproducing this sentence.
Moreover, for infinite sentences x0 is unique.♠

5. CONVERTING A CONVENTIONAL
PROGRAM TO A NEURAL NET

Our ultimate goal is to construct a neural network which
will decode the class of valid inputs. A neural network does
not evaluate logical expressions and does not have the control
structure of conventional programs. Instead, it performs certain
arithmetical calculations and it outputs results based on hard or
soft thresholding.

The next step toward a neural network consists in rewriting
our program so that it uses arithmetic instead of logic, and has
no control structures, such as “if ” statements. We replace logical
variables with real variables, but initially we restrict their values
to 0 and 1 only. It is important that the logical operations (“and,”
“or,” and negation) are performed as arithmetic on real values.

The conditions in Algorithm 1 can be expressed arithmetically
(as every prepositional calculus formula can). We introduce
the variables:

y1 = S(x2,1 + x3,1 + (1− x3,2))

y2 = S(x2,1 + x1,1 + (1− x1,2))

where S is a function on integers defined by

S(a) =

{

1 a ≤ 0,

0 a ≥ 1.
(1)

S plays the role of an activation function, in the language of
neural computing. Variables y1 and y2 are conceptually related
to perceptrons, or, in language closer to statistics, they are binary
linear classifiers. We note that this function allows an easy test of
whether a number of variables are 0. Variables u1, u2, . . . , ur with
values in the set {0, 1} are all zero iff

S





r
∑

j=1

uj



 = 1.

We obtain Algorithm 2. The final adjustment to the algorithm is
made in Algorithm 2 in which we replace all conditionals with
arithmetic. This results in Algorithm 3.

Upon close inspection, we can regard the algorithm as
an implementation of a neural network with several types of
neurons (gates).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

FIGURE 8 | An improved topological Markov chain. The idea is to have essentially two copies of the diagram in Figure 6, the left part for ’X’ and the right part for ’O’.

Also, some states are split to enforce completion of characters (the states with superscript “f” are “final” in generating each character).

FIGURE 9 | A piecewise linear mapping f :[0, 11)→ [0, 11), in which every piece has slope 2 or 4. The intervals [k, k + 1) are labeled with the states of the topological

Markov chain in Figure 8.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

Algorithm 2: A version of the basic, handcrafted algorithm for
decoding an image representing a sequence of ’X’ and ’O’ in
which logical operations were replaced with arithmetic.

Require:

The input parameterX holds the sliding window of the image
with two consecutive columns.
Global variables z1, z2, emitX , emitO. ⊲ Variables must persist
outside this procedure.

Ensure:

emitX is set to 1 iff ’X’ is detected in the input, else it is set to
0;
emitO is set to 1 iff ’O’ is detected in the input, else it is set to
0.

1: emitX ← 0 ⊲ Initialize to 0 (no emitting).
2: emitO ← 0 ⊲ Initialize to 0 (no emitting).
3: y1 = S(x2,1 + x3,1 + (1− x3,2)) ⊲ Set y1 if start of ’X’.
4: y2 = S(x2,1 + x1,1 + (1− x1,2)) ⊲ Set y2 if start of ’O’.

5: if y1 then
6: z1 ← 1 ⊲ Remember we are in ’X’.
7: z2 ← 0 ⊲ And remember we are Not in ’O’.
8: else if y2 then
9: z1 ← 0 ⊲ Remember we are not in ’X’.
10: z2 ← 1 ⊲ And remember we are in ’O’.
11: end if

12: emitX ← S((1− x1,2)+ (1− z1))
13: emitO ← S((1− x3,2)+ (1− z2))

(1) Perceptron-type, with formula

yi = S





∑

j

wijxj + bi



 .

(2) “Forget and replace” gate:

z′ = U(y, z, z′)

where

U(y, z, z′) =

{

z′ y = 1,

z y = 0.

Or arithmetically,

U(y, z, z′) = (1− y) · z + y · z′.

This kind of gate provides a basic memory mechanism,
where z is preserved if y = 0, or replaced with z′ if y = 1.

Using the newly introduced U-gate we rewrite our main
algorithm as Algorithm 4.

Algorithm 3: A version of the basic, handcrafted algorithm for
decoding an image representing a sequence of ’X’ and ’O’ in
which all conditionals were converted to arithmetic. We can view
this code as an algorithm calculating activations and outputs of a
neural network with several types of neurons.

Require:

The input parameterX holds the sliding window of the image
with two consecutive columns.
Global variables z1, z2, emitX , emitO. ⊲ Variables must persist
outside this procedure.

Ensure:

emitX is set to 1 iff ’X’ is detected in the input, else it is set to
0;
emitO is set to 1 iff ’O’ is detected in the input, else it is set to
0.

1: y1 ← S(x2,1 + x3,1 + (1− x3,2)) ⊲ Set y1 if start of ’X’.
2: y2 ← S(x2,1 + x1,1 + (1− x1,2)) ⊲ Set y2 if start of ’O’.

3: z1← (1− y1)z1+ y1 ⊲ If start of ’X’, remember we are in ’X’.
4: z2← (1− y1)z2 ⊲ If start of ’X’, remember we are not in ’O’.
5: z2← (1− y2)z2+ y2 ⊲ If start of ’O’, remember we are in ’O’.
6: z1← (1− y2)z1 ⊲ If start of ’O’, remember we are not in ’X’.

7: emitX ← S((1− x1,2)+ (1− z1)) ⊲Minimum and in ’X’.
8: emitO← S((1− x3,2)+ (1− z2))) ⊲Maximum and in ’O’.

6. AN ANALYSIS OF THE U-GATE AND A
NEW V-GATE

The U-gate implements in essence the modus ponens inference
rule of prepositional logic:

p, p→ q H⇒ q.

Indeed, p represents the replace port of a U-gate. The assignment
q← U(p, q, 1) is equivalent to p→ q in the following sense: the
boolean variable q represents a bit stored in memory. If p is true,
q is asserted, i.e., set to true, so that the logical expression p→ q
is true (has value 1). Similarly, the assignment q ← U(p, q, 0) is
equivalent to p → ¬q, i.e., q is set to 0, so that p → ¬q is true.
Thus, if q is set to 1, the fact q is retracted, and the fact ¬q is
asserted. This semantics is similar to the semantics of the Prolog
system without variables, where we have a number of facts, such
as “q” or “¬q”, in the Prolog database. Upon execution, facts can
be asserted or retracted from the database.

Thus, the inference layer consists of:

(1) a number of variables q1, q2, . . . , qn with some values of the
variables set to either 0 or 1. Some of the variables may not
be initialized, i.e., hold an undefined value;

(2) a number of assignments qj ← U(pk, qj, rj) where rj = 0
or rj = 1, where the order of the assignments matters; the
order may only be changed if the new order will always result
in the same values for all variables after all assignments are
processed; some assignments can be performed in parallel,
if they operate on disjoint sets of variables qj, so that the
order of processing of the groups does not affect the result;

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

Algorithm 4: A version of the basic, handcrafted algorithm for
decoding an image representing a sequence of ’X’ and ’O’. Explicit
gates are used to underscore the neural network format.

