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Lung inflammation may occur due to viral and bacterial infections, structural damage, or

inhalation of dangerous particles. These injuries may be quickly resolved by the immune

system, treated effectively through various interventions, become chronic problems,

or lead to death. Mathematical modeling has been used to understand immune

system dynamics during a number of pulmonary infections and injuries, identify key

mechanisms, and provide important insights into new treatments. In this review, we

present long-accepted modeling techniques and novel strategies for simulating various

lung injuries to highlight the usefulness of mathematical modeling in addressing these

life-threatening conditions. Advances in computational power have allowed for a diverse

collection of models ranging from those using only Boolean operatorsto complex hybrid

multi-scale models, each specifically designed to address relevant biological questions.

To illustrate the findings from these mathematical approaches, we present detailed

examples, summarize results, and consider future directions from modeling influenza,

pneumonia, COVID-19, tuberculosis, anthrax, and other non-infectious injuries.

Keywords: lung inflammation, mathematical modeling, differential equations, macrophages, agent-basedmodels,

pulmonary infection

1. INTRODUCTION

Inflammation in the lungs can occur for many reasons, from bacterial infections to stretch by
mechanical ventilation. The immune response to these insults has been widely studied, but there is
still much unknown, including the roles of immune cells such as macrophages, neutrophils and T
cells and the downstream effects of subcellular signaling. Mathematical modeling is a useful tool in
trying to understand complex processes like the immune system (Figure 1). Mathematical analysis
and simulations can reproduce known biology and predict response to interventions. This review
highlights long-accepted and well-documented modeling techniques as well as novel strategies that
provide insight into the immune response in the lungs and inspiration for future models.

1.1. Biological Background
The immune response is triggered to protect the host from invading pathogens or tissue damage.
Type I and type II alveolar cells interact with a foreign agent or respond to stress, releasing
pro-inflammatory signaling proteins, including cytokines and chemokines, to elicit an immune
response [1]. The innate immune system responds to these signals and provides the first line
of defense, subsequently triggering the adaptive immune response which consists of immune
mechanisms specific to the insult. Most immune responses involve varying intensities of both [2–5].
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FIGURE 1 | An overview of lung inflammation, which is the focus of this review, and the mathematical techniques used to model the immune response. ODE, ordinary

differential equation; PDE, partial differential equation.

There are two stages of inflammation: pro-inflammatory and
anti-inflammatory, classified by the cytokines that up- or down-
regulate the immune cells and those produced by the immune

cells. Typically the first stage is a pro-inflammatory response
during which damaged cells and pathogens are destroyed [1,
6]. Innate immune cells such as neutrophils, eosinophils, and
macrophages are recruited to the damaged or threatened site [7].
These cells work to remove the insult, often by phagocytizing the
pathogen and sending pro-inflammatory signals to recruit other
immune cells [8].

In response to pro-inflammatory roles of cytokines and
chemokines, neutrophils remove damaged tissue and pathogens
through a number of mechanisms, including phagocytosis and
release of neutrophil extracellular traps. They also produce

molecules such as serine proteases and reactive oxygen species
that aid in the containment of pathogens. Though neutrophils
can be very effective at eliminating foreign agents, an excessive
neutrophil response or unprogrammed cell death, called necrosis,
can lead to chronic inflammation [9–11]. Eosinophils release
their own extracellular traps that capture microorganisms, and
granules within eosinophils release proteins that participate in
the removal of the inflammatory stimuli [7]. Mast cells are
immune cells involved in the response to various diseases and
play a role in wound healing and asthma. Mast cells are recruited
from the blood and release various cytokines and chemokines
such as TNF-α and IL-4 [12].

In addition to these immune cells, macrophages and dendritic
cells (DCs) eliminate the threat, phagocytize debris and other
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immune cells, and send signals, but are also antigen-presenting
cells (APCs) [3]. APCs, in general, present antigens to adaptive
immune cells triggering a specific defense against the insult.
Tissue-resident macrophages are already present and form a
primary line of defense against pathogens. Circulatingmonocytes
mature into macrophages, which are rapidly recruited to the site
of inflammation upon damage. Macrophages have high plasticity,
with the two main subtypes classified as classically activated,
or M1, and alternatively activated, or M2, although these
groups have overlapping features [13]. M1 macrophages release
pro-inflammatory cytokines and phagocytize microorganisms,
damaged cells, and apoptotic cells [14–16]. M2 macrophages
generally promote regulation of inflammation and wound repair
and play a critical role in resolution of allergic inflammation
[17, 18]. As with macrophages there are many types of DCs,
including CD103+ respiratory DCs which deal well with foreign
particles and CD11bhi DCs which produce significant amounts
of chemokines [1, 19].

APCs acquire antigens and migrate to the lymph nodes
(LN) where adaptive immune cells are activated. APCs display
the pathogen antigens on their surfaces, promoting naive T
cells to develop an adaptive response specific to that pathogen
[20]. T cells fall under two main categories, CD8+ helper and
CD4+ cytotoxic. CD8+ T cells kill infected cells directly whereas
CD4+ T cells use more indirect methods such as supporting
the production of antibodies through activation of B cells [21].
Natural killer (NK) cells, from the same family as B and T cells,
are involved in injuries such as influenza and tuberculosis. NK
cells release high levels of cytokines, especially IFN-γ , regulate
the function of other immune cells, and aid in the transition to
an adaptive immune response [22].

The second stage of the immune response is the anti-
inflammatory response. Pro-inflammatory signaling is down-
regulated and anti-inflammatory mediators and the anti-
inflammatory functions of pleiotropic mediators, such as IL-
10, promote repair and a return to normal health [20, 23].
This second phase is orchestrated by both the innate and
adaptive arms of the immune response [1]. An anti-inflammatory
environment and phagocytosis of apoptotic neutrophils causes
M1 macrophages to shift to an M2 phenotype. This shift is
characterized by the decrease in production of pro-inflammatory
mediators and an increase in that of anti-inflammatory and repair
mediators [14, 24]. DCs also utilize a process called efferocytosis
to clear apoptotic cells, contributing to initiation of the anti-
inflammatory response. In addition to their role in the pro-
inflammatory phase, T cells and DCs can also produce cytokines
with anti-inflammatory roles [19, 25]. Another important cell
type is the fibroblast, appearing at the beginning of the anti-
inflammatory phase and recruited by chemoattractants such
as IL-1β and TNF-α. Fibroblasts produce extracellular matrix
components to support healing of damaged tissue [26].

