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Vascular disease is a leading cause of death world wide and therefore the treatment

thereof is critical. Understanding and classifying the types and levels of stenosis can

lead to more accurate and better treatment of vascular disease. In this paper, we

propose a new methodology using topological data analysis, which can serve as a

supplementary way of diagnosis to currently existing methods. We show that we may

use persistent homology as a tool to measure stenosis levels for various types of

stenotic vessels. We first propose the critical failure value, which is an application of

the 1-dimensional homology to stenotic vessels as a generalization of the percent

stenosis. We then propose the spherical projection method, which is meant to allow for

future classification of different types and levels of stenosis. We use the 2-dimensional

homology of the spherical projection and showed that it can be used as a new

index of vascular characterization. The main interest of this paper is to focus on the

theoretical development of the framework for the proposed method using a simple set

of vascular data.

Keywords: topological data analysis, persistent homology, vascular disease, spherical projection, 3D spectral

method

1. INTRODUCTION

Vascular disease is the primary cause of human mortality in the United States and worldwide1,2.
Accurate diagnosis for the prediction and treatment of vascular disease is crucial. Increasing the
diagnosis success rate even by a few percent would result in saving a significant number of human
lives. For this reason, a great deal of manpower and funding are used up for vascular research each
year worldwide. Developing high precision diagnosis methodology is crucial for proper medial
treatment and saving human lives. In this paper, we propose a new method of diagnosis using
topological data analysis (TDA).

TDA has been proven to provide a new perspective and a new analysis tool in data analysis,
inspiring researchers in various applications [1–3]. The analysis with TDA is based on persistent
homology driven by the given topological space. Various forms of data from various applications
are actively being used by researchers via TDA for possibly finding new knowledge out of the
given data such as those in computational biology [4–8]. The work described in this paper is
motivated by the clinical problem of the diagnosis of vascular disease. In this paper we explored
how TDA could be used to understand the complexity of vascular flows, and proposed a theoretical
framework of the new method that could characterize and classify the vascular flow conditions.

1http://www.heart.org/HEARTORG/
2https://www.cdc.gov
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1.1. Existing Methodologies
1.1.1. Anatomical Approach

The most intuitive diagnosis method is the geometric approach.
This approach is easy to practice and minimally invasive.
As an anatomical approach, in angioplasty and stenting,
the interventional cardiologist usually acquires multiple
angiographic sequences, in an attempt to have one or more
with the vessel in a minimally foreshortened presentation
with minimal overlap. The interventional cardiologist then
attempts to determine the extent of the disease involvement,
using percent stenosis and length of the stenotic region from
these angiograms. The degree of deformation is measured by
the percent stenosis. The established estimates are frequently
made by naked eyes, with potential errors being introduced,
e.g., incorrect lengths due to foreshortening of the vessel, sizing
errors due to improper estimates, improper calibration of the
vessel magnification and/or inaccurate estimates of the extent
of the plaque. These errors result in stents being incorrectly
sized and/or too short, such that additional stents are required
increasing cost, procedure time, and risk to the patient [9].

1.1.2. Functional Approach

Hemodynamics analysis and functional measurements combined
as a functional approach, though, yield a better approach than
the angiographic analysis. In the assessment and treatment of
vascular disease, interventional clinicians evaluate the status
of a patient vascular system via an angiography, intravascular
ultrasound and, more recently, flow wires. While vessel geometry
relates to functional status [10], flow rates aremore closely related
to the functional significance of the vascular abnormality [11].
For this reason, a flow wire has been widely used to assess the
functional significance of a stenosis via the fractional flow reserve
(FFR) [12–15]. Functional measurements of FFR using a flow
wire yield a direct evaluation of the pressure gradient, providing
a way of clinical judgment with accuracy. Despite the extra cost
and risk [16, 17], the FFR combined with the angiography serves
as a more accurate functional index for the pre-intervention than
the geometric factors determined by the angiography alone.

The FFR is defined as the ratio of the maximum attainable
flow in the presence of a stenosis to the normal maximum flow,
which is uniquely given by the measure of the pressure gradient
around the single lesion. The FFR as a functional index is then
defined by the ratio of the proximal pressure to the distal pressure
at maximum coronary vasodilation:

FFR =
Pp − Pv

Pd − Pv
, (1)

where Pp, Pd, Pv are the proximal, distal and vasodilation
pressures, respectively. In most cases, Pv is not elevated and

considered Pv ∼ 0. Thus, the FFR becomes FFR =
Pp
Pd
.

The FFR analysis of today is based on the following
assumptions: (1) the pressures Pp and Pd used for the evaluation
of the FFR are evaluated simultaneously by the flow wire, (2)
the obtained FFR value represents the functional index for a
single stenosis, and (3) the interaction of the flow wire device
with the local flow movements is negligible in the measurements

of Pp and Pd. The clinical norm with the FFR is roughly as
follows: FFR <∼ 0.75(0.8) implies that the lesion is functionally
significant requiring intervention and FFR ≥∼ 0.85(0.9) implies
that the lesion is functionally not significant. Measurement of
the FFR is not required for a stenosis of emergent severity
(> 70% stenosis). However, for the lesion of intermediate
severity the FFR plays a critical role because the geometry of
the stenosis alone does not deliver enough information of the
functional significance. The main advantage of using the FFR is
its ability to measure the pressure gradient inside the stenotic
region directly. Despite such an advantage, it requires additional
costs and risk because it is more invasive. Furthermore, the
functional analysis using FFR does not fully utilize the functional
information of vascular flows because it measures the pressure
drop only throughout the stenotic vessel. For this reason not
every value of FFR provides a direct interpretation of the
vasculature. Alternatively there have been investigations that use
computational fluid dynamics (CFD) solutions to measure the
FFR using the patient-specific CFD solutions [18] (also see recent
reviews [19, 20]). Even with this approach, the FFR is only
derived while other functional variables computed by CFD are
not used. Thus, the CFD approach also has the same degree of
ambiguity in interpreting the obtained value of FFR. We briefly
mention that there are also various in vivo approach to the
problem such as the recent experimental model [21].

1.2. Proposed Method
The anatomical analysis and the functional analysis yet may
carry debatable diagnosis results for some vascular situations,
particularly for the intermediate situations. Thus, more refined
analysis is still demanded that could deliver more functional
measures, and predict the future development of stenosis. The
ideal method is to use the complete knowledge of all the
hemodynamic variables. However, it is not even possible to
relate every variable into a single numeric measure. Our primary
approach to this problem is to attempt to use the relatively
recent concept of TDA based on persistent homology. In this
paper we explore the applications of persistent homology to
the problem of stenotic blood vessels based on the preliminary
work of Nicponski [22]. We first apply 1-dimensional persistent
homology to a geometric model of a stenosed vessel’s boundary,
the vascular wall, to estimate the stenosed radius of the vessel
using what we call the critical failure value of the vessel. We
show that this critical failure has a close relationship with the
disease level of the vessel. While the homology of a topological
space is unaffected by how the space is stretched and deformed,
we see that the persistent homology captures size information
about an underlying space, as well as homology data. We then
use velocity data projected onto the unit 2-dimensional sphere,
S2. The velocity data was generated by the 3D CFD using the
spectral method. This approach is based on the 2-dimensional
persistent homology. We show numerically that this spherical
projection yields different topological properties for differing
levels of stenosis. In our preliminary research, we found that it
is possible to reveal the topological difference between the two
vasculatures, and that the difference can be measured in a single
numeric index through TDA. This new functional analysis for
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the stenotic vascular flows will significantly improve the existing
analysis. Here we mention that the proposed method is highly
related to the machine learning approaches that are recently
investigated [23–25]. TDA analysis of vascular disease should
be considered as a feature training in the context of machine
learning, which will be investigated in our future research.