Require:

The input parameterX holds the sliding window of the image
with two consecutive columns.
Global variables z1, z2, emitX , emitO. ⊲ Variables must persist
outside this procedure.

Ensure:

emitX is set to 1 iff ’X’ is detected in the input, else it is set to
0;
emitO is set to 1 iff ’O’ is detected in the input, else it is set to
0.

1: y1 ← S(x2,1 + x3,1 + (1− x3,2)) ⊲ Set if start of ’X’.
2: y2 ← S(x2,1 + x1,1 + (1− x1,2)) ⊲ Set if start of ’O’.

3: z1 ← U(y1, z1, 1) ⊲ If start of ’X’, remember we are in ’X’.
4: z2 ← U(y1, z2, 0) ⊲ If start of ’X’, remember we are not in

’O’.
5: z2 ← U(y2, z2, 1) ⊲ If start of ’O’, remember we are in ’O’.
6: z1 ← U(y2, z1, 0) ⊲ If start of ’O’, remember we are not in

’X’.

7: emitX ← S((1− x1,2)+ (1− z1)) ⊲Minimum and in ’X’.
8: emitO ← S((1− x3,2)+ (1− z2)) ⊲Maximum and in ’O’.

the same variable qj may be updated many times by different
U-gates. That is, later gates in the order may overwrite the
result of the former gates.

In the interaction between the variables qj and rj, which are the
result of binary classification, and variables pj, which represent
the memory of the system, it proves beneficial to assume that pj
is controlled by only two variables, and the final value of pj after
processing one input is represented by another kind of gate, the
V-gate, which combines the action of two U-gates.

The V-gate operates according to the formula:

V(z, u, v) = (1− u)(1− v)z + u

where z stands for a memory variable (replacing p in our naming
convention used in the context of the U-gate). A different
(equivalent) formula for V-gate is:

V(z, u, v) =

{

z when u = v = 0,

u when v = 1.

Equivalently, in logic terms we have several wff’s of propositional
calculus which represent V :

V(z, u, v) = u ∨ (¬v ∧ z)

= u ∨ ¬(v ∨ ¬z)

= (z→ v)→ u.

The action of the variables u and v on z is expressed as
the assignment:

z← V(z, u, v).

We will adopt the following approach: every memorized variable
z will be controlled by exactly two variables: u and v. The
rationale is that there are only two possible values of z.
Therefore, if multiple assignments are made to z, the final result
can be equivalently computed by combining those multiple
assignments. This is equivalent to performing conjunction of
multiple controlling variables u and v. The conjunction can
be done by adding more variables to the first perceptron layer
(adding together activations is equivalent to the end operation).
Hence, only one V-gate is necessary to handle the change of the
value of a memory variable z. The use of gate V is illustrated by
the following example:

Example 1 (W-language decoding). In this example, we consider
Algorithm 3. Instead of using a U gate, we can use the V-gate.
Indeed, the assignments

z1 ← (1− y1)z1 + y1 ⊲ If start of ’X’, remember we are
in ’X’.

z2 ← (1− y1)z2 ⊲ If start of ’X’, remember we are not
in ’O’.

z2 ← (1− y2)z2 + y2 ⊲ If start of ’O’, remember we are
in ’O’.

z1 ← (1− y2)z1 ⊲ If start of ’O’, remember we are not
in ’X’.

can be rewritten as:

z1 ← (1− y1)(1− y2)z1 + y1
z2 ← (1− y1)(1− y2)z2 + y2

i.e.,

z1 ← V(z1, y1, y2)
z2 ← V(z2, y2, y1)

Hence, y1 and y2 are controlling both z1 and z2. ♣

Algorithm 5 is a modification of the previous algorithms which
does not use the input values in the output layer. This is achieved
by using the input layer (binary classification of the inputs) to
memorize some input values in the memories (variables zj). This
technique demonstrates that the output layer of a deductron
performing only binary classification of the memories (variables
zj) is sufficiently general without explicitly utilizing input values.

Let us finish this section with a mathematical result proven by
our approach:

Theorem 1 (On deductron decoding of W-language). There
exists a deductron with 4 memory cells which correctly decodes
every valid expression of the W-language.

Proof: As we constructed the deductron by writing an equivalent
pseudocode, we prove first that one of the presentations of the
algorithm, e.g., Algorithm 1, decodes the W-language correctly.
The proof is not difficult and it uses the formal definition, which

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

Algorithm 5: The final three-layer deductron architecture
utilizing 4 memory cells.

Require:

The input parameterX holds the sliding window of the image
with two consecutive columns.
Global variables z1, z2, z3, z4, emitX , emitO. ⊲ Variables must
persist outside this procedure.

Ensure:

emitX is set to 1 iff ’X’ is detected in the input, else it is set to
0;
emitO is set to 1 iff ’O’ is detected in the input, else it is set to
0.

1: y1,1 ← S(x2,1 + x3,1 + (1− x3,2)) ⊲ = y1.
2: y2,1 ← S(x1,1 + x2,1 + (1− x1,2)) ⊲ = y2.
3: y3,1 ← S(x1,1 + (1− x1,2)) ⊲ Set if x1,2 ∧ ¬x1,1.
4: y4,1 ← S(x3,1 + (1− x3,2)) ⊲ Set if x3,2 ∧ ¬x3,1.
5: y1,2 ← S(x1,1 + x2,1 + (1− x1,2)) ⊲ = y2.
6: y2,2 ← S(x2,1 + x3,1 + (1− x3,2)) ⊲ = y1.
7: y3,2 ← S(0) ⊲ = 1
8: y4,2 ← S(0) ⊲ = 1
9: z1 ← V(z1, y1,1, y1,2)
10: z2 ← V(z2, y2,1, y2,2)
11: z3 ← V(z3, y3,1, y3,2) ⊲ z3← y3,1.
12: z4 ← V(z4, y4,1, y4,2) ⊲ z4← y4,1.
13: emitX ← S((1− z3)+ (1− z1))
14: emitO ← S((1− z4)+ (1− z2))

is essentially Figure 6. The tools to do so, such as loop invariants,
are standard in computer science. Another part of the proof is
to show that the neural network yields the same decoding as the
pseudocode, even if the real arithmetic is only approximate. The
details are left to the reader.

Exercise 8 (3 memory cells suffice for W-language). Prove that
there exists a deductron with 3 memory cells correctly decoding
W-language. For instance, write a different conventional
program which uses fewer variables, and convert it to a
3-cell deductron. ♠

Exercise 9 (2 memory cells insufficient for W-language). Prove
that there is no deductron with 2 memory cells, which correctly
decodes every expression of the W-language. ♠

Exercise 10 (2 memory cells suffice for strict W-language). Prove
that there is a deductron with 2 cells, which correctly decodes
every expression of the strict W-language. ♠

Exercise 11 (1 memory cell insufficient for strict W-language).
Prove that there is no deductron with 1 memory cell, which
correctly decodes every expression of the strict W-language.♠

As a hint for the previous exercises, we suggest studying
Shannon information theory. In particular, the Channel Coding
Theorem gives us the necessary tools to obtain a bound on
the number of memory cells. Essentially, the memory is the
“bottleneck” for passing information between inputs and outputs.
Of course, information is measured in bits and it does not need
to be a whole number.