As evidenced by the various and overlapping roles of
immune cells, both innate and adaptive, and the cytokines and
chemokines they produce, the immune response is complex
and in many ways specific to the insult type. Furthermore,
the proper shift from a pro-inflammatory response to an anti-
inflammatory response is extremely important, and an imbalance

in either phase can cause severe complications, especially
for immunocompromised individuals [27–29]. The preceding
paragraphs are meant to give an overview of the immune
response and details related to specific diseases that are addressed
in this review will be highlighted in the following sections.

Inflammation specifically in the lungs is caused either by
a foreign insult, by tissue damage due to stretch or strain,
and in rare cases, an autoimmune disorder. Infections of the
lungs are some of the deadliest infections in the world [30,
31], some of which have been studied for decades such as
tuberculosis, influenza, and pneumonia. On the other hand, the
novel coronavirus, causing coronavirus disease 2019 (COVID-
19) has precipitated a global pandemic since its first case in
December 2019 and many of its underlying mechanisms and
behaviors have yet to be confirmed [32]. COVID-19 is caused
by SARS-COV2 and primarily attacks the respiratory system
[33]. Symptoms range from none apparent to severe and life-
threatening, resulting in the need for support such as mechanical
ventilation [34, 35]. Co-infection with pathogens or preexisting
medical conditions can be especially life-threatening. Bacterial
pneumonia complicatedmore than 95% of the 50million ormore
deaths during the 1918 influenza pandemic [36].

This review explores the mathematical modeling of various
aspects of the biology summarized here. The first section
focuses on acute infections that can be completely eradicated
from the body given the proper immune response. We give
a brief overview of COVID-19 models, but since in silico
studies of the immune response to this disease are still in
their infancy at the time of this review, we focus on the
two infections, pneumonia and influenza. In fact, much of
the morbidity associated with influenza is due to co-infection
with pneumonia [37]. The bacteria which causes pneumonia,
Streptococcus pneumoniae (Sp), can mutate and become resistant
to antibiotics and the virus causing influenza can similarlymutate
and develop new strains. In fact, antibiotic resistance is becoming
an increasing concern in the global community and a significant
threat to public health [38]. The need to adapt to evolving
pathogens is a significant motivation for the development of
mathematical models [39, 40] [for more information on the
pathogenesis of these infections, see [41–44] for influenza and
[45] for Sp.].

Unlike the pathogens causing influenza and pneumonia,
those that cause tuberculosis and anthrax may not necessarily
be fully eradicated in the body. Instead, levels can be so low
that they are not acted upon by the immune system and
thus rendered inactive. This is called a latent infection, and
no symptoms are exhibited although an active infection and
subsequent transmission may result at any point [46]. Section 3
focuses on these pathogens.

Anthrax is a serious infection caused by the bacterium Bacillus
anthracis. Inhalation of anthrax occurs when anthrax spores
enter the body via the respiratory tract rather than via the
digestive tract or wound. Although inhaled anthrax is the rarest
form of an anthrax infection [47], it is of the greatest present-
day concern due to its potential as a bioterrorism threat [48]. The
immune response to anthrax is not completely known; however,
it is known that pathogenesis is significantly different from the
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immune responses to other bacterial infections and thus requires
a unique model.

The bacterium that causes tuberculosis, Mycobacterium
tuberculosis, is thought to infect around one-third of the world’s
population. Although only 5–10% of these cases actually develop
symptoms [49], tuberculosis (TB) was responsible for about 1.5
million deaths in 2015 and even more in previous years, making
it one of the top causes of death in the world [31]. Althoughmany
advances have been made in the prevention and treatment of
both TB and anthrax, the reasons individuals experience different
outcomes is unclear, precipitating modeling efforts to better
understand and treat these pathogens.

In addition to viral and bacterial infections, various immune
responses can be elicited from the inhalation of dangerous
particles due to smoking, air pollution, and occupational
exposure [50]. The third section focuses on these insults.
Smoking can lead to Chronic Obstructive Pulmonary Disease
(COPD), which is a largely irreversible degenerative lung disease
characterized by chronic inflammation [51, 52]. Another example
of chronic inflammation occurs through repeated asthma attacks
over time, resulting in airway remodeling. The severity of
these attacks varies from patient to patient, rendering the
disease difficult to manage clinically [53]. The immune response
to damage induced by mechanical ventilation (MV) has also
recently received attention, especially since it can exacerbate
complications from the original need for MV [54, 55]. For
these conditions, the dynamics of the immune response are still
incompletely understood, particularly the roles of macrophages
and other inflammatory cells in airway damage and the resolution
of inflammation in asthmatic and allergic episodes [56, 57].

In the following sections, we elucidate the techniques used
to model these injuries and insults. Many open questions still
exist to better treat infections, especially under the threat of
antibiotic resistance. Furthermore, chronic inflammation is of
particular interest regarding lung cancer, since there is evidence
that chronic inflammation contributes to carcinogenesis [58, 59].
In addition, connections between smoking, COPD, and lung
cancer have been drawn [60, 61]. In this work, we examine the
different causes of lung inflammation as described above and
how mathematical modeling helps understand the inflammatory
response in each.

1.2. Mathematical Background
The immune system spans the organ level down to the
molecular level with positive and negative feedback loops and
highly non-linear behavior. Mathematical modeling addresses
scales that include subcellular and molecular interactions,
communication between individual cells, interaction between
various cell types and other signals at the tissue level, up to host
and population levels. Various types of interactions within the
immune system can be modeled using mathematical techniques,
providing predictions and simulations for real-life scenarios
and suggesting interventions, including development and testing
of new personalized treatments [62, 63]. Figure 1 gives an
overview of the immune response in the lungs and highlights the
mathematical modeling methods used to research diseases that
trigger lung inflammation.