2. SIMPLICIAL HOMOLOGY

In this section, we briefly explain simplicial homology and refer
readers to [1, 26, 27] for more details. To understand persistent
homology we must understand homology. In this paper we will
be mainly concerned with the simplicial homology of a simplicial
complex. This concept of a simplicial complex is fundamentally
tied to the concept of persistent homology and thus we must first
understand what a simplicial complex is.

2.1. Simplicial Complexes
Definition 2.1. A Simplicial Complex is a set of simplices S
such that:

1. If s is an element of S, then all faces of s are also in S.
2. If s1 and s2 are in S, then s1

⋂

s2 is either the empty set or a
face of both.

Speaking informally, a simplicial complex is topological space
made of vertices (0-simplex), edges (1-simplex), triangles (2-
simplex), tetrahedrons (3-simplex), and higher dimensional
equivalents attached to one another by their edges, vertices, faces,
and so on. Generally speaking, simplicial complexes are a tool
for building simple topologies. As we shall see later, a simplicial
complex is simple enough that certain important topological
features can be calculated numerically, namely the homology.

2.2. Simplicial Homology
The basic idea of homology is that homology describes the holes
in a topological space. We shall see this clearly after we give a
precise definition.

Definition 2.2. Let S be a simplicial complex, k,N ≥ 0 be integers
and R be a ring with unit. A simplicial k-chain is a formal sum

N
∑

i=1

cisi,

where the ci are elements of R and the si are k-simplices of S.

When referring to a simplex, one specifies the simplex and
an orientation of that simplex. This is done by specifying
the vertices and an ordering of those vertices. Permuting the
vertices represents the same simplex multiplied by the sign of
that permutation.

Definition 2.3. The free R-module Ck(S,R) is the set of
all k-chains.

For technical reasons, we take C−1(S,R) to be the trivial
module. We will write Ck(S,R) as simply Ck for this paper

out of convenience. There is a natural map between these R-
modules called the boundary map. Speaking imprecisely, the
boundary map takes a simplex to its boundary. The precise
definition follows:

Definition 2.4. The boundary map

δk :Ck → Ck−1

is the homomorphism defined by

δ(v0, . . . , vk) =

k
∑

i=0

(−1)i(v0, . . . , vi−1, vi+1, . . . , vk).

We take δ0 to be the trivial map. It is not difficult to verify that
δk−1 ◦ δk = 0 for all k. Therefore, the kernel of δk−1 contains the
image of δk. This leads to the definition of homology.

Definition 2.5. The kth homology module Hk(S,R) with
coefficients in R is ker(δk)/Im(δk+1) [28].

While it is true that Hk is a module, we will simply refer to
them as groups for convenience. As an example, let us take the
simplicial complex X with the vertices labeled from left to right
v1, v2, and v3. We shall take our ring R to be the rational numbers,
Q. The module C0 is the set:

C0 = {av1 + bv2 + cv3|a, b, c ∈ Q}.

For C1 we must choose an orientation for our edges and will
therefore orient them according to the index of their vertices.
Thus, we have that C1 is given by

C1 = {a(v1, v2)+ b(v1, v3)+ c(v2, v3)|a, b, c ∈ Q}.

We have no higher dimensional simplices and thus Ck = 0 for
k ≥ 2. The boundary map δk is necessarily the zero map for
k 6= 1. The boundary map δ1 is defined by

δ1(vi, vj) = vj − vi, 1≤ i < j ≤ 3.

Thus, we have that

H0 = C0

/

< v2 − v1, v3 − v1, v3 − v2 >

∼= {av1 + bv2 + cv3|a, b, c ∈ Q}
/

< vj − vi > .

Here the symbol <> means the vector space spanned by inside
elements with Q. Simple algebra reveals that

H0 = {(a+ b+ c)v1|a, b, c ∈ Q} ∼= Q.

It is easy to see that the kernel of δ1 is the submodule generated
by (v1, v2)− (v1, v3)+ (v2, v3) and the image of δ2 is trivial. Thus,

H1 =< a((v1, v2)− (v1, v3)+ (v2, v3))|a ∈ Q >∼= Q.

Finally it is easy to see that all other homologymodules are trivial.
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We need to understand what homology represents. As
mentioned earlier, the homology groups represent holes. If our
ring R is not a field, then the homology groups may have torsion.
In this work, we will always calculate homology relative to a field,
namely the rational numbers,Q. Therefore, the homology groups
will be isomorphic to the product of some number of copies of R.

Let us determine the homology of the complex shown
in the left of Figure 1 with coefficients in Q. The zeroth
dimensional homology group describes the number of connected
components. In the figure, we have two; the top component and
the bottom component. Each connected component gives the
zeroth homology a copy of the ring R, in our case, Q. Thus,
H0(X,Q) = Q2. The first dimensional homology group describes
the number of one dimensional holes, i.e., holes like the center of
a circle. This figure has three. Each hole will give the homology
group a copy of our ring R. Thus, H1(X,Q) = Q3. There are
no higher dimensional simplices and thus the higher homology
groups are trivial. If we fill in one of the holes with a triangle
shown in the right of Figure 1, then we now have only two holes.
This new space, Y , has H1(Y ,Q) = Q2. We can also think of the
first dimensional homology as representing the number of loops
that can be drawn in the topological space that cannot be pulled
closed. The torus has two. Thus, the first homology group of the
torus would be Q2. The second dimensional homology group
describes the number of two dimensional holes, i.e., holes like the
interior of a sphere. Each hollow of a topological space gives the
second homology group a copy of our ring R. This torus has one
hollow, thus its second homology group is Q. In general, the nth
homology group measures n dimensional holes, i.e., holes similar
to the interior of the n dimensional sphere. In this work we will
not go higher than second dimensional homology because our
analysis in this paper does not require higher dimensions.

Definition 2.6. The kth Betti number for a topological space X,
βk, is the rank of the kth homology group.

As we have seen above, for each n dimensional topological
space there is a copy of the ring R in our homology group.
The Betti numbers therefore represent the number of holes in
each dimension.

3. PERSISTENT HOMOLOGY

The primary topological feature we explore is that of persistent
homology [1]. We will first give a brief overview of this concept.
Given some point data, called a point cloud, that are points on
some surface or other manifold, we generate a complex that is
hopefully a reasonable approximation of the original manifold.
Given the points, we will assign edges and triangles (and higher
order simplices) to pairs, triples, etc. of the point cloud. Roughly
speaking, if a pair of points are close to each other, we add an
edge between them and similarly for faces. To assign edges and
higher order simplices, we introduce a parameter t, called the
filtration value. This t is the length of the largest edge that may be
included in our simplex. We will let t vary and at each value we
will create the complex, calculating the homology of the complex
at each t value.