Algorithm 6: A V-gate simulator. We note that V(z, u, v) =
(1 − u)(1 − v)z + u. If z, u and v are vectors of equal length,
all operations are performed elementwise.

1: function VGATE(z, u, v)
2: return (1− u)(1− v)z + u
3: end function

Upon considering the structure of the neural network based
on perceptron layers and the new V-gate seen in Figure 10, we
can see that our network is a 3-layer network. The first and
third layer are perceptron layers, thus performing binary linear
classification.Wewill call the first perceptron layer the input layer
and the third layer the output layer.

The middle layer is a new layer containing V-gates. We will
call this layer the inference layer, as indeed it is capable of
formal deduction of predicate calculus.We now proceed to justify
this statement.

The general architecture based on V gate is quite simple and
it comprises:

(1) The input perceptron layer, producing nhidden = 2 nmemory

paired values ui and vi, i = 1, 2, . . . , nmemory, where nmemory

is the number of memory cells;
(2) The inference (memory) layer, consisting of nmemory memory

cells whose values persist until modified by the action of the
V-gates; the update rule for the memory cells is

zi ← V(zi, ui, vi)

for i = 1, 2, . . . , nmemory.
(3) The output perceptron layer, which is a binary classifier

working on the memory cells.

The semantics of the neural network can be described by the
simulation algorithm, Algorithm 7 which expresses the process
of creation of outputs as standard pseudocode.

Figure 10 is a rudimentary systems diagram and can be
considered a different presentation of Algorithm 7, focused on
movement of data in the algorithm. This is especially useful in
building circuits for training deductrons. As for other neural
networks, there are two computational complexity estimates
of importance:

(1) The computational cost of applying the network to data
(easy);

(2) The computational cost of training the network (hard).

Let us estimate the computational cost of applying the network
to data, i.e., performing Algorithm 7.

Theorem 2 (On time complexity of deductron). Let the input
of the deductron in Figure 10 consist of frames of size nin and let
nframes be the number of frames. Let nmemory ≥ 1 be the number of
memory cells. Let nout be the size of the output frame. Then the time
complexity of producing the output (according to Algorithm 7) is:

O
(

(nin + nout) · nmemory · nframes

)

. (2)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

FIGURE 10 | The deductron neural network architecture suitable for BPTT. The deductron is replicated as many times as there are inputs (frames). The perceptron P′j
classifies the input vectors xj , which are subsequently demuxed and fed into the V-gates Vj , along with the content of the memory zj−1, and the output is sent to

memory zj . The output of zj is fed into the output classifier P′′j . and output vector oj is produced. Perceptrons P′j share common weights W1 and biases b1.

Perceptrons P′′j share common weights W2 and biases b2.

Proof: As usual, we assume constant time complexity of
individual arithmetical operations, assignments, and evaluating
functions S and V . The dominant contributions come from
the two matrix multiplications, with cost O(nin · nmemory)

and O(nmemory · nout), repeating for every frame. The number
of evaluations of S and V is O(nmemory · nframes). We
may assume that all sizes are ≥ 1, which leads to the
total (2).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

Algorithm 7: A simulator for our 3-layer deductron network.
Note: The activation function S operates on vectors elementwise.

Require:

W1 is a 2nmemory × nin matrix;
b1 is a 2nmemory × 1 column vector;
W2 is a nout × nmemory matrix;
b2 is a nout × 1 column vector;
x = [x0, x1, . . . , xnframes−1] is a list of nframes frames, which are
nin × 1 column vectors.

Ensure:

o = [o0, o1, . . . , onframes−1] is set to a list of nframes outputs,
which are nout × 1 vectors.

1: for t = 0, 1, 2, . . . , nframes − 1 do

2: ht = S
(

W1xt + b1
)

⊲ Classify inputs.
3: (ut , vt)← SPLIT(ht) ⊲ Splits (demuxes) ht into 2 vectors

of equal length.
4: end for

5: z0 ← 0 ⊲ Initialize memory to 0; z0 is an nmemory × 1
column vector.

6: for t = 1, 2, . . . , nframes − 1 do
7: zt ← VGATE(zt−1, ut , vt) ⊲ zt is an nmemory × 1 column

vector.
8: end for

9: for t = 0, 1, 2, . . . , nframes − 1 do

10: ot ← S
(

W2zt + b2
)

⊲ Classify memories, produce
outputs.

11: end for

7. INTERPRETABILITY OF THE WEIGHTS
AS LOGIC FORMULAS

Obviously, it would be desirable if the weights found by a
computer could be interpreted by a human as “reasonable steps”
to perform the task. In most cases, formulas obtained by training
a neural network cannot be interpreted in this manner. For once,
the quantity of information reflected in the weights may be too
large for such an interpretation. Below we express some thoughts
particular to training the deductron using simulated annealing on
the W-language.

In Table 4 we listed some lines of the output produced by
a simulated annealing run, and in Table 5 we see the weights
found in this run. When a bias equals the number of −1’s in
the corresponding row of the matrix, it is apparent that that
row of weights corresponds to a formula of logic (conjunction
of inputs or their negations). However, in some runs (due to
randomization), we obtain weights which do not correspond to
logic formulas. Clearly, some of the rows of the weight W1 and
biases b1 do not have this property.

Example 2 (Weights and biases obfuscating a simple logic
formula). Let us consider weights and biases obtained in one
numerical experiment:

(1) A row of weights [1, 1, 0,−1, 0, 1];
(2) Bias 3.

TABLE 4 | A sample simulated annealing run.

Iteration Loss Best loss Inv. Temp.

000 14.500 14.500 0.000

001 14.500 14.500 0.000

015 14.497 14.500 0.000

[Many lines of output skipped...]

999000 0.002 0.001 9.990

999179 0.001 0.001 9.992

999180 0.001 0.001 9.992

999187 0.001 0.001 9.992

999189 0.001 0.001 9.992

999192 0.001 0.001 9.992

999193 0.001 0.001 9.992

999197 0.001 0.001 9.992

999323 0.001 0.001 9.993

We varied the inverse temperature from 0 to 10, with step 10−5, resulting in ≈ 1 million

iterations. The number of memory units is 3, and the training input was the one in

Figure 4A.

TABLE 5 | Optimal weights learned by simulated annealing run in Table 4.

W1 =

























0 1 0 −1 1 0

−1 0 −1 1 0 0

1 1 0 0 −1 1

−1 1 0 0 1 −1

1 0 0 −1 −1 0

1 0 −1 1 −1 −1

























b1 =

























1

0

0

2

0

1

























W2 =





1 1 −1

−1 −1 1



 b2 =





1

2





The final state when inverse temperature reached β ≈ 9.993.