Differential equations are commonly used for modeling
biological systems because of their ability to effectively capture
non-linear behavior and demonstrate interactions between
numerous variables, measuring continuous populations over
time. Each state variable represents a component of a system,
such as a cell, protein, or a quality like overall damage [64]. Terms
in each equationmay represent rates of interactions between cells
or mechanisms and thus have biological significance, which is
useful when analyzing the system.

Ordinary differential equation (ODE) models are used to
create kinetic models describing average interactions between
large numbers of cells, molecules and/or individuals. ODEs
typically describe dynamics over a continuous time period,
assume that the environment is well-mixed and, therefore, do
not account for spatial dynamics. The model can be calibrated
by fitting to time series data. A variety of mathematical and
computational techniques have been developed for ODE models,
including uncertainty and sensitivity analysis, optimal control
methods, bifurcation analysis, and parameter estimation and
identifiability [62, 65].

Some spatial features can be accounted for with
compartmental ODE model. These have variables associated
with cell or molecule populations in each compartment and their
movement in and/or out of the compartments. For example,
Marino et al. incorporated a lung compartment and a lymph
node (LN) compartment into their model. This paints a more
biologically realistic picture, accounting for migration of CD8+
T cells to the site of inflammation from the lymph nodes [66].
An ODE model is limited by the amount of data available; large
and detailed data sets are required for higher confidence in the
model and its parameters. Furthermore, the ability of ODEs to
account for spatial dynamics is limited and the assumption of an
environment in which populations are well-mixed is not always
the case.

Delay differential equations (DDEs) are similar to ODEs,
but incorporate time delays into the interactions between
components. For example, Krishnapriya et al. incorporates a time
delay into their model of H1N1 influenza to replicate the latency
period, the time between an individual’s exposure to the virus
and the time when the individual becomes infectious. DDEs may
result in a better fit for systems without modeling all components
of the process causing the delay. Sensitivity analysis for the model
by Krishnapriya et al. showed that this length of time may be
important for determining the course of action in treatment [67].
Compared to ODEs, DDEs are more difficult to simulate and
analyze [65].

Partial differential equations (PDEs) account for continuous
time and space. Because of their multi-dimensional nature, they
often require more computation time. However, PDEs have been
used to track populations throughout a spatial domain, such as
macrophages and cytokines in a granuloma [68] or T cells in LPS-
induced experimental asthma. Stability and sensitivity analysis
can be performed for PDEs [69], though this is more commonly
done with ODE models.

Currently most of the differential equation models for lung
inflammation are deterministic and do not include stochastic
events or noise-induced variations in response. Therefore, output
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of the model is entirely determined by the parameter values
and initial conditions, and the same results are obtained every
time the simulation is repeated. Stochastic models, on the other
hand, incorporate biological randomness this causes simulations
with the same parameters and initial conditions to have different
model output, which can sometimes vary significantly. Stochastic
differential equations (SDEs) are differential equations that
include one or more terms incorporating inherent randomness
into the model. Stochasticity is most often applied to ODEs,
though used in PDEs and DDEs as well. SDEs are more
computationally complex and more difficult to parameterize
than their deterministic counterparts, and to date have not been
commonly used for immunological models [70].

Other stochastic models used to model lung inflammation
include cellular automata (CA) models and agent-based models
(ABMs). These are used to account for spatial interactions
between immune components, but in a discrete manner rather
than a continuous one. In both CA models and ABMs, cells,
molecules, and other components of the immune response are
identified as “agents.” These agents interact on a defined two- or
three- dimensional space based on a set of rules informed by the
behavior of the biological system. The stochastic component is a
strength of these types of models, since deterministic models such
as ODEs and PDEsmay lose accuracy when the molecules or cells
beingmodeled have low total counts and randomness effects their
interaction rates [62]. Using a set of simple rules, highly complex
behavior can emerge.

The main difference between CA models and ABMs is
that in CA models, agents do not move but rather interact
and are changed based on their neighborhood (often a Moore
neighborhood [71]) and other processes around them. ABMs
include some, if not all, agents that move around the space,
interacting with other agents and making decisions. The purpose
of CA models is generally to detect patterns or structures that
emerge from the rules, whereas ABMs seek to explore how
changes in individual agents or interactions impact overall system
behavior [72]. One limitation of ABMs and CA models is that
they are computationally intensive. ABMs can incorporate a
variety of agent types and scales but are difficult to parameterize
or analyze mathematically. Spatial domains or cell counts are
reduced, in order to have a reasonable number of agents.
This can lead to results that are often more qualitative, such
as examining overall tissue damage [50], as opposed to the
quantitative population results of a differential equations model.

Boolean networks are discrete models in which individual
units are represented as nodes and the interactions between them
are edges, defined by Boolean logic. By simplifying interactions in
this way, large models can be constructed with high-throughput
data to discover underlying system properties [73]. For example,
a molecule may be represented by 0 for “unactivated/off,”
then 1 for “activated/on,” when bound to its receptor. The
combinations of ON, OFF, AND, OR, and NOT can be combined
for more detailed interactions. These models can be developed to
include pathways with hundreds of interactions and connections.
Booleanmodels may be pruned to exclude nodes and interactions
that are discovered to be unimportant by the data and can
incorporate multiple scales. Boolean models do not include

spatial dynamics and do not capture non-linearities well [62, 74].
Methods have been developed to analyze these large signaling
networks. In Abou Jaoude et al. the authors reviewed these
methods focusing on model attractors, reachability properties,
reducing large models and assessing the effects on dynamics
when varying external signals [75].