There are, generally, at least three strategies to make use of
this parameter to assign simplices. The Vietoris-Rips strategy [29]
places an edge between two points if their distance is less than
t and a face between three points if their pairwise distance is
less than t, and so on. This strategy is fine, but computationally
expensive. The next strategy is the witness strategy [30] which
takes two subsets of the points, called landmark points and
witness points. The landmark points serve as vertices of our
complex. We will place an edge between two landmark points if
there is a witness point within distance t of both points, a face
if there is a witness point within t of all three points, and so on.
Usually all of the points in the point cloud are used as witnesses.
The last strategy is the lazy-witness strategy [30], where edges
are assigned identically to the witness strategy, however faces
and higher simplices are assigned anywhere there are n points
that are all pairwise connected with edges. We will be using the
lazy-witness streams for our computation due to the reduced
complexity of the calculation. It is also worth noting that in the
witness and lazy witness methods, there is sometimes an extra
mechanism used to help decrease noise. For this mechanism,
rather than compare distances to t, we compare distances to
t + ηn(p) where ηn(p) is the distance from p to its nth nearest
neighbor and p is the witness point being considered. This tends
to remove some noise for low t values.

Let us see an example. Consider the following point cloud
(the left figure of Figure 2): Let us construct the Vietoris complex
for this point cloud at various values of t. At time t = 0 there
are no edges to add (the left figure of Figure 2). We see the
same point cloud at t = 0.25 (the right figure of Figure 2). It
is important to understand that although the points all lie on
a plane, the edges and triangles should be considered to pass
through higher dimensions so as to not intersect, except at their
common faces. In this figure, we have added arrows to indicate
the five obvious holes that are present. It is conceivable that there
may be more holes hidden, but we will see that this is not the
case. In Figure 3, we see that the point cloud now is topologically
the same as an annulus, with only the middle hole present. It
is also worth observing that as t increases, the central hole is
gradually becoming smaller and will eventually be closed with a
large enough value of t.

Of interest to us in the context of persistent homology are
the Betti numbers. We saw previously that the zeroth Betti
number is the number of connected components, the first is the
number of one dimensional holes, the second is the number of
two dimensional holes, and so on. Because we are looking at
homology relative to this parameter t, we have Betti numbers for
each individual value of t. Thus, instead of simple Betti numbers,
we will have Betti intervals. The graphs of these intervals will
make up what is called a barcode. For these calculations, we have
used the Javaplex software package from [31].

The left figure of Figure 4 shows the barcode by the Vietoris-
Rips method. In the figure, the horizontal axis is the filtration
value t. Vertically we havemultiple stacked intervals graphed that
correspond to individual generators of the homology groups. In
the zeroth dimension we see many generators that correspond
to many disconnected components when t is small, which
eventually are connected into a single component when t is
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FIGURE 1 | (Left) Example topological space, X. (Right) The space X with a hole filled in is the space Y .

FIGURE 2 | (Left) Example point cloud with 100 points. (Right) Vietoris complex at t = 0.25. Five arrows are included to point out five holes.

FIGURE 3 | Vietoris complex at t = 0.5, 0.75, 1 from left to right.

larger. In the first dimension we see a number of small circles
that are quickly closed up and one circle that lasts a long
time corresponding to the one large hole in the center of the
annulus. We have placed rectangles about the five intervals that
are present at t = 0.25 that correspond to the five holes
seen in the right figure of Figure 2. We have only generated
barcodes for the zeroth and first dimensions. It is conceivable
that there may be interesting topology in higher dimensions,
but because this example is meant to illustrate, we see no
reason to include the higher dimensions. While there may be

higher dimensional homology occurring, such homology would
only be noise, because we have started with a two dimensional
topological space.

Comparing this barcode to our Figures 2, 3, we can see how
the barcode compares with our intuition. At t = 0, we had no
edges and only vertices, thus we had many different connected
components. We can count the Betti numbers at a particular
time t from the barcode by counting the number of intervals that
overlap that value of t. Because the zeroth dimension corresponds
to connected components, if we look at t = 0 in the dimension

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 August 2020 | Volume 6 | Article 34

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Nicponski and Jung TDA of Vascular Disease

FIGURE 4 | (Left) Barcode for point cloud using Vietoris-Rips method. The five intervals in dimension one present at t = 0.25 are boxed. (Middle) Barcode for point

cloud using witness method with 50 landmark points. (Right) Barcode for point cloud using lazy witness method with 50 landmark points.

zero portion of the barcode we see many intervals, one for each
point. At t = 0.25, we saw about 17 connected components and
about 5 holes. If we look at our barcode at t = 0.25, in the first
dimension we see about 5 intervals and in the zeroth dimension
we see about 17. For t = 0.5 and greater, we saw only the center of
the annulus for a hole and only one connected component. If we
look at the barcode at these t values, we see only one interval in
both the first and second dimensions. Finally, note that at about
t = 1.8, the last interval in the first dimension is gone. This
represents the center of the annulus being filled up and thus there
are no more one dimensional holes.

The middle and right figures of Figure 4 show the barcode
by the witness and lazy witness methods, respectively. Because
there is a choice inherent in the witness and lazy witness methods,
choosing the landmark points, these are not unique. Performing
these calculations a second time will generate a different barcode.
It is also worth pointing out that if an interval is shorter than
the minimum t step, then those intervals are not shown. In
the middle figure, we have several connected components at
t = 0, which quickly become a single connected component at
approximately t = 0.1. We also see a number of one dimensional
holes when t is small, but by t = 0.2 there is exactly one hole
left, the annulus center. In the right figure, we see a number of
intervals in the zeroth dimension, but again we see that eventually
we only have one connected component. In the first dimension
we only see one hole, which lasts for a wide interval. This again
corresponds to the central hole of the annulus.

All of these barcodes give essentially the same information.
The individual points are quickly connected and we eventually
have a single connected component. There are some small circles
that quickly disappear and we are quickly left with one persistent
circle which lasts for a while and then is filled.

3.1. Calculating Persistent Homology
The complete algorithm for calculating persistent homology can
be found in [3]. We will briefly summarize the algorithm here.
To compute the homology of a simplicial complex, one must
understand the boundary operator δ. Since we are looking at
homology relative to a field, the chain groups and homology
groups, Ck andHk, are vector spaces. Therefore, one can consider
δk to a linear map between vector spaces. Because we are

FIGURE 5 | An example topological space.

interested in homology, we are interested in the kernel of this
map, as well as the image. We may use the standard basis of the
chain groups, specifically the k-chains, as our basis. Let us use as
an example the complex in Figure 5. The basis for C0 is {a, b, c, d}
and the basis for C1 is {bc, cd}. Here we are referring to the edges
by their endpoints. If we write the standardmatrix for δ0, it would
simply be the zero matrix. If we write the matrix for δ1, relative to
the bases in the order given above, then we would get

δ1 =









0 0
1 0
−1 1
0 −1









.

To compute the kernel of our matrix, we will transform the
matrix into Smith normal form. To do this, we use elementary
row and column operations. Specifically, we may swap two
columns, add a multiple of one column to another and multiply
one column by a non zero constant. The row operations are
similar. Each of these operations correspond to a change of basis
in either C1 or C0. If we add row two to row three and then row

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 August 2020 | Volume 6 | Article 34

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Nicponski and Jung TDA of Vascular Disease

three to row four, our new matrix will be

δ1 =









0 0
1 0
0 1
0 0









.

Our new basis for C0 will be {a, b-c, c-d, d}. The basis for C1 is
unchanged because we used no column operations.