Since two of the weights are 1, with a single weight of −1, the
activation computed using it is at least 2. The activation is in
the region where S yields a near-zero. Hence, the hidden unit
constantly yields 0 (false), thus is equivalent to a simple, trivial
propositional logic formula (false).♣

Example 3 (Weights and biases without an equivalent
conjunction). Let us consider weights and biases obtained
in one numerical experiment:

(1) A row of weights [0, 1,−1, 1, 1,−1];
(2) Bias 1.

Thus the activation is x1 − x2 + x3 + x4 − x5 + 1. Assuming
that xj ∈ {0, 1}, there is no conjunction of xj, ¬xj, or true,
j = 0, 1, . . . , 5, equivalent to this arithmetic formula (the reader
is welcome to prove this).

Nevertheless, there is a complex logical formula which
is a disjunction of conjunctions, true only for solutions of
this equation. This demonstrates that the logical formulas

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

expressing the arithmetic equation can be more complex than
just conjunctions, as in our manually constructed program. It
is clear that any arithmetic linear equation or inequality over
rational numbers can be expressed as a single logical formula in
disjunctive normal form (disjunction of conjunctions). ♣

Exercise 12 (Disjunction of conjunctions for a linear inequality).
Consider the linear inequality

x1 − x2 + x3 + x4 − x5 + 1 > 0

over the domain xj ∈ {0, 1}, j = 0, 1, . . . , 5. Construct an
equivalent logical formula, which is a conjunction of disjunctions
of some of the statements xj = 0 or xj = 1.♠

Algorithm 7 defines a class of programs parameterized by
weights and biases. The program expressed by Algorithm 3 can
be obtained by choosing the entries of the weight matricesW1 =
[

w
(1)
ij

]

and W2 =

[

w
(2)
ij

]

and the bias vectors b1 =
[

b
(1)
i

]

and

b2 =
[

b
(2)
i

]

so that:

(1) Each weight w
(k)
ij , k = 1, 2, is chosen to be±1 or 0;

(2) Each entry b
(k)
j is chosen to be the count of −1’s in the i-th

row of the matrixWk.

With these choices, the matrix product expresses the value
of a formula of propositional calculus. This is implied by
the following:

Lemma 1 (Arithmetic vs. logic). Let W, b, x, and y be real
matrices such that:

(1) W =
[

wij

]

, 1 ≤ i ≤ m, 1 ≤ j ≤ n, wij ∈ {−1, 0, 1};
(2) x =

[

xj
]

, 1 ≤ j ≤ n, xj ∈ {0, 1};
(3) b =

[

bi
]

, 1 ≤ i ≤ m, where bi is the count of −1 amongst
wi1,wi2, . . . ,win;

(4) y =Wx.

Then

yi =

n
∑

j=1

wijxj =

n
∧

j=1

xij, 1 ≤ i ≤ m

where

xij =











xj wij = 1,

¬xj wij = −1,

true wij = 0.

Proof: Left to the reader.

Exercise 13 (A formula for biases). Prove that under the
assumptions of Lemma 1.

bi =

n
∑

j=1

g(wij)

where

g(w) =
w(w− 1)

2
=

(

w

2

)

.

♠

8. MACHINE LEARNING

It remains to demonstrate that the neural network architecture
is useful, i.e., that it represents a useful class of programs, and
that the programs can be learned automatically. To demonstrate
supervised learning, we applied simulated annealing to learn the
weights of a program which will solve the decoding problem for
theW-language with 100% accuracy. The implementation is now
available at GitHub [14].

We used the target vector t corresponding to the input
presented in Figure 2. The target vector is simply the output of
the handcrafted decoding algorithm.

We restricted the weights to values ±1. The biases were
restricted to the set {0, 1, 2, 3, 4, 5}. The loss (error) function is
the quantity

loss =

nframes
∑

f=1

nout
∑

i=1

∣

∣

∣
t
(f)
i − o

(f)
i

∣

∣

∣

γ

(we only used γ = 1 and γ = 2 in the current paper,
with approximately the same results) where nframes represent the
number of 6-pixel frames constructed by considering a sliding
window of 2 consecutive columns of the image. We note that t(f)

and o(f) are the target and output vectors for frame f , respectively.
It should be noted that sequences are fed to the deductron in a
specific order, in which the memory will be updated, thus the
order cannot be changed. For zero temperatures, t and o are
vectors with values 0 and 1 and the energy function reduces to
the Hamming distance.

The energy function is thus the function of the weights. The
perceptron activation function was set to

S(x) =
1

1+ exp(β(x− 0.5))
(3)

with a graph portrayed in Figure 11.
Here β represents the inverse temperature of simulated

annealing. This sigmoid function in the limit β → ∞ becomes
the function

S(x) =











1 when x < 1/2,

0 when x > 1/2,

1/2 when x = 1/2.

The simulated annealing program finds the system of weights
presented inTable 5. For comparison, inTable 6we find a system
of weights for the handcrafted Algorithm 3.

As it is seen, the energy was reduced to approximately
10−3 which is a guarantee that all responses have been correct.
The outputs are presented alongside with inputs in Table 7.
For comparison, the weights directly read from the program
Algorithm 3 are in Figure 6. Clearly, the weights learned
by simulated annealing differ from the handcrafted weights.
However, they both reproduce equivalent results. Interestingly,
both programs correctly decode output of the topologicalMarkov
chain presented in Figure 6, with approximately 500 frames. The
sample constructed contains “stretched” characters ’X’ and ’O’

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

FIGURE 11 | The sigmoid function S(x) = 1
1+exp(β(x−0.5)) for β = 5 and β = 15.

TABLE 6 | Optimal weights found by reading them off from the handcrafted

decoder (Algorithm 3).

W1 =





































0 1 1 0 0 −1

1 1 0 −1 0 0

1 0 0 −1 0 0

0 0 1 0 0 −1

1 1 0 −1 0 0

0 1 1 0 0 −1

−1 0 0 0 0 0

0 0 −1 0 0 0





































b1 =





































1

1

1

1

1

1

1

1





































W2 =





−1 0 −1 0

0 −1 0 −1



 b2 =





2

2





obtained by repeating falling and rising spans of random length.
Thus, the weights constructed by simulated annealing learned
how to solve the more general problem than indicated by the sole
example used as a training set.

It should be noted that we search for a network with the same
architecture as the network which we constructed by hand: inputs
of length 6, outputs of length 2, and 4 memory cells. This perhaps
made the search easier. However, it should also be noted that the
search space has 48+8 = 56 weights and 8+2 = 10 biases. Since
input weights are restricted to 3 values and biases to 6 values, the
total search space has

356 · 610 ≈ 3.16 · 1034

nodes. Thus, our search, which terminated in minutes, had a
sizable search space to explore (some variations led to much
quicker times, in the 10 second range). Furthermore, repeated
searches found only 2 perfect solutions. It is quite possible that

TABLE 7 | The output of the simulator using optimal weights constructed by

simulated annealing (Figure 5).