With the rise in computational power, models have become
increasingly complex, allowing for multiple scales and model
types to be integrated. Hybrid models contain two or more
model types whereas multiscale models contain two or
more scales; often models include both [76]. For example,
Cilfone et al. incorporate details of the cytokines TNF-α
and IL-10 with macrophages and other cell types to explore
granuloma formation using an agent-based model for cellular
and subcellular interactions. Additionally, ODEs are used to
describe secretion of TNF-α and IL-10 from individual cells, and
PDEs model diffusion of cytokines and chemokines throughout
the lung environment. Hybrid and multiscale models are
highly computationally expensive and difficult to calibrate.
Optimization and sensitivity analysis are uncommon for these
model types [70].

The amount and quality of available experimental data is
typically a limitation for mathematical modelers because it limits
their ability to accurately estimate model parameters. To account
for this sparsity, advanced parameter estimation and uncertainty
analysis methods have been developed [77, 78]. Alternatively,
models may be simplified to capture the overall behavior of the
immune system with a few parameters.

After developing a mathematical model, there are some
common themes when discussing future work. Models can
be made more realistic by adding more detail to the current
work; for example, specific immune cell roles can be explicitly
modeled rather than using parameters [79]. Other directions
for future work may include refining parameter values using
different estimation techniques or additional experimental data
and combining with other existingmodels or linking across scales
[80, 81].

It is worth noting that aside from replicating the dynamics
of the immune system, many models focus on replicating
the mechanics of the lung injuries themselves. Mathematical
approaches to other topics in immunology have also been
extensively covered, including T cell turnover and diversity [82,
83], intercellular communication via cytokines [84], cancer and
tumor growth [70, 85], viral dynamics [41], and general immune
system function [86].

In this review, we focus on mathematical models that examine
the immune response caused by lung injury or disease. Each
of the following sections, grouped by insult type, begins with a
summary of the mathematical models used. We then choose a
model to describe in greater detail; these illustrative examples
showcase the methods utilized by many other models in the
section and are representative of the overall direction ofmodeling
in that field. By choosing a different model type for each
section, we also provide the reader with examples of how
mathematical and computational methods are implemented to
illustrate immune system dynamics. Each section also includes
a comprehensive view of conclusions from the models in which
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we link mathematical approaches to biological knowledge and
identify patterns in model results.

2. PATHOGEN-INDUCED INFLAMMATION:
PNEUMONIA, INFLUENZA, AND COVID-19

Pneumonia, influenza, and COVID-19 are acute infections that
can benefit from mathematical and computational modeling,
especially given the ability of the influenza virus to mutate, the
fact that much is still unknown about the novel coronavirus, and
the comorbidities associated with all three. The models examined
in this section aim to contribute to a more detailed and robust
knowledge of the effects of various strains of these pathogens and
the development of new and personalized treatments for themost
susceptible individuals. Aside from the illustrative example, we
outline models in this section, often grouping several together
based on similarities. Tables 1, 2 focus on models for influenza
and pneumonia, respectively, stating the type of model, summary
of the key variables and parameters, and main results. Most
mathematical models associated with COVID-19 at the time of
this review are population-level spread of disease models. To
our knowledge, the only model published so far on the immune
response is an ODE model by Du and Yuan [121]. Wang et al.
presents a community-driven effort to model COVID-19 [122],
and a few other preliminary reports related to modeling the
immune response to SARS-COV2 are available thus far [123,
124]. Given the limited models at this point we do not include
a table for COVID-19 models.

2.1. Overview and Models From the
Literature
For influenza and pneumonia models, a majority are ODE-based
models, which can encompass the diverse needs of the modeler.
Many ODE models, especially within the context of influenza,
simplify dynamics by including the virion and epithelial cells
as variables. Then the severity of the infection is quantified by
the amount of epithelial cells destroyed by the pathogen, tracked
by one of the ODEs. The three-dimensional set of equations
modeling the virus, target cells, and infected cells is commonly
known as a target cell-limited model, and many of these ODE
models are variations on the target cell-limited model. A model
may not represent immune components by a separate equation
but instead include the effects of the innate and/or adaptive
immune system as parameters or terms within the equations;
this provides added simplicity and computational efficiency,
especially when there is a lack of data [99, 104, 108, 115–118].
For example, Miao et al. [6] and Smith et al. [94] describe the
death of infected cells by a constant rate instead of explicitly
modeling apoptosis by phagocytes such as macrophages. On the
other hand, for a more biologically realistic model, facets of the
immune response can be included as state variables to track the
levels or concentrations of immune components during response
to the infection. In these models, emphasis is commonly put on
infected and uninfected cell populations [90, 93, 95, 115, 117], T
cells [96, 98, 102], and macrophages [100, 101, 114].

Delay differential equations, thoughmore mathematically and
numerically complicated, may be used to represent delays such
as the latency period (the time between entry of the pathogen
into a cell and the resulting release of new pathogens from
the host cell) or the time lag between production of interferon
(IFN) and its effect on pathogen production [67, 79, 87, 88, 92,
104, 113]. In place of explicit delay differential equations, some
modelers choose to simulate a delay by including an additional
equation in an ODE model to represent different states of host
cells, such as two separate populations of infected epithelial
cells [90].

A few other differential equation models have been proposed.
Schelker et al. considers the effects of spatial interactions through
a PDE to understand how influenza is delivered into the nucleus
[111] and Handel et al. uses a stochastic version of an SIR model
to consider resistant strains of the virus [103].

Aside from these most common model types, Mitchell
et al. developed a CA model and a set of ODEs and compared
their results [107]. Murillo et al. and Smith et al. review
models including differential equations and ABMs, anticipating
the shift toward more complex, multi-scale models [109]
and better incorporation of data [120]. A Boolean model
was developed by Anderson et al. to reveal important
subcellular signaling pathways within a dendritic cell [73].
We focus on summarizing more recent findings, though
noteworthy contributions have heretofore been made. We
select an example to illustrate one of the ways that models
are used to shed light on lung inflammation. Results from
a variety of models will then be discussed, demonstrating
the advantages and limitations of various mathematical
modeling methods.