From this calculation, we see that the map δ1 has trivial
kernel and a two dimensional image. The image is the subspace
generated by {b−c, c−d}. Because the kernel of δ0 is {a, b−c, c−
d, d} and the image of δ1 is {b−c, c−d}, we have thatH0 is just the
vector space spanned by {a, d}. We know ourHn is a vector space,
because we are calculating homology with coefficients over a field,
thus the only important piece of information is the dimension.
We can simply read off the dimension by looking at the number
of pivot positions in δ1 and the number of non pivot columns
in δ0. There are four non pivot columns in δ0 and two pivot
positions in δ1, therefore the first homology group is H0

∼= Q2.
Therefore, by simply transforming the matrix into Smith normal
form, we may simply read off the dimensions of kernels and
images of the δk and simply take their difference to find the
dimensions of our homology group.

To calculate persistent homology is a harder task. For this we
must have the definition of a persistence module. In our case, we
will receive as input a number of complexes, all representing the
same point cloud for different values of our filtration variable
t. Let us call the chain complex at the kth timestep Ck

n. We
will similarly call the kernels and boundary groups Zk

n and Bkn,
respectively. For each Ck

n, there is a natural inclusion map

i :Ck
n → Ck+1

n .

Definition 3.1. The persistence module associated to {Ck
n} is the

R[t] module

∞
⊕

k=1

Ck
n,

where

t(x1, x2, . . . ) = (0, i(x1), i(x2), . . . ).

Here, R is our field.

It is shown in the same paper that calculating the homology of
this persistence module is equivalent to calculating the intervals
that appear in the barcode. Due to the structure theorem [2],
that every graded module M over a graded PID (principal ideal
domain), R[t], decomposes uniquely into the form

(

n
⊕

i=1

6αiR[t]

)

⊕





m
⊕

j=1

6γjR[t]/tnj



 ,

where 6α represents an upward shift in grading. Thus, our
persistence modules Ck

n, will give rise to persistent homology
groups Hk

n, which will decompose in the above manner.
It was shown in [2], that factors of the form 6iR[t]/tj−i

correspond to persistent intervals of the form (i, j) in our barcode.

Similarly, each free factor, 6iR[t] corresponds to an interval of
the form (i,∞). Thus, the crux of the problem comes down
to finding and decomposing the homology of our persistence
modules. To accomplish this, wemay simply use row and column
reduction as in the example above. The finer details, along with
some simplifications, are laid out in the original paper.

3.2. Persistence
One central idea of persistent homology is the concept of
persistence. Referring to Figure 4, we had only one interval in
the zeroth dimension that was rather long and many shorter
intervals. Similarly, in the first dimension we again had one long
interval and many shorter ones. By making use of our prior
knowledge that the point cloud was coming from an annulus,
we see that the “real" features, namely one connected component
and one circle, correspond to the long intervals and the shorter
intervals are noise. It is reasonable to assume that this holds
frequently (though not certainly) in general data sets. Usually
longer intervals will correspond to "real" features and shorter
intervals correspond to noise. How one interprets what is “real"
depends on one’s a priori knowledge of the underlying data
structure. This leads us readily to our next definition.

Definition 3.2. The persistence of an interval [a, b] is the length
of the interval, b− a.

While we have not given any proof that longer intervals tend
to be more important than shorter intervals, in [1], there is an
argument given that solidifies this mindset. Speaking imprecisely,
the various methods of building simplicial complexes out of
point clouds fall inside a hierarchy under inclusion. The lower
methods (lazy witness and witness) are easier to compute but less
accurate. The higher methods (Vietoris-Rips and other methods
not discussed in this paper) are more complex to calculate,
but more accurate. If a barcode has an interval with sufficient
length, then this guarantees a corresponding interval in the
higher complexity methods. We refer the reader to [1, 26, 29] for
more details.

For more details on computing persistent homology with
matrix analysis, we refer readers to a recent review by Carlsson
et al. [32].

4. CRITICAL FAILURE VALUE

First we will use a simple model of a stenosed vessel to explore the
topological structure of a vessel. We will initially only consider
the exterior of a vessel, which topologically speaking is a cylinder.
A stenosed blood vessel is characterized by a narrowing of that
vessel. We shall consider the typical radius of our vessel to be
r0 = rhealthy and will assume that the stenosis takes the shape of a
Gaussian distribution for simplicity. We will also assume a small
amount of noise, in the form of a uniform random variable ǫ ∈
[0, 0.1]. We will take rst to be the difference between the normal
radius and the stenosed radius. Therefore, our model will be, in
cylindrical coordinates

r = r0 + ǫ(z, θ)− rste
−z2 ,−a ≤ z ≤ a, 0 ≤ θ ≤ 2π
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FIGURE 6 | (Left) Example of a point cloud representing a 70% stenotic vessel. (Middle) A point cloud with landmark points highlighted in red. (Right) Barcode.

where the stenosis is at z = 0 and r0 − rst is the radius of the
cylinder at the stenosis. Thus, rst is a measure of how stenosed
the vessel is, specifically the vessel has a stenosis percentage of

100
(

1− rst
r0

)

. When working with real data we will not have any

equation that represents the surface of the vessel, rather we will
have point data approximating the surface. Therefore, for our
model we will use some discrete points on the surface. To have
an accurate picture, the number of points should be high. In the
left figure of Figure 6 we have an example of the above model.
The figure clearly shows the vessel narrowing near the origin,
which is the stenosed portion of the vessel. The points are colored
according to their y-coordinate to give depth.

4.1. A First Example
For our first application example, we will use 1, 500 points
for our blood vessel model above, with 100 landmark points.
We use the lazy witness method described above. The points
are selected randomly on our surface and the landmark points
are selected using an algorithm that selects points uniformly
according to pointwise distance. An image of the point cloud with
the landmark points circled in red is included in themiddle figure
of Figure 6, and points are colored to give depth. We use the
lazy witness strategy and get the barcode for those in the left and
middle of Figure 6. As we saw above, each interval corresponds
to a generator of homology in the corresponding dimension. We
can see that the homology is for the most part the homology of
a cylinder. Initially there is some noise when t is small, but until
about t = 2.3 we have exactly one connected component and
a single one dimensional hole. This t value where the last one
dimensional generator becomes trivial is what we call the critical
failure value below.

4.2. Critical Failure Value
We saw above that for large t values our complex no longer has
any one dimensional holes. The exact value where this occurs will
be of particular importance to us.

Definition 4.1. Let B be a barcode, with intervals {(ai, bi)} in the
first dimension. We call the critical failure value (CFV) of B to be
max(bi).

This definition should be fairly straightforward. For example,
in the right figure of Figure 6 the critical failure value would be
the largest right endpoint of an interval in the first dimension.
Thus, the critical failure value for that barcode would be CFV =
0.23. This critical failure value is of particular importance to
us because we shall see that it approximates the stenosis of the
vessel. The critical failure value is a generalization of percent
stenosis. The exterior of the blood vessel is a cylinder. The ends
of the cylinder are open and thus we have a one dimensional
hole, the hollow center of the cylinder. If the ends were capped
then we would have a two dimensional hole instead. We are
using persistent homology and thus we are approximating the
point cloud with simplicial complexes as described above. As
t increases we add more and more edges and triangles to our
complex. Eventually, as we saw in the annulus example above,
we will have triangles that span the hollow of our cylinder. When
this occurs, our simplicial complex no longer is a hollow cylinder
and thus has different homology.

Definition 4.2. Suppose P is a point cloud with points chosen
from the topological space S. The principal critical failure value
of P is the critical failure value of S.