Frame # Column 1 Column 2 t1 t2 Emission

0 0 0 0 0 0 1 0 0

1 0 0 1 0 1 0 0 0

2 0 1 0 1 0 0 1 0 emit: X

3 1 0 0 0 1 0 0 0

4 0 1 0 0 0 1 0 0

5 0 0 1 1 0 0 0 0

6 1 0 0 0 1 0 0 0

7 0 1 0 0 0 1 0 1 emit: O

8 0 0 1 0 1 0 0 0

9 0 1 0 1 0 0 0 0

10 1 0 0 0 1 0 0 0

11 0 1 0 0 0 1 0 1 emit: O

12 0 0 1 0 1 0 0 0

13 0 1 0 1 0 0 0 0

14 1 0 0 0 0 1 0 0

15 0 0 1 0 1 0 0 0

16 0 1 0 1 0 0 1 0 emit: X

17 1 0 0 0 1 0 0 0

18 0 1 0 0 0 1 0 0

19 0 0 1 0 1 0 0 0

20 0 1 0 1 0 0 1 0 emit: X

21 1 0 0 0 1 0 0 0

22 0 1 0 0 0 1 0 0

23 0 0 1 1 0 0 0 0

24 1 0 0 0 1 0 0 0

25 0 1 0 0 0 1 0 1 emit: O

26 0 0 1 0 1 0 0 0

27 0 1 0 1 0 0 0 0

28 1 0 0 0 0 0 0 0

The first six columns contain the inputs (linearized sliding windows) for input depicted in

Figure 4A. The next two columns are the target values. Finally, we identify steps where

we emit ‘X’ or ‘O’ in the right column. The color red is used for digit “1” to make it stand

out. The “0” is grayed out, so that it is deemphasized.

the number of solutions is very limited for the problem at hand,
perhaps only a few.

In our solution we used a simple rule for statemodification: we
simply modified a random weight or bias, by randomly choosing
an admissible value: {±1, 0} for weights and {0, 1, . . . , 5} for
biases. The recommended rule is to try to stay at nearly the same
energy, but for our example this did not seem to make significant
difference for the speed or quality of the solution. At some point,
we tried to tie the values of the biases to be the number of −1’s
in the corresponding row of the weight matrix, motivated by
biases that come out of arithmetization of formulas of boolean
logic. It turns out that this results in a significantly less successful
outcome, and it appears important that the weights and biases
can be varied independently.

9. CONTINUOUS WEIGHTS

In the current section we allow the weights of the deductron
to be real numbers. As we can see, there is no need for β (the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

inverse temperature), as it can be easily absorbed by the weights.
Similarly, the shift of 0.5 used in our falling sigmoid S [see (3)] can
be absorbed by the biases. Also, we choose to use the standard,
rising sigmoid function:

σ (x) =
1

1+ e−x
. (4)

This necessitates taking the complement of 1 when computing
the output of the net.

The loss (error) function is simply the sum of squares of errors:

loss =

nframes
∑

f=1

nout
∑

i=1

(

t
(f)
i − o

(f)
i

)2
. (5)

Exercise 14 (Gradient of loss). Using Figure 10, find the gradient
of the loss function given by (5) over the parameters. That is, find
the formulas for the partial derivatives:

∂ loss

∂ w
(k)
ij

,

∂ loss

∂ b
(k)
i

,

where Wk =

[

w
(k)
ij

]

and bk =
[

b
(k)
i

]

, k = 1, 2 are the weight

matrices and bias vectors of the deductron. ♠

The above exercise is important when one wants to implement
a variation of Gradient Descent in order to find optimal weights
and biases. The mechanics of differentiation are not particularly
interesting. However, for complex neural networks it represents a
challenge when implemented by manual application of the Chain
Rule. Therefore, a technique called automatic differentiation is
used, which essentially implements the Chain Rule in software.
The computer manipulates the formulas expressing loss to obtain
the gradient. The system Tensorflow [9] provides the facility
to carry it out with a minimum amount of effort and allows
for quick modification of the model. In contrast, the human
would have to essentially repeat the calculations manually for
each model variation, which inhibits experimentation.

Following the documentation of Tensorflow, we implemented
training of a deductron RNN, closely following Figure 10. The
implementation is available at GitHub [14].

Exercise 15 (Generating W-language samples with interval
maps). Use the interval map in Figure 9 to generate samples of
the W-language, like the one below:

Assume that the image begins and ends with exactly one blank
(not shown). The image has exactly 155 columns. This sample
should decode to the following decoded message, with ’X’ and ’O’
appearing at the time of their emission:

Use the samples generated with the interval map instead of the
samples generated with a random number generator to train the
Deductron to recognize theW-language. NOTE: You will have to
slightly perturb the mapping of the interval, as multiplication by
2 and 4 leads to rapid decay of the precision on computers using
base-2 arithmetic, ending in a constant sequence after several
dozen of iterations.♠

10. COMPUTATIONAL COMPLEXITY OF
GRADIENT EVALUATION

Ideally, we would have an a priori bound for the time complexity
of some variant of Stochastic Gradient Descent (SGD) to
approximate the optimum weights with prescribed accuracy.
However, for most neural networks this is either impossible
or not practical. Therefore, we must settle for estimating the
computation cost of a step of SGD, which is predominantly the
cost of finding the gradient itself.

Theorem 3 (On time complexity of deductron gradient). Let the
input of the deductron in Figure 10 consist of frames of size nin and
let nframes be the number of frames. Let L be a loss function similar
to one given by (5). Let nmemory ≥ 1 be the number of memory cells.
Let nout be the size of the output frame. Then the time complexity
of finding the gradient of loss with respect to the weights and biases,
i.e., the cost of finding all quantities

∂ loss

∂ w
(k)
ij

,
∂ loss

∂ b
(k)
i

is:

O
(

(nout + ·nin) · n
2
memory · n

2
frames

)

. (6)

Proof: Let v be a vector variable representing weights and biases.
First, let us consider v = (W1, b1). When linearized, this vector
has 2(nmemory ·nin+nmemory) entries. According to the Chain Rule
(of vector calculus), the quantity

∂ loss

∂ v

is a sum of products of partial derivatives where the summation is
over all paths connecting the variable v to the variable loss within
the directed graph contained in Figure 10:

∂ loss

∂ v
=

∂ loss

∂o0
·
∂ o0

∂z0
·
∂ z0

∂u0
·
∂ u0

∂h0
·
∂ h0

∂v
+ · · · (7)

where the partials are, in fact, matrices (Jacobi matrices). We
perform the multiplication from the left. In this manner, every
one of the four matrix products is of a row vector on the left
by a matrix on the right. The cost of the multiplication is thus
approximately the product of the dimensions of the matrix on
the right (sometimes the complexity is lower if the matrix is
sparse, e.g., diagonal). The complexity of each entry of each of
the matrices has constant time complexity. Therefore, the cost of
computing the fourmatrix products above is estimated as follows:

nout ·nmemory+n
2
memory+nmemory+nmemory ·

(

nmemory · nin + nmemory

)

.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

Other terms in Equation (7) are estimated in the same manner.
We note that loss is an implicit node in the graph, with an edge
from oj, j = 0, 1, . . . , nframes − 1 to loss. It remains to note that

the number of paths from v to loss is estimated by n2
frames

. Other

terms of the sum (7) and the case v = (W2, b2), are handled in a
similar manner. Formula (6) follows.