The COVID-19 model by Du and Yuan [121] is a target
cell-limited model, where the innate and adaptive immune
responses are accounted for by parameters in the equations.
Results from the model show that the timing of the innate and
adaptive responses in relation to the time of viral load peak
could be important in distinguishing mild and severe cases.
Although modeling of COVID-19 is still in its early stages,
understanding of the differences between this disease and other
respiratory infections as well as knowledge of mathematical
and computational tools to study them will be important in
developing treatments and antiviral drugs.

2.2. Illustrative Example: Manchanda et al.
As mentioned previously, mathematical models can range from
simple with a few dimensions to complex with multiple model
types and scales. Manchanda et al. employed a simplified
approach to the host response to influenza through a three-
dimensional system of ODEs [97]. A condensed model is
advantageous when there is limited data available; such is the
case here.

The system of ODEs is shown in Equations (1–3). The first
variable P, is the pathogenicity of the virus, i.e., its ability to cause
an infection. D, the overall host immune defense, includes both
the innate and adaptive responses. I is inflammation due to the
pro-inflammatory response. Figure 2 gives the model schematics
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TABLE 1 | Summary of models of influenza.

Type Key variables Key parameters Summary References

Boolean NFkB, IRF1, CREL, IL2 n/a Identified key pathways & transcription factors and revealed

regulation of IL2 pathway.

[73]

DDE Antigen-presenting macrophages,

IFN response

Virus replication rate, cytopathicity,

rate of IFN decay

Changes in virus-epithelial system has a greater impact on

virus severity than immune mechanisms.

[87]

Dendritic cells, CD4+ and CD8+ T

cells

Rate of antibody neutralization,

dendritic cell migration delay

Efficiency of viral replication can explain difference in

outcomes in B-cell deficient mice.

[88]

Exposed & infectious individuals Reproductive number, time it takes

for exposed to become infectious

Conditions provided for global stability of infected and

infection-free equlibria.

[67]

ODE IFN-gamma, TLR3, STAT1 Influence of genes on each other Identified key pathways involved in subcellular positive

feedback loop.

[89]

Epithelial cells (infected and

producing virus) interferon response

Viral clearance rate, basic

reproductive number

Viral clearance rate correlated with increased severity of

infection for those with decreased clearance ability.

[90]

Antigenic compatibility, four

subpopulations of epithelial cells

Pathogen virulence, interferon

response, effector cell production

Quantified antigenic distance as a value from 0 to 1. [91]

Adaptive & innate immune responses Time lag between levels of IFN and

its effect on virus production, virion

lifespan

Both adaptive and immune responses important for capturing

dynamics of infection.

[92]

IFN, infected cell subpopulations IFN induction & efficiency Innate immune system plays vital role in control of peak virus

shedding; high levels of cytokines can lead to fatal cases.

[93]

Infected cell subpopulations Reproductive number, rate of

transition from infectious and

productive

Two-phase approximate solution captures the two distinct

phases of the immune response; small changes in the eclipse

phase length could lead to more drastic changes in viral

growth rate.

[94]

Cells resistant to infection, IFN Infected cell death rate, antiviral

efficiency

Innate immune system is responsible for initial decrease in

viral population and adaptive immune response is necessary

for complete clearance.

[95]

CD8+ T cells, NK cells Cytokine-induced antiviral effect,

infected cells clearance rate

Increased levels of pro-inflammatory cytokines cause

influenza to grows more slowly in aged mice, leading to

limited activation of adaptive immune system.

[96]

Antiviral immune defense,

inflammation

Viral replication rate, rate of early

activation of immune system,

maximum pathogenicity

Model differentiated between interpreted the causes of

different outcomes in mice for several virus strains.

[97]

CD84+ T cells, virus population T cell replenishment rate Review of influenza modeling with focus on parameter

estimation; simple ODE model highlights identifiability issues.

[98]

Infected & uninfected cells Production of virus per infected cell,

virus infection rate

Predicted viral shedding durations with varying oseltamivir

treatments.

[99]

IL-10, neutrophils, reactive oxygen

species

Substrate affinity for adduction of

macrophages, production rate of

IFN by infected cells

Viral clearance does not require a significant loss of epithelial

cells due to antibody activity and removal of infected cells by

NK cells.

[100]

Activated or infected macrophages Rate of macrophage activation High pathogenicity infections lead to higher levels of activated

macrophages.

[101]

Cytokines generated by innate

immune response, T cell populations

T cell decay rate, rate of killing of

infected cells by T cells

Spatial heterogeneity is the major factor determining

dynamics of primary infection.

[102]

SSA Individuals infected with resistant

strains

Reproductive numbers, probabilities

of resistance generation

Inclusion of stochasticity produces outcomes different from

deterministic model; early intervention recommended through

prophylaxis.

[103]

ODE, DDE Epithelial cells: infected and

producing virus

Maximum drug effect, eclipse

phase length

Emergence of drug-resistant mutations of the virus need to

be considered explicitly to accurately characterize effect of

amantadine treatment.

[104]

Antibodies, cytotoxic T lymphocytes,

IFN

Eclipse phase duration, viral

clearance rate

Review of influenza models, with validity assessed using

available experimental data.

[105]

CD8+ T cells, IFN produced by

infected cells

Initial number of B cells, delay for

naive CD8+ T cell activation

Non-linear relationship between T cell levels and recovery

time.

[79]

ODE,

NLME

Systemic symptoms Infectiousness, duration, latent

period

Symptom levels are proportional to infectiousness. [106]

CA, DDE Infected cell subpopulations, antiviral

factor produced by infected cell

Reproductive number, virus

productivity per cell

Viral spread rate differs dramatically between strains. [107]

(Continued)
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TABLE 1 | Continued

Type Key variables Key parameters Summary References

ODE, PDE Apoptotic target cells, viral RNA and

protein synthesis

Lifespan of infected cell, drug

treatment efficacy

More efficient antiviral treatments should target intracellular

processes such as viral genetic code assembly and

replication.

[108]

ODE,

ABM, PDE,

CA

Susceptible & infectious populations,

level of immune response

Viral infectivity Review of single-scale influenza modeling to speculate how

they can be used in a multi-scale model.