Speaking generally, suppose we have a point cloud of data
that is contained in a 2D shape (or 3D solid, etc.) S with
n points. We call this point cloud Sn. If n is very large,
and the points are more or less evenly spread out, then it is
reasonable to expect that CFV(Sn) ≈ CFV(S), assuming some
reasonable conditions regarding S. In fact, it is reasonable to
write that limn→∞ CFV(Sn) = CFV(S), again assuming some
reasonable conditions about S and the method under which
the points are chosen. The critical failure value and principal
critical failure values will depend heavily on which method
one uses to calculate the persistent homology. We will use
subscripts to indicate which method is being referred to. We
mentioned that when calculating persistent homology using the
lazy witness method, sometimes one may choose to include the
complexity of considering the nth nearest neighbor for points
when constructing our simplexes. When one is constructing the
persistent homology of a topological space, rather than a point
cloud, there will not usually be an nth nearest neighbor, as any
point will usually have infinitely many points arbitrarily near it.
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Thus, when constructing the persistent homology of such a set,
we will not include the nearest neighbor complexity.

Theorem 1. For S a circle of radius R, CFVw(S) = CFVlw(S) = R.
Here the subscripts w and lw denote the witness and lazy witness
methods, respectively.

Proof: First, observe that in the zeroth and first dimensions, the
complexes created using the witness and lazy witnessmethods are
identical, and therefore the principal critical values for these two
methods will be identical.

Let us consider a circle of radius R centered at the origin
and an inscribed regular hexagon, as pictured in Figure 7A. The
reader can verify that the distance between neighboring vertices
of the hexagon is R. Let us suppose that our parameter τ =
t < R. We will consider a two simplex on the circle that may
be generated using the witness and lazy witness methods under
this setup. We will show that such a simplex does not contain the
center of the circle and therefore the first dimensional homology
of our complex is nontrivial. This will imply that the critical
failure value of our circle is greater than t.

Let p and q be the vertices of the inscribed hexagon adjacent to
(R, 0).We suppose that we have a one simplex with vertices p′ and
q′. We assume, without loss of generality, that the witness point
for p′ and q′ is (R, 0). If not, we may rotate the circle until these
two vertices straddle (R, 0) and then necessarily can take (R, 0) to
be our witness. Because τ < R, it must be the case that p′ and
q′ lie between p and (R, 0), and q and (R, 0), respectively. For the
moment, we assume that the distance between p′ and (R, 0), and
q′ and (R, 0) is exactly t, as pictured in Figure 7B.

We will label the distance between p and p′ as e > 0. Now,
observe that, if one starts at the point (R, 0) and steps around the
circle counterclockwise in steps of size R, one will reach the point
(−R, 0) in exactly three steps. If one repeats this process but now
stepping in steps of size t, one will not reach as far as the point
(−R, 0) in three steps. Speaking precisely, one will be exactly three
steps of length e away from the point (−R, 0), call this point s.

If one starts at the point p′ and steps clockwise about the circle
twice in steps of length t, then one exactly reaches the point q′.We
recall that any witness point connecting p′ to another point must
be within t distance of p′, and any landmark point connected to
p′ must be within t distance of that witness point. Thus, the set of
points that may be connected to p′ to form a simplex under the
witness and lazy witness methods is precisely the arc connecting
the point s to the point q′ containing the point p′, as shown in
Figure 7C.

Similarly, any point that may be connected to q′ to form a
simplex would be contained in a similar arc around q′. Any point
that may be connected to both p′ and q′ must be contained within
both arcs. The intersection of these two arcs is precisely the arc
from p′ to q′, as pictured in Figure 7D. However, any simplex
with vertices p′, q′, and a third vertex within this arc does not
contain the origin.

Now suppose that the points p′ and q′ have distance to
(R, 0) less than t. Repeating the above construction, the arc that
surrounds p′ of points that may be connected to p′ is simply
rotated clockwise by the same amount that p′ has been rotated.
Similarly the arc about q′ is rotated counterclockwise the same

amount that q′ has been rotated. This rotation of these two arcs
can widen their intersection, but still cannot generate a simplex
containing the origin. To see that this is true, notice that for a
simplex to contain the origin, the third vertex would need to be
contained in the reflection of the arc connecting p′ and q′ across
the origin on the other side of the circle, pictured in Figure 7E.
While the arcs of points that may be connected to p′ and q′

may intersect this region, they do not intersect inside this region.
Further, moving p′ and q′ closer to the point (R, 0) does not cause
these two arcs to intersect within this region.

In any case, we have shown that if τ < R, then there
is no one-simplex that contains the origin and therefore the
homology in the first dimension of our complex contains at least
one generator.

To see that the critical failure value is at most R, observe
that if τ = R, then we may construct a simplex with landmark
points and witness points at alternating vertices of the inscribed
hexagon. This simplex includes the origin, and all other points
can easily be covered. Thus, the critical failure value of a circle of
radius R is R.

Corollary 2. Let S = {(r cos(θ), r sin(θ), z), r = r0 −

rste
−z2 ,−a ≤ z ≤ a}. Then CFVw(S) = CFVlw(S)= r0 − rst .

To prove this, we will need two brief lemmas.

Lemma 3. Let C1 and C2 be two circles centered at the origin,
with the radius of C1 = r1 < r2 = radius of C2. Let p be the point
(r1, θ1) and q be the point (r2, θ2) in polar coordinates. Also let q′

be the point (r1, θ2). Then the distance from p to q is greater than
the distance from p to q′.

Proof: (Left figure of Figure 8) Let us calculate the distance
between p and q using the law of cosines and the triangle with
vertices at p, q, and the origin. By the law of cosines, if d1 is the
distance between p and q, then

d21 = r21 + r22 − 2r1r2 cos(γ )

where γ is the angle 6 poq. If we rearrange slightly, we get

d21 = (r2 − r1)
2 + 2r1r2(1− cos(γ )).

If we replace r2 with r1, we get d2, the distance between p and q′.

d22 = (r1 − r1)
2 + 2r21(1− cos(γ )).

Observing that we have made one positive term zero and the
second non-negative term becomes either strictly smaller or
remains zero, thus we have the lemma proven.

Lemma 4. Let C1 and C2 be two circles as above. Let p = (r2, θ1)
and q = (r2, θ2). Also let p′ = (r1, θ1) and q′ = (r1, θ2). Then
the distance between p and q is larger than the distance between
p′ and q′.
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FIGURE 7 | (A) Circle of radius R with inscribed hexagon. (B) The points p, q, p′, q′, and (R, 0). (C) The arc connecting the point s to the point q′ highlighted in blue.

(D) The arc connecting the point p′ to the point q′ highlighted in purple. (E) The reflection of the arc connecting p′ and q′, in green.

Proof: (Right figure of Figure 8) Observe that the
triangles △poq and △p′oq′ are similar and the result
is clear.
Proof of Corollary: To prove this, first observe that, due to
Theorem 1, the circle at z = 0 is filled in exactly when τ = r0−rst .
Thus, the critical failure value of our set is at most r0 − rst . Next
we show that our critical failure value is at least r0 − rst .

First, suppose that τ = t and that our first homology group
is trivial. It must be the case that some simplex of our complex
intersects the z axis. Let pi = (ri, θi, zi), i = 1 . . . 6, be the landmark
points and witness points of such a simplex. It is a relatively
simple exercise to show that replacing these six points with
p′i = (ri, θi, 0) does not increase any pairwise distance (though
now these projections may not be contained within S). Further,
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FIGURE 8 | (Left) The points p, q, and q′. (Right) The points p, q, p′, and q′.

observe that the simplex with vertices given by these projected
vertices still intersects the z axis at the origin.