The above proof is general enough to be applicable to most
RNN and a variety of loss functions. The proof makes it evident
that the main cost of gradient computation comes from matrix
multiplication, resulting in quadratic dependence on the size
of memory. It also indicates that with a parallel model of
computation the cost can be lowered, as matrix multiplication
can be parallelized. Optimally the cost can be made linear in
the number of columns of the underlying matrices, thus making
complexity proportional to nmemory, not n

2
memory.

There is another corollary of Theorem 3, related to the
presence factor n2

frames
. In principle, one could train an RNN

using a single sequence, as we did, e.g., concatenating many
samples of the W-language. However, from the point of view of
complexity, it is better to keep independently collected samples
in the training dataset separate, so that the number of frames
remains as small as possible, and add the loss function across
the samples.

Example 4 (Complexity of combining samples). Let us suppose
we have k samples of W-language, each having nframes frames.
The combined sample has length k · nframes and gradient cost is

proportional to (k ·nframes)
2 = k2 ·n2

frames
. The cost of computing

gradients separately and adding them up is proportional to k ·
n2
frames

. Thus, the cost of combining k samples is larger by a factor

of k.♣

The cost of lengthy samples cannot be mitigated by
parallelization. The problem is very similar to that of performing
operations on sparse matrices using algorithms designed for
dense matrices, e.g. matrix multiplication: we end up multiplying
by 0 a lot. For RNN, by concatenating input samples we will
compute terms in Equation (7) which are known to be 0.

11. DEDUCTRON AND APPLICATIONS

In general, RNN are mainly used to solve the problem
of sequence-to-sequence mapping, such as the application to
decoding the W-language presented in this paper. Another and
more straightforward type of application is sequence-to-label
mapping, in which an RNN is used for pattern classification. Our
focus is on sequence-to-sequence mapping.

Sequence-to-sequence mapping applications of RNNs often
combine the RNN with another machine learning technique
called Connectionist Temporal Classification (CTC) [1, 2, 15–
18]. For applications such as OCR of cursive scripts and speech
and handwriting recognition, the combination RNN+CTC is in
fact a de facto standard in most real systems of today. Therefore,
the suitability of a particular RNN architecture as a general-
purpose RNN architecture should be evaluated by its ability to
cooperate with CTC.

We divide the application of the deductron into
two categories:

1. Pure sequence-to-sequence mapping, which does not
use CTC.

2. RNN used alongside with CTC.

Clearly, the main example in this paper (that of the W-language
decoding) is in the first category. However, it is natual and
desirable to combine deductron with CTC to decode the W-
language, as it will be explained in the next subsection.

11.1. Deductron With CTC
Deductron in combination with CTC, along with LSTM, GRU
and other neural nets, is currently being tested for use in a new
OCR system Wordly Ocr [19]. Therefore, comprehensive side-
by-side comparisons of these networks will soon be available.
Small, demonstration-type applications will be ported to Python
and placed in this paper’s GitHub repository [14]. In this section
we outline the way deductron is used with CTC. Most of the
discussion is applicable to other RNNs, also.

The benefit provided by CTC is the ability to use naturally
structured training data. An RNN, with or without CTC, maps
sequences in one alphabet to sequences in another alphabet.
However, without CTC both sequences must be of the same
length (=number of frames). With CTC long sequences of frames
can be mapped to sequences of different length.

Example 5 (W-language and CTC). When decoding images
representing W-language expressions, such as the one in
Figure 1, we combined two columns of an image of height 3 into
a frame of height 6. Thus, a 3 × 30 image results in a sequence
of 29 vectors of height 6. However, the sequence ’XOOXXO’ has
only 6 characters.♣

With CTC we no longer need to instruct our network that
symbols (’X’ and ’O’ for W-language) need to be emitted at a
particular time steps. We can simply state what sequence should
be emitted.

Some changes in the architecture and interpretation of the
output of an RNN are needed to reap the benefits of CTC. The
role of RNN changes when used as an RNN+CTC tandem. The
output of the RNN is interpreted as a probability distribution
of emitting a symbol of the alphabet at a given time (= frame
number). An additional symbol is added to the alphabet, known
as Graves’ blank to be emitted when the network is undecided
about the symbol that should be emitted.

Generation of the probability distribution is accomplished
by using the softmax function, also known as the Boltzmann
distribution or Gibbs distribution. The softmax function [see, for
example, [20–22]] is defined as a mapping σ :R

K → R
K where

σ (u)i =
eui

∑K
j=1 e

uj

and u = (u1, u2, . . . , uK) ∈ R
K .

Example 6 (Graves’ blank andW-language). In themain example
of the W-language, the new alphabet, extended by the blank, has

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 17 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

3 elements:

A
′ = A ∪ {_} = {∨,∧, _} .

Thus we use the underscore symbol ’_’ as Graves’ blank. This
symbol is emitted whenever we do not want to commit to
emitting either ’X’ or ’O’. The emission of ’_’ may occur in the
gaps between ’X’ and ’O’ (runs of 0) or due to repeated vectors ej,
j = 1, 2, 3, or due to some kind of error. In order to use an RNN
with CTC we must modify the output layer of the RNN to emit
a probability distribution for every frame, rather than a symbol.
For a sequence of T = 29 frames of height 6, the output is a
matrix with non-negative entries:

P =





p1,X p2,X . . . pT,X
p1,O p2,O . . . pT,O
p1,_ p2,_ . . . pT,_



 .

Every column pt = (pt,X , pt,O, pt,_) ∈ R
3 is a probability vector.

In particular, for t = 1, 2, . . . ,T:

pt,X + pt,O + pt,_ = 1.

This leads to the following formula for the entries of the matrix
P, computed in two steps:

ot ←W2zt + b2
pt ← σ (ot)

These steps are used in place of line 10 of Algorithm 7. This
imposes the dimensions upon W2 and b2. The matrix W2 is
3× nmemory and b2 ∈ R

3. ♣

The theory of CTC is beyond the scope of this paper.
However, the technique is well-documented in a number of
papers [17, 18, 23–25]. There is a variety of implementations,
both standalone and as a part of a bigger system. For a quick
programmer’s introduction to CTC we recommend the short
paper by Wang [25]. However, one needs to study the thesis of
Graves [15] for a detailed exposition. We found that tackling
numerical stability of the CTC algorithm is of paramount
importance. In particular, for any serious application, such as
OCR of cursive scripts (such as Arabic) it is necessary to perform
probability calculations using logarithmic scale. This is to prevent
underflow in performing floating point arithmetic, resulting from
multiplication of many extremely small probabilities. This occurs
in calculating the gradient of the loss, and is known as the
vanishing gradient problem.