[109]

ODE, SSA Resistant-strain infected cells and

resistant virus

Virological & symptom efficacies Timing between incubation of the virus and therapy initiation

(oseltamivir) vital in preventing drug resistance.

[110]

ODE, PDE,

SSA

vRNP at various reaction stages vRNP degradation, release

distance, & dissociation

Intracellular pathway model identifies bottleneck for efficient

virus infection due to viral RNA degradation.

[111]

ODE, DDE,

PDE

Target cells, immune response, IFN,

antiviral therapy

Host factors, virion half-life, immune

cell proliferation

Review of mathematical modeling of dynamics of various viral

infections.

[112]

ABM, agent-based model; CA, cellular automata; DDE, delay differential equation; NK, natural killer; NLME, non-linear mixed effects; ODE, ordinary differential equation; PDE, partial
differential equation; SSA, stochastic simulation algorithm; vRNP, viral ribonucleoprotein complexes.

TABLE 2 | Summary of models of host response to pneumonia and coinfection with pneumonia.

Type Key variables Key parameters Summary References

DDE Unattached & attached bacteria,

virus, epithelial cell subpopulations

Antiviral treatment, macrophage

efficiency

Analyzed effects of viral infection on ability of mechanisms to

reduce early bacterial clearance.

[113]

ODE Resident AM, neutrophils, MDM Rate of consumption of bacteria,

ratio of bacteria to AM

Three-stage model to represent arrival and contributions of

different immune cells.

[114]

Virally infected epithelial cell

subpopulations, bacterial population

Rate of bacterial phagocytosis by

AM

Decreased phagocytosis by macrophages during pneumonia

allows growth of bacteria.

[115]

Concentration of bacteria Bacteria doubling time,

AM-dependent clearance half-life

Estimated values for parameters with biological significance. [116]

Antibiotic-resistant and -susceptible

bacteria, anti-virulence drug

Antibiotic’s maximum killing rate,

half-max of antibiotic concentration

Anti-virulence drug allows body’s natural defense

mechanisms to clear infection with combination therapy.

[40]

Virally infected epithelial cell

subpopulations, bacterial population

Virus-induced AM depletion Non-linear initial dose threshold is dependent on the amount

of virus-induced AM depletion; distance from threshold

correlates to growth rate.

[117]

Populations of infected epithelial cells,

virus, bacteria

Initial viral & bacterial loads Probabilistic risk assessment was used to construct risk

profiles; TNF-α is a sensitive biomarker for coinfection.

[118]

Barrier integrity, TLR activation level Activation of TLR, containment of

bacteria

Threshold values of parameters defines “switches” to

represent pathways as turned on or off.

[80]

Bacterial interaction, innate and

adaptive immunity

Bacterial clearance rate &

proliferation rate, tissue carrying

capacity

Abstracted system revealed three outcomes:

dose-independent clearance, dose-independent persistence,

dose-limited clearance.

[119]

ODE,

Boolean,

DDE

Infected epithelial cell subpopulations,

IFN, AM

Infectious viral load, clearance rate Review of mathematical models of influenza-related

infections; call for experiments that test model-driven

hypotheses.

[120]

AM, alveolar macrophages; DDE, delay differential equation; MDM, monocyte-derived macrophages; ODE, ordinary differential equation; TLR, toll-like receptor.

governing these interactions.

dP

dt
= αP

(

1−
P

kp

)

− βD
P

P + 0.01
(1)

dD

dt
= yP − θD (2)

dI

dt
= ǫ

(

1+ tanh
D− δ

ω

)

− ρI (3)

Pathogenicity, as represented by Equation (1), is controlled by
the virulence of the virus (first term) and suppressed by the

immune response (second term). Equation (2) shows that the

immune response is activated in the presence of the pathogen

and decays once the virus is cleared. Inflammation from the
pro-inflammatory response, Equation (3), is characterized by

the effects of cytokines and chemokines, modeled by the first

term and taken from Kumar et al. [125]. The second term

represents the anti-inflammatory response which counteracts

pro-inflammatory behavior. The authors also include a “clinical
score,” adapted from Smith et al. [126]. The clinical score (also
called symptom score), a measure of how sick the host is, sheds
light on the characteristics of an infection by quantifying its
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FIGURE 2 | (A) In this model, overall responses were quantified, including pathogenicity (P), antiviral immune defense (D), overall inflammation due to

pro-inflammatory response (I). S is the symptom score calculated based on the three state variables. (B) Experimental data and fitted model results for virus strains

Jena/5258 and Jena/5555. Figure reprinted from Manchanda et al. [97] with permission from Elsevier.

severity. It is calculated by:

S = P + I

These were sufficient to characterize the four different strains
studied, two of which are shown in Figure 2B. This model is
also able to link viral pathogenicity with clinical symptoms.
To compare to the model clinical score, mice were assigned a
laboratory clinical score ranging from 0 to 7 based on observation
to gauge severity of the infection. For mice with a model-
generated clinical score peak that occurred between 3 and 6 days,
such as the Jena/5555 strain in Figure 2B, little inflammation was
observed. Oh the other hand, high inflammation was seen for
mice with a biphasic course of symptoms such as those with the
Jena/5258 strain, also shown in Figure 2B. The authors speculate
that this second peak in the biphasic response could be in part
due to inflammation and high values for α, δ, and ǫ.

A small-scale model can direct future mathematical and
experimental efforts in the study of influenza; the main drawback
is that the explanation of outcomes is reduced to differences in
inflammation. As we have described, the inflammatory response
is highly complex and regulated; additional work is required
to parse out the specific mechanisms of inflammation that
contribute to these differences.

2.3. General Results and Conclusions From
Modeling Influenza and Pneumonia
The conclusions from models of influenza and pneumonia
generally fall under two broad categories: (1) a further
understanding of the dynamics of the immune response and

(2) recommendations for antibiotic and antiviral treatments,
including in the case of coinfection.