Next, notice that the closest our set S to the z axis is on the
circle made up of the intersection of S with the plane z = 0. We
will call this circle C. Observe that, we simply moved our original
points vertically and therefore did not change their distance from
the z axis. Thus, our projected points are at least as far from the
z axis as the radius of C. Therefore, we see that ri ≥ r0 − rst .
Now, using our two lemmas repeatedly, we see that replacing our
points p′i with p′′i = (r0 − rst , θi, 0) does not increase any pairwise
distance. Further, the new simplex still intersects the z axis. Thus,
we see that these new points give us a simplex that fills in the
center of C, with landmark and witness points given by the pi”.
By the theorem, it is not possible for such a simplex to exist if
τ < r0 − rst , and therefore τ = t ≥ r0 − rst .

The above corollary demonstrates that, without noise, if we
have enough points on the surface of our model, we expect
that the critical failure value will give us our stenosis radius
almost exactly. To see empirically how well our estimate works
with noise, we will generate a point cloud on our model of a
stenotic vessel, with noise, and calculate the persistent homology
as outlined above, many times. We will take r0 = 1, and rst a
random variable taking values from [0, 1] and will plot the critical
values against rst . For this experiment, in each iteration, we use a
total of 1, 500 randomly chosen points and 400 landmark points,
approximately evenly spaced. We performed this experiment a
total of 80 times. The results of the experiment are pictured in
Figure 9.

From Figure 9, we can see, as expected, that the relationship
between the critical value and r0 − rst is approximately linear.
There is some nonlinearity for large values of rst . This is due to the
minimal radius being approximately the same size as the noise,
which is caused by gaps in the model due to too few points. Our
expectation is that as the number of points and landmark points
are increased the relationship between the critical value and rst
will be approximately

CFV = 1− rst .

FIGURE 9 | Critical failure value against the stenosis radius rst.

This is due to our blood vessel having a normalized healthy
radius of 1. For a general vessel, we expect the critical value to
be approximately

CFV = rhealthy − rst .

For different shapes of stenosis, we conjecture that this critical
failure value would still be a measure of stenosis, though the
exact relationship between stenosis and CFV would depend on
the shape of the vessel.

We see from our above calculations that the critical failure
value is related to the minimal radius of the vessel, thus giving
us an idea of the stenosis of the vessel that is determined entirely
by the point data of the vessel. This stenosis level can potentially
be calculated directly from the vessel without the use of this
critical failure value in some cases, and therefore the question
of the usefulness of this critical failure value must be considered
in our future work. The critical failure value will be defined for
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practically any shape of vessel, whether or not the stenosis is
shaped like a Gaussian or any number of other symmetric or
asymmetric shapes. Further, this critical value does not require
exact knowledge of the location of the stenosis. In our model
above, the stenosis was at z = 0, but if we instead had it at
z = 1, or any other height, these calculations would generate the
same results. This suggests that the critical value may be useful
in automating the diagnosis of stenosis. We also expect that the
critical value method may act as a sort of universal measurement
for all different types of stenosis.

We have demonstrated that size data is encapsulated within
the barcodes. Not only do the barcodes give the homology of
a topological space, but also measurement data as well. It is
therefore reasonable to suggest that in this problem as well as
many others, reading off this size information may be critical.
For example, we speculate that a similar method may be used to
measure the widening of vessels, aneurysms.

If we replaced our model above with a model that had
Gaussian widening instead of narrowing, thus modeling an
aneurysm, then we would be interested in how wide the widest
portion of the vessel is. This could potentially be estimated by
looking for the largest t value where there is a second dimensional
generator. To understand this geometrically, we realize that at
a relatively small time step the two ends of the vessel will be
capped off by triangles spanning their diameter, due to having
a smaller radius than the aneurysm.When these ends are capped,
we will have a large hollow, namely the interior of the vessel. This
hollow will eventually be filled with tetrahedrons, and therefore
become trivial. The t value where this happens will depend on
how wide the vessel has become, and therefore that t value would
be a measure of the wideness of the vessel.

Because the definition of persistent homology depends on
the distances between points, the fact that persistent homology
encapsulates not only homology information but size and
diameter information is reasonable. Taking radius and size
data from persistent homology can potentially have significant
applications in many different real world problems, not just in
the context of stenotic vessels.

5. 3D CFD AND SPHERICAL PROJECTION

5.1. Hemodynamic Modeling
For modeling stenotic vascular flows, we use the incompressible
Navier-Stokes equations with the no-slip boundary conditions
at the blood vessel walls. A more precise description should
consider the compressibility and more general types of boundary
conditions such as Navier boundary conditions and boundary
conditions based on the molecular model. However, as the main
focus of this paper is on the global behavior of stenotic vascular
flows, the incompressible Navier-Stokes equations with no-slip
boundary conditions suffice to consider.

Let ρ = ρ(x, t) be the density, P = P(x, t) the pressure,
u = (u, v,w)T the velocity vector for the position vector x =
(x, y, z)T ∈ �, and time t ∈ R+. Here � is the closed domain
in R3. We assume that the blood flow we consider is Newtonian.

From the mass conservation we have the following equations

ρut + (u · ∇)u− µ∇u− (3λ + µ)∇(∇ · u)+ ∇P = f

ρt + ∇ · (ρu) = 0, (2)

where µ ∈ R+ is the kinematic viscosity, λ ∈ R is the bulk
viscosity constant, and f is the external force. Further we assume
that the density is homogeneous in x and t. Then the above
equations are reduced to

ρut + ρu · ∇u− µ∇u+ ∇P = 0

∇ · u = 0, (3)

where we also assume that there is no external force term f . For
the actual numerical simulation we use the normalized equations.
For example, the length scale is xo = 0.26, the baseline velocity
is uo = 30, the time scale to = 6.7 × 10−3, the unit pressure
Po = 900, the unit density ρo = 1, and the unit kinematic
viscosityµ = 0.0377 (all in cgs units) [33]. For the incompressible
Navier-Stokes equations, we need to find the unknown pressure
P. In this paper, we used the Chorin’s method, i.e., the artificial
compressibility method [34, 35]. For the Chorin’s approach, we
seek a steady-state solution at each time such that

ut → 0, Pt → 0, t > ts

for∇·u → 0. Then for the artificial compressibility, we introduce
an auxiliary equation for p such that

pτ + c∇ · u = 0

where τ is the pseudo-time. The pseudo-time is the time for
which we solve the above equation for the given value of t until
∇ · u → 0 at each t.

To solve the governing equations numerically, we adopt the
spectral method based on the Chebyshev spectral method. We
use Nt elements. Each element is a linear deformation of the unit
cube,�c = [−1, 1]3. We expand the solution in each domain as a
Chebyshev polynomial of degree at most N. Let ξ be ξ ∈ [−1, 1]
and Tl(ξ ) be the Chebyshev polynomial of degree ℓ. Then in each
element, the solution u is given by the tensor product of Tl(ξ ).