We have performed experiments indicating that a CTC
layer can be successfully used with deductron. A simple CTC
implementation in MATLAB, following Wantee Wang’s paper
[25] is provided as part of the open source OCR project
Wordly Ocr [19, 26] and a demonstration program of CTC and
LSTM used to decode W-language perfectly is provided. We
also implemented a full production version of CTC in MATLAB
which was used to perform OCR on Persian and Latin cursive
script [27]. A complete example involving deductron and CTC
will be posted to this paper’s GitHub repository [14].

11.2. Deductron for
Sequence-to-Sequence Mapping
Recently Dylan Murphy implemented deductron within the
Keras framework [28] and re-wrote a demo application which
originally uses LSTM layers to solve a pure sequence-to-sequence
mapping problem [29]. His contribution is available in this
paper’s GitHub repository [14]. Using this implementation, the
author added a Python program demonstrating that deductron
can be successfully used to replace LSTM completely, and achieve
accuracy of 99.5% on the same problem, similar to that obtained
with LSTM.

Let us briefly describe the problem and the form of training
data. The task is to teach a computer addition of non-negative
decimal integers from examples. Thus, we prepare training data
in the form of input/target pairs, e.g., “535+61=596” (a string).
The alphabet in this example is ’0123456789+’.

The approach taken by the original authors of the example
splits the problem into two subproblems:

1. Encoding; the numbers to be added are converted to
one-hot encoding; the numbers are added in the one-hot
(unary) representation;

2. Decoding; the result is translated back to a string
representation using decimal digits.

Both subproblems are solved using RNN. In the original code by
the Keras team, the RNN is LSTM. We found that LSTM can be
replaced with deductron and achieve comparable results:

1. In the decoder role, a single deductron replaces an LSTM
with the same number of hidden units (memory cells
for deductron);

2. In the encoder role, an LSTM replacement consists of two
deductrons arranged as consecutive elements in the pipeline,
with a comparable number of trainable parameters (weights
and biases) in the overall model.

The idea of replacing a single LSTM with two deductrons comes
from the comparison of both architectures (cf. Figure 10 and
Appendix). In LSTM, data is pushed through two Hadamard
gates, while in deductron there is only one non-linearity in the
V-gate, aside from the perceptron layers present in both LSTM
and deductron.

12. ADDITIONAL RESEARCH NOTES AND
FUTURE DIRECTIONS

There are also indications that deductron, as described in this
paper, has some limitations when the input sequences have
complex grammatical rules. This appears to be due to the fact
that deductron is stateless, i.e., the memory is not initialized in
any particular way. Therefore, its “wisdom” is encapsulated in the
weights of the perceptron layers embedded into the deductron.
Making deductron stateful is an interesting research direction.
For example, instead of initializing memory with 0 we can
use a learnable parameter ROM (“read-only memory”). This
would allow deductron to retain some knowledge permanently,
in addition to the knowledge stored in weights and biases.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 18 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

13. CONCLUSIONS

In our paper we constructed a non-trivial and mathematically
rigorous example of a class of image data representing encoded
messages which requires long-term memory to decode.

We constructed a conventional computer program for
decoding the data. The program was then translated to a
Recurrent Neural Network. Subsequently, we generalized the
neural network to a class of neural networks, which we call
deductrons. A deductron is called that because it is a 3-layer
neural network with a middle layer capable of simple inferences.

Finally, we demonstrated that our neural networks can be
trained by using global optimization methods. In particular, we
demonstrated that simulated annealing discovers an algorithm
which decodes the class of inputs with 100% accuracy, and
is logically equivalent to our first handcrafted program. We
also showed how to train deductrons using Tensorflow and
Adam optimizer.

Our analysis opens up a direction of research on RNNs
which have more clear semantics than other RNNs, such as
LSTM, with a possibility of better insight into the workings
of the optimal programs. It is to be determined whether our
RNN is more efficient than LSTM. We conjecture that the
answer is “yes” and that our architecture is a class of RNN
which can be trained faster and understood better from the
theoretical standpoint.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

ACKNOWLEDGMENTS

Thismanuscript has been released as a pre-print at arXiv.org [30].

REFERENCES

1. Graves A, Schmidhuber J. Offline handwriting recognition with

multidimensional recurrent neural networks. In: Koller D, Schuurmans

D, Bengio Y, Bottou L, editors. NIPS. Curran Associates, Inc. (2008). p.

545–52. Available online at: http://dblp.uni-trier.de/db/conf/nips/nips2008.

html#GravesS08.

2. Lipton ZC, Berkowitz J, Elkan C. A Critical Review of Recurrent Neural

Networks for Sequence Learning. (2015). Available online at: http://arxiv.org/

abs/1506.00019v4; http://arxiv.org/pdf/1506.00019v4.

3. Yu Y, Si X, Hu C, Zhang J. A review of recurrent neural networks:

LSTM cells and network architectures. Neural Comput. (2019) 31:1235–70.

doi: 10.1162/neco_a_01199.

4. Salehinejad H, Sankar S, Barfett J, Colak E, Valaee S. Recent advances in

recurrent neural networks. arXiv preprint. (2017). arXiv:180101078.

5. Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin

MS, et al. A state-of-the-art survey on deep learning theory and

architectures. Electronics. (2019) 8:292. doi: 10.3390/electronics803

0292

6. Hochreither S, Schmidhuber J. Long short-term memory. Neural Comput.

(1997) 9:1735–80.

7. Gers FA, Schmidhuber J, Cummins FA. Learning to forget:

continual prediction with LSTM. Neural Comput. (2000) 12:2451–71.

doi: 10.1162/089976600300015015

8. Fan F, Xiong J, Wang G. On interpretability of artificial neural networks.

abs/2001.02522 (2020).

9. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. (2015). Software

available from tensorflow.org. Available online at: https://www.tensorflow.

org/.

10. Kingma DP, Ba J. Adam: a method for stochastic optimization. ArXiv. (2014).

Available online at: http://adsabs.harvard.edu/abs/2014arXiv1412.6980K.

11. Mackay DJC. Information Theory, Inference and Learning Algorithms.

Cambridge, UK: Cambridge University Press (2003).

12. Knuth DE. The Art of Computer Programming, Volume 2 (3rd Ed.):

Seminumerical Algorithms. Boston, MA: Addison-Wesley Longman

Publishing Co., Inc. (1997).

13. Alligood KT, Sauer TD, Yorke JA. Chaos: An Introduction to Dynamical

Systems. Textbooks inMathematical Sciences. NewYork, NY: Springer (2000).

Available online at: https://books.google.com/books?id=48YHnbHGZAgC.

14. Rychlik M.DeductronCode. Contains contributions by Dylan Murphy (2020).

Available online at: https://github.com/mrychlik/DeductronCode.