A common thread throughout many of the influenza
models is an emphasis on the role of the adaptive immune
response in clearing the virus [79, 88, 91, 92, 95, 96,
98, 102]. Handel et al. found that both the innate and
adaptive, instead of only the innate, immune responses
were needed in their model to accurately explain the data
[92]. Similarly, Pawelek et al. concluded that although the
considerable drop in the viral concentration after its peak
is due to the innate immune response in their model, the
complete elimination of virus is achieved by the adaptive
immune response [95]. Other models focused on CD8+
T cells, main players in the adaptive immune response,
because of their regulatory role via production of anti-
inflammatory cytokines throughout the course of infection [127].
Numerous models identified the presence and effectiveness
of adaptive immune cells such as antibodies and cytotoxic
cells in their model as vital to recovery time and viral load
[79, 88, 91, 96, 102].

Another use of mathematical modeling is estimating
parameters or values that have biological relevance and are
otherwise difficult or even impossible to determine [40, 90].
These parameter values can then help identify disease phenotypes
or strains that could become pandemic [97]. One commonly
estimated parameter is the reproductive number of the
bacteria/virus or a similar threshold condition separating
eradication of the pathogen and infection [67, 87, 107]. Other
calculated values are the incubation period (the period of time
between entrance of the pathogen into the host and recognition
by the immune system) [106] and parameters related to the life
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of the pathogen such as pathogen half-life and bacteria doubling
time [94, 104, 116].

Identifying sensitive parameters can also suggest effective
treatment possibilities. Many important factors in the immune
response to influenza can be quantified with only a few
parameters, supporting the development of simplified systems.
Based on identifiable and highly sensitive parameters, the model
by Manchanda et al. revealed that adaptive immunity and early
pro-inflammatory responses are some of the most impactful
factors in the dynamics of influenza [97]. Baccam et al. calculated
the reproductive number R0 which represents the number of new
infections that an infected cell can produce [90]. Kamal et al.
utilized a small-scale model, finding that treatments influencing
the parameter representing viral infectivity may be effective [99].
A model developed by Smith et al. indicates that differences in
outcome could be explained by small changes in the mechanism
which controls bacterial-induced impairment of macrophages
[115].

Often different pathogenic behaviors arise from models,
and modelers categorize these behaviors to understand what
may cause specific outcomes and how an individual might
transition from a healthy state to an infected one. Some models
delineate between the eradication of the pathogen and sustained
growth [87, 114, 117, 119] whereas others go into greater
detail by identifying different characterizations of the infections
such as low and high pathogenicity [80, 101]. For example,
Almocera et al. identifies three outcomes of pneumonia based
on bifurcation parameters: dose-independent clearance, in which
the infection is cleared by the immune system regardless of
the bacterial dose size; dose-independent persistence, in which
the immune system is unable to remove the bacteria regardless
of dose; and dose-limited clearance, in which the bacteria can
be cleared depending on the dose size [119]. Comparing these
distinct outcomes can identify possible processes or parameter
thresholds responsible for the different behaviors.

As previously mentioned, mathematical modeling provides
the ideal platform to test optimal dosage and hypothesize
treatments before expensive and time-consuming experiments
are performed. Beauchemin et al. [104] and Canini et al. [110]
consider viral resistance and its effect on treatment efficacy
by including random drug-resistant mutations. Models also
vary intervention time and duration [80, 88, 99, 103, 113]
and determine which mechanisms the model predicts to be
most useful for developing new treatments [88, 108, 112]. With
regards to intervention time, some models recommend starting
treatment no later than 2 days after symptoms appear for
maximum efficacy [88, 101] though exact windows for effective
treatment depend on various factors, such as type of intervention.

For example, in Schirm et al. a sum of time-dependent
pulse functions was used to model antibiotic injections [81].
The authors found that, beginning 24 h after infection with
Sp, doses of the antibiotic Ampicillin every 12 h was effective,
whereas every 48 h was insufficient. Furthermore, they found
a threshold of the initial number of bacteria which determined
whether or not the immune system by itself could eradicate
the infection. This could be useful in determining the least
amount of antibiotics necessary to recover from pneumonia,

decreasing chances of antibiotic resistance. Focusing on the cells
affected by the infection, the model by Domínguez-Hüttinger
et al. used the Boolean concept of “switches,” described as
either on or off, to represent a pathway as activated or not
and determine by a threshold value whether the immune
system can clear the pathogen without treatment [80]. Based
on the different pathogenic behaviors, at least one switch, i.e.,
pathway, needs to be turned off to eliminate the pathogen.
Results from the model suggested that treatment within 36 h
is extremely important in preventing sepsis; this was consistent
with experimental observation.

Coinfection is of particular interest because of the potential
threat it poses when patients already infected with the influenza
virus are also infected with a bacterial infection, especially during
an epidemic or pandemic. Models explore the effects of antiviral
therapy in preventing the secondary infection [98, 113, 115, 117,
118]. Smith et al. emphasize the role of alveolar macrophages and
how their impairment by virions affects the host’s ability to fight
the secondary bacterial infection [115, 117]. Shrestha et al. also
examined the effects of antiviral treatment on growth of Sp. in
an ODE model and found a 4-day window in which antiviral
treatment can reduce the severity of a secondary infection [113].

Many authors stated that future work could involve including
mechanisms not explicitly modeled in their current work [79, 98,
106, 110, 115, 118, 128], refining parameter values [80, 81, 91,
97, 114, 128], and combining their models with other existing
models [80, 81]. Additional considerations that would be helpful
in a greater understanding of these infections include the effects
of aging [98] and spatial information [109].

3. LATENT VS. ACTIVE INFLAMMATION:
TUBERCULOSIS AND ANTHRAX

Anthrax and tuberculosis both exhibit latent infections, in
which levels of the pathogen are so low they go undetected
by the immune system but can spontaneously resurface as
an active infection. The main purpose of the models in this
section is to further understand the complex dynamics of the
infections, providing insight into the effectiveness of antibiotics
and development of other treatments, especially under the threat
of growing antibiotic resistance.