To explain this further, we consider the 1D Chebyshev
expansion. The 3D is simply a tensor product of the 1D
expansion. The 1D Chebyshev expansion is given by

uN(ξ , t) =

N
∑

ℓ=0

ûℓ(t)Tℓ(ξ ),

where ûℓ are the expansion coefficients. Once the expansion
coefficients are found, the solution is obtained as a linear
combination of the Chebyshev polynomials with the expansion
coefficients. For the spectral methods, we adopt the spectral
collocation method so that the expansion coefficients are
computed by the individual solutions at the collocation
points. For the collocation points, we use the Gauss-Lobatto
collocation points,

ξi = − cos(iπ/N), i = 0, 1, · · · ,N.
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FIGURE 10 | Parameterization: A simple illustration of variation of symmetric straight stenotic vessels (left) and the vessel configuration after the insertion of stent

(middle) and variation of the bifurcating vessels (right).

We solve the incompressible Navier-Stokes equations on x(ξi)
and the expansion coefficients are given by the quadrature rule
based on the Gauss-Lobatto quadrature

ûℓ(t) =
2

cℓN

N
∑

i=0

1

ci
u(x(ξi), t)Tℓ(x(ξi)),

where cn = 2 if n = 0 and cn = 1 otherwise [36].
The 3DChebyshev approximation is given by a tensor product

of the 1D Chebyshev expansion. Figure 10 shows some vessels
we use for the numerical simulation. Figure 11 shows some
spectral solutions of the stenotic vessel (left) and vessels with stent
installed (right).

5.2. Spherical Projection
In this section we propose the spherical projection and TDA
with the spherical projection based on the two dimensional
homology. We will use vascular data calculated by solving the
incompressible Navier-Stokes equations with the spectral method
as outlined in section 5.1. Of particular interest to us are the
velocity fields of blood flows in the vessel. When the vessel is
healthy one has essentially laminar flow. When the vessel is
diseased, we may see flow circulations. We first investigate the
data in the phase space with the three velocity components.

In the left figure of Figure 12 the data is visualized in the phase
space. The left figure shows the data for 10% stenosis and the right
for 70%. Each axis is corresponding to each velocity component.
The long axis is the y-axis, which is the flow direction. There
is not a huge topological difference between those two stenosis,
at least in terms of homology. There are no hollow portions or
apparent significant circles that would give interesting homology.
Thus, both would be topologically trivial.

To construct a meaningful topological space, we found that
the projection of the raw data onto the n-unit sphere, which
we call an n-spherical projection, is the key element of TDA
of vascular disease [22]. To understand why the projection
approach works, we consider the case of random fields where
the 3D velocity and pressure are all randomly generated. The left
figure of Figure 13 shows the spherical projection of the random
velocity fields on S2. The right figure of Figure 13 shows the
spherical projection of the random velocity and pressure fields
on S3. It is not plausible to visualize S3. Instead, in the right
figure, the pressure contour is shown on top of velocity fields
data. The color represents the pressure distribution. Notice that
the sphere S2 in the left figure is hollow but the sphere in the

right is not. Figure 14 shows the corresponding barcodes to the
spherical projection of the random velocity fields on S2 (left)
and the spherical projection of the random velocity and pressure
fields on S3 (right). As shown in the figures, a hole appears at
t ≈ 0.4 and disappears at t ≈ 0.9 in the second dimension (left
figure for S2) and in the third dimension (right figure for S3). The
interval where hole is existent in S2 (left) and in S3 (right) in the
barcodes is significant and it represents the underlying topology
well. We define the persistence of an n-dimension interval, 5n as

5n = b− a,

where a is the value of t when the hole starts to appear and b is
t when the hole disappears. In Figure 14, 52 ≈ 0.5 for the left
figure and 53 ≈ 0.4 for the right. The parameter, 5n serves as a
measure of the complexity and we hypothesize that5n is directly
related to the level of disease.

Definition 5.1. Fundamental projection: Let Ev = (vx, vy, vz) be a
non-zero velocity vector. We first normalize Ev. The fundamental
projection is the projection of the normalized velocity fields onto
the unit sphere,

< vx, vy, vz >→ (vx, vy, vz)/||v||,

where ||v|| is the norm of velocity fields, e.g., ||v|| =
√

v2x + v2y + v2z .

Definition 5.2. n-spherical projection: The n-spherical
projection is the general projection that involves more variables,
including the velocity fields, such as the pressure, P. If the
pressure data is included, the spherical projection is done by

< vx, vy, vz , P >→ (vx, vy, vz , P)/
√

v2x + v2y + v2z + P2.

The physical implication of the topological structure for the
fundamental projection seems obvious but the one for the general
projection n ≥ 3 is not, and we need to conduct a parameter
study using the CFD solutions in order to understand its meaning
in our future work.

For the projection, any zero vectors are removed prior to the
projection. Note that all the velocity components on the vessel
wall vanish due to the no slip boundary condition. The results of
the fundamental projection of Figure 12 are shown in Figure 15

for 10% (left) and 70% (right) stenosis. We have colored the
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FIGURE 11 | High-order spectral simulations of stenotic vessels. (Left) Stenotic vessel (70%). (Right) Numerical simulation with stent installed.

FIGURE 12 | (Left) Velocity fields of 10% stenosis. Units are centimeters per second. (Right) Velocity fields of 70% stenosis. Units are centimeters per second.

FIGURE 13 | n spherical projection. (Left) Random velocity fields on S2. (Right) Random velocity and pressure fields on S3.

points according to their original norm, with red points having
higher norm and blue points having lower norm, although the
majority of points are blue and only a handful of points near the
poles are red. The difference between the left and right figures in
Figure 15 is clear—one is a sphere and the other is not. More
precisely, the 70% stenosed projection has points all over the
sphere, whereas the 10% stenosed projection only has points on
the pole of the sphere. To see the topological difference between
these two, we can use our tool of persistent homology. We expect
the first to have no generators in the second dimension and the
second to have one.

It is worth observing that our vascular data is of the form
< Es, EU, P >, with Es being spatial data, EU being velocity data,

and P being scalar pressure data. The fundamental projection
therefore reduces our topology from a seven dimensional space
to a two dimensional space, namely the surface of the sphere. An
advantage of this projection is that three dimensional data can be
readily visualized—however, a lot of information may be lost in
this reduction.

5.3. Persistent Homology of Spherical
Projections
The process of the proposed method should be clear already;
take the velocity data from a stenosed vessel and calculate
its projection on the unit sphere, which we call its spherical
projection (fundamental projection as we use the first three
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FIGURE 14 | (Left) Barcode for data on S2. (Right) Barcode for data on S3.

FIGURE 15 | (Left) Spherical Projection of the normalized velocity fields of the Blood Vessel with 10% stenosis. (Right) Spherical Projection of the normalized velocity

fields of the Blood Vessel with 70% stenosis.

velocity components). Next we calculate its persistent homology.
Since this calculation has high complexity, we use a fraction of
our points as in the earlier calculations. We use the lazy witness
strategy with 200 witness points and 150 landmark points. We
make a choice of points when we perform our computation,
and therefore there is a measure of imprecision inherent in our
results. If we simply choose our points randomly, there is a
chance that we will choose badly. If we wrongly chose a set of
landmark points that were clustered together near a pole, we
would make a poor deduction as to the coverage of the sphere.
Because the sphere is a fixed scale, it does not take many points
that are evenly spaced to properly cover the sphere. Therefore,
if we make sure to choose our landmark points to be as evenly
spaced as possible out of all possible choices, we can be confident
that we avoid this case.

We have used the Javaplex package from [31] to calculate
the barcodes. It is worth pointing out that when calculating
the barcodes using Javaplex, if there are no intervals calculated
above a certain dimension, then that dimension may not
be graphed.