15. Graves A. Supervised Sequence Labelling With Recurrent Neural Networks.

Technical University Munich (2008). Available online at: https://www.

bibsonomy.org/bibtex/2bf7c42c76bd916ced188d112f130b608/dblp.

16. Sankaran N, Jawahar CV. Recognition of printed Devanagari text using

BLSTM Neural Network. In: Proceedings of the 21st International Conference

on Pattern Recognition (ICPR2012) (Tsukuba) (2012). p. 322–5.

17. Kraken (2018). Available online at: http://kraken.re/ (accessed November 24,

2019).

18. Tesseract Open Source OCR Engine (main repository) (2018). Available

online at: https://github.com/tesseract-ocr/tesseract.

19. Worldly-OCR GitHub repository (2018). Available online at: https://github.

com/mrychlik/worldly-ocr (accessed November 24, 2019).

20. Wikipedia. Softmax Function. (2020). Available online at: https://en.wikipedia.

org/wiki/Softmax_function (accessed November 24, 2019).

21. Rychlik M. A proof of convergence of multi-class logistic regression network.

arXiv preprints. (2019). Available online at: https://arxiv.org/abs/1903.12600.

22. Bishop CM. Neural Networks for Pattern

Recognition. New York, NY: Oxford University Press,

Inc (1996).

23. Graves A. Generating sequences with recurrent neural networks. CoRR

abs/1308.0850 (2013).

24. Zyrianov S. rnnlib. Work derived from A. Graves’ original implementation

(2020). Available online at: https://github.com/szcom/rnnlib.

25. Wang W. RNNLIB: Connectionist Temporal Classification and Transcription

Layer. (2008). Available online at: http://wantee.github.io/assets/

printables/2015-02-08-rnnlib-connectionist-temporal-classification-and-

transcription-layer.pdf.

26. Keras Team. W-Language With LSTM and CTC (2020).

Available online at: https://github.com/mrychlik/worldly-

ocr/tree/master/WLanguageWithCTC (accessed November

24, 2019).

27. Rychlik M, Nwaigwe D, Han Y, Murphy D. Development of a New Image-

to-text Conversion System for Pashto, Farsi and Traditional Chinese. Machine

Learning and Big Data Approach. Submitted as part of a project report to

the National Endowment for Humanities (2020). Available online at: https://

securegrants.neh.gov/publicquery/main.aspx?f=1&gn=PR-263939-19.

28. Team Keras. Keras: The Python Deep Learning API (2020). Available online at:

https://keras.io/ (accessed November 24, 2019).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 19 August 2020 | Volume 6 | Article 29

https://arxiv.org/
http://dblp.uni-trier.de/db/conf/nips/nips2008.html#GravesS08
http://dblp.uni-trier.de/db/conf/nips/nips2008.html#GravesS08
http://arxiv.org/abs/1506.00019v4
http://arxiv.org/abs/1506.00019v4
http://arxiv.org/pdf/1506.00019v4
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.3390/electronics8030292
https://doi.org/10.1162/089976600300015015
https://www.tensorflow.org/
https://www.tensorflow.org/
http://adsabs.harvard.edu/abs/2014arXiv1412.6980K
https://books.google.com/books?id=48YHnbHGZAgC
https://github.com/mrychlik/DeductronCode
https://www.bibsonomy.org/bibtex/2bf7c42c76bd916ced188d112f130b608/dblp
https://www.bibsonomy.org/bibtex/2bf7c42c76bd916ced188d112f130b608/dblp
http://kraken.re/
https://github.com/tesseract-ocr/tesseract
https://github.com/mrychlik/worldly-ocr
https://github.com/mrychlik/worldly-ocr
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function
https://arxiv.org/abs/1903.12600
https://github.com/szcom/rnnlib
http://wantee.github.io/assets/printables/2015-02-08-rnnlib-connectionist-temporal-classification-and-transcription-layer.pdf
http://wantee.github.io/assets/printables/2015-02-08-rnnlib-connectionist-temporal-classification-and-transcription-layer.pdf
http://wantee.github.io/assets/printables/2015-02-08-rnnlib-connectionist-temporal-classification-and-transcription-layer.pdf
https://github.com/mrychlik/worldly-ocr/tree/master/WLanguageWithCTC
https://github.com/mrychlik/worldly-ocr/tree/master/WLanguageWithCTC
https://securegrants.neh.gov/publicquery/main.aspx?f=1&gn=PR-263939-19
https://securegrants.neh.gov/publicquery/main.aspx?f=1&gn=PR-263939-19
https://keras.io/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

29. Wikimedia Commons. An Implementation of Sequence to Sequence Learning

for Performing Addition (2020). Available online at: https://keras.io/examples/

nlp/addition_rnn/.

30. Rychlik M. Deductron – A recurrent neural network. arXiv preprint. arXiv:

1806.09038 (2018).

31. Keras Team. File:Peephole Long Short-Term Memory.svg —

Wikimedia Commons, the Free Media Repository (2017). Available

online at: https://commons.wikimedia.org/w/index.php?title=File:

Peephole_Long_Short-Term_Memory.svg&oldid=247762287 (accessed

June 20, 2018).

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Rychlik. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 20 August 2020 | Volume 6 | Article 29

https://keras.io/examples/nlp/addition_rnn/
https://keras.io/examples/nlp/addition_rnn/
https://commons.wikimedia.org/w/index.php?title=File:Peephole_Long_Short-Term_Memory.svg&oldid=247762287
https://commons.wikimedia.org/w/index.php?title=File:Peephole_Long_Short-Term_Memory.svg&oldid=247762287
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Rychlik Deductron—A Recurrent Neural Network

14. APPENDIX

14.1. Peephole LSTM Architecture
The flow of data in an LSTM is illustrated by the following
diagram [31]:

The formulas expressing the data transformations are:

ft = σg(Wf xt + Uf ct−1 + bf) (A1)

it = σg(Wixt + Uict−1 + bi) (A2)

ot = σg(Woxt + Uoct−1 + bo) (A3)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + bc) (A4)

ht = ot ◦ σh(ct) (A5)

Every quantity is a vector. The symbol “◦” stands for the
Hadamard (elementwise) product. Thus, to perform the product,
the vectors have to have the same length. The functions σ∗ are
sigmoid activation functions.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 21 August 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Deductron—A Recurrent Neural Network
	1. Introduction
	2. The W-Language and Long-Term Memory
	3. The W-language and Writing System Formalism
	4. A Conventional W-Language Decoding Algorithm
	5. Converting a Conventional Program to a Neural Net
	6. An analysis of the U-gate and a New V-gate
	7. Interpretability of the Weights as Logic Formulas
	8. Machine Learning
	9. Continuous Weights
	10. Computational complexity of gradient evaluation
	11. Deductron and Applications
	11.1. Deductron With CTC
	11.2. Deductron for Sequence-to-Sequence Mapping

	12. Additional Research Notes and Future Directions
	13. Conclusions
	Author Contributions
	Acknowledgments
	References
	14. Appendix
	14.1. Peephole LSTM Architecture