As we should suspect from the earlier Figure 15, the spherical
projection for the vessel with 10% stenosis has no meaningful
homology in the higher dimensions while 70% has clearly.
Figure 16 shows the barcode of 10% stenosis (left) and 70%
(right). As shown in the figure, we distinguish the healthy 10%
stenosis from the diseased 70% stenosis in terms of topology,
for which the spherical projection was crucial. In Appendix, we
collect the spherical projection of velocity fields and its barcode
for the cases of 20–60% stenosis. For all of these calculations
we have used symmetric vascular data. By symmetric, we mean
radial symmetry of the vessel. All the figures in Appendix

show clearly how the spherical projections are effective and how
the corresponding barcodes change as the degree of stenosis
increases. As clearly shown in the figures, the persistence of the
barcode in 2D becomes longer as disease develops. Table 1 shows
the persistence vs. the amount of stenosis.

We also performed a similar calculation using asymmetric
data for which the vessel will be stenosed different amounts in
the two directions transverse to blood flows. For example, the
first vessel is 40% stenosed in the one direction and 10% stenosed
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FIGURE 16 | Barcodes of blood vessel with 10% stenosis (left) and 70% stenosis (right).

TABLE 1 | 5 vs. percent stenosis.

% Stenosis Degree of disease 52 (a new functional index)

10 Healthy 0

30 Healthy 0

40 Healthy 0.24

50 Intermediate/healthy 0.25

60 Intermediate/diseased 0.5

70 Diseased 0.55

in the other direction in Figure 17. It is important to realize
that an asymmetric vessel may have more circulation than a
symmetric vessel and therefore even the less stenosed vessels will
have circulation.

Figure 17 shows the raw data (left) and the spherical
projection (middle) and the barcode for 40% by 10% asymmetric
vessel. Here observe that the sphere is completely covered and
there is an additional feature in the form of a ring about the
equator. This ring was not present on the symmetric vessel cases
and therefore immediately suggests that the spherical projection
may be useful in differentiating between different types of
stenosis. The right figure of Figure 17 shows the corresponding
barcodes where we see a number of circles and one long
persistence (two dimensional hole) of 2D persistent homology.
In Appendix, we provide the results for 40 by 20%, 40 by 30%,
40 by 50%, 40 by 60% asymmetric stenosis. Another important
feature that is in all of these asymmetrical vessels, as well as in
the high stenosis symmetric vessels, is a clusters of points near
the positive and negative y-direction poles. These represent the
majority of blood flowing forward and a smaller but significant
amount of blood flowing backward. As shown in [37], it is natural
to develop asymmetry when the stenosis is being developed.

We have also performed this analysis for a vessel with a ring
stent (Figures 18, 19). A ring stent that constitutes a series of
parallel rings is implanted in the vessel to keep the vessel open
(left figure in Figure 18). The right figure shows the barcode and
Figure 19 shows the raw data (left) and the spherical projection
(right). As shown in these, the flow circulation is captured in 2D

barcode. We observe that there is much circulation in the vessel
and therefore there is a two dimensional hole.

5.4. Higher Dimensional Spherical
Projections
In the previous sections, we have focussed solely on velocity data.
Velocity fields of vascular flows somewhat naturally map to the
unit sphere precisely because circulation naturally corresponds to
a spherical projection covering the unit sphere. However, there
may be useful data to be extracted from projecting some or all
of the higher dimensional data onto higher dimensional spheres,
or even other topological spaces. This leads to the n-spherical
projection of an n-dimensional non-zero vector (Definition 5.2).

How useful this idea of higher dimensional spherical
projections remains to be investigated and will be considered
in our future work. For example, one might consider the four
dimensional projection of velocity and pressure data combined
onto the three-sphere. There may be important information
encoded here, but what that information is and how it is encoded
are less clear, in part because this higher dimensional projection
is much less natural than the fundamental projection. Perhaps a
more natural alternative would be to project velocity and pressure
data onto S2 × I, where I is an interval. Pressure is a scalar in
our data and certainly non-negative and therefore this projection
may be more natural. Exploring the information present within
these higher dimensional projections is a topic for a later paper;
we merely include it here for completeness.

6. CONCLUDING REMARKS

In this paper, we proposed to use TDA of vascular flows. The
key element of the proposed method is to use the patient-specific
CFD data and apply TDA to obtainmeaningful functional indices
such as the critical failure value and the persistence of the
vascular flows.

In this paper, first we explained the concepts of homology
and persistent homology and gave examples of their use. We
applied the concept of persistent homology to the geometry
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FIGURE 17 | Velocity fields of vessel with 40% by 10% stenosis (left), the spherical projection (middle), and the corresponding barcode (right).

FIGURE 18 | A blood vessel with a ring stent inserted (left) and the corresponding barcode (right).

FIGURE 19 | Velocity fields of ring stented vessel (left) and the spherical projection (right).
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data of the exterior of the vessel thereby generating the
so-called critical failure value. We demonstrated numerically
that this critical failure value has a close relationship with
the stenosis level of a vessel, and therefore may be used
to measure stenosis. This method may be used for various
vessel shapes, and may help serve as a general method of
measuring stenosis. Further, this method demonstrates the
potential application to determine size information about a
topological object.

We next developed the concept of the spherical projection
to understand and quantify vascular flows. We demonstrated
that the spherical projection reveals important information and
patterns about flow conditions that are not apparent to the naked
eye.We applied themethod to various data and demonstrated the
differences thereof. This concept of spherical projection may be
critical to understand and classify the different types and levels of
stenosis. We applied the spherical projection method to different
sets of vascular data, and showed clear differences between the
barcodes for the different stenosis levels and types. The barcodes
for the vessels with high stenosis were different compared to
the less stenosed vessels. Additionally the asymmetric vessels
were different from the symmetric vessels in their spherical
projections, due to the presence of the equatorial ring.

The spherical projection may be generalized to data from
higher dimensions. We have only used the velocity data for
our calculations, while we have pressure data as well. Curvature
may also be calculated from the vessel geometry, which could
be another useful piece of data. Projecting some or all on
a higher dimensional sphere and calculating the persistent
homology should be considered in our future research. The
spherical projection is naturally physical but simply projecting
higher dimensional data onto a sphere may not be the best
projection to consider. Rather, we conjecture that the particular
projection should be targeted, based on intelligent analysis and
understanding of the data in question.

In this paper, we focused on developing the theoretical
framework of the proposedmethod. The data set of vascular flows
has been obtained from the CFD calculations with simplified
vessel configurations. To verify the applicability of the proposed
methods, we have applied the proposed method to real patient
data and obtained a promising preliminary data, which will be
presented in our upcoming paper.
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APPENDIX

Figure A1 shows the raw data (left), spherical projection
(middle) and the corresponding barcode for symmetric vessels
with 20, 30, 40, 50, and 60% of stenosis. Figure A2 shows the raw
data (left), spherical projection (middle) and the corresponding
barcode for asymmetric vessels with 40 by 20, 30, 50, and 60% of
stenosis.
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FIGURE A1 | Velocity fields of symmetric vessel (left), the spherical projection (middle), and the corresponding barcode (right). 20, 30, 40, 50, 60% from top

to bottom.
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FIGURE A2 | Velocity fields of asymmetric vessels (left), the spherical projection (middle), and the corresponding barcode with 40 by 20%, 40 by 30%, 40 by 50%,

40 by 60% stenosis from top to bottom.
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