3.1. Overview and Models From the
Literature
Tables 3, 4 provide details and frameworks of numerous
tuberculosis and anthrax models, respectively, with summaries
of model trends and results in the following sections. The
pathogenesis of tuberculosis has been an ongoing subject of
computational and mathematical modeling for decades; several
thorough reviews onmodeling TB have been published [164, 176,
180, 181] including recent ones from Kirschner et al. [76] and
Cardona et al. [182].

TB modeling has benefited greatly from an increase in
computational power, leading to highly complex hybrid models.
ODE models of TB generally cover cellular and subcellular
interactions, especially with macrophage phenotypes, T cells,
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TABLE 3 | Summary of models of host response to anthrax.

Type Key variables Key parameters Summary References

CA Toxins, macrophages, antibiotic Phagocytosis ability, release of toxins Software system SIMISYS simulates host immune response. [129]

Competing

risk

Probability of germination of spores Spore clearance rate, germination

rate

Determined time of antibiotic prophylaxis necessary to

eradicate various spore levels.

[130]

Cumulative attack probability Spore clearance rate, germination

rate

Predicted incubation time in outbreaks. [131]

Spores, disease incubation period Bacteria clearance rate, germination

period

Parametrized previous model [130, 131] with high- and

low-dose data collected from rabbits.

[132]

ODE Toxins, pro- and anti-inflammatory

mediators, antigens

Neutrophil activation, antigen

production rate

Explored the effects of combination therapy on immune

response; vaccination and antibiotic together is most

effective.

[125]

Anthrax LF, MAPK pathway

components

Macrophage cell viability, cleavage of

MAPKK by LF

Adapted MAPK pathway model to anthrax-specific

interactions; gained understanding of LF on macropahges.

[133]

Host cells, neutrophils, bacteria Bacterial removal by immune cells,

neutrophil activation

Explored period of migration and germination of spores and

survival rates with/without antibiotics.

[48]

Bacteria levels in airway lumen and

body

Trasport of bacteria across lung

epithelium, bacterial growth rate

Non-compartmental and compartmental models provide

insight into germination time.

[134]

Macrophages, MAPK pathway

components

LF half-life, LF transport rate,

cleavage of MAPKK by LF

Described accumulation of LF in the macrophage, a critical

step in infection.

[135]

Spores, macrophages Germination rate, bacteria replication

rate

Explicitly modeling the two stages of spore germination fits

data better than combining into one stage.

[136]

Spores, macrophages Bacteria killing rate, replication rate Parameter sensitivity analysis revealed most important

parameters.

[137]

Spores, macrophages Intracellular burden per infected

macrophage, maturation of bacteria

Split time course into first 30 min of infection (incubation) and

30 min to 24 h; insight into mechanisms causing delay in

germination time.

[138]

ODE, Competing

risk

Antibodies Bacterial removal by antibodies Predicted infection outcomes in rabbits. [139]

SDE Host cells, macrophages Rate of phagocytosis of spores Addition of stochasticity to model by Day et al. [48]. [140]

CA, cellular automata; LF, lethal factor; MAPK, mitogen-activated protein kinase; MAPKK, MAPK-kinase; ODE, ordinary differential equation; SDE, stochastic differential equation.

and various cytokines [49, 66, 125, 149–161, 183]. For example,
Marino et al. included all three in an ODE model with 16
equations, tracking three different macrophage subpopulations,
four T cell subtypes, and several cytokine concentrations [154].
PDE-only models have also been developed, modeling the spatial
structure of granulomas, collections of immune cells and bacteria
vital in fighting infection [68, 162].

For a different spatial approach, somemodelers chose an ABM
or CA model [141–145, 147]. All of these incorporate dynamics
on a cellular and subcellular scale, and many are concerned
with granuloma formation. Several, including those from Ray
et al. [142], Cilfone et al. [143], and Bru and Cardona [147],
are particularly interested in how the granuloma is affected
by various cytokines. A few other methods have been used,
including Boolean for cellular and subcellular interactions [146]
and signaling pathways within a cell [163]. Additionally, Pienaar
and Lerm used the computational Markov Chain Monte Carlo
(MCMC) method to simulate molecular level interactions in
which variables were discrete and stochastic but did not include
a spatial component [148].

Multi-scale hybrid modeling has gained traction particularly
in the area of tuberculosis modeling. Combinations of ABMs,
ODEs, and PDEs are the most common and range from
granuloma formation [165–168, 171, 178, 179] to properties and

efficacy of antibiotic drugs [170, 173]. Generally a tissue-scale
ABM is integrated with ODEs or PDEs modeling for molecular
dynamics. The development of these multi-scale models will help
to answer open questions about how changes on a cellular or
subcellular level can impact population-level dynamics; the time
scales range fromminutes to decades, and the complexity of these
models will introduce challenges but also great opportunity for
new treatments [164].

Anthrax models are primarily ODEs, exploring the
interactions between anthrax spores and immune cells
[48, 133–135, 137–139, 184]. Diverse mathematical tools
are used to model migration of spores, including the use of
compartments [48, 134] or an additional equation [136]. A few
other approaches have been used: a stochastic adaptation of an
existing ODE model [140], use of a previously-develop immune
system-simulating CA framework [129], and a probabilistic
model called a competing risk model [130, 131, 139]. See Table 3
for more detailed descriptions of these models.

3.2. Illustrative Example: Marino and
Kirschner
In the previous illustrative example, we explored themethods and
benefits of a models with a few variables. These are particularly
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TABLE 4 | Summary of models of host response to tuberculosis.

Type Key variables Key parameters Summary References

ABM Macrophages, chemokine

concentration

Bacterial growth rate, chemokine

diffusion, macrophage activation

Determined mechanisms and interactions that have the

greatest effect on granulomas.

[141]

Macrophage and T cell

subpopulations

Bacterial growth rates, T cell

movement, TNF-α production

In the context of granuloma formation, TNF-α plays multiple

roles in control of pathogen.

[142]

Macrophage and T cell

subpopulations, IL-10, TNF-α

IL-10 synthesis, TNF-induced

apoptosis

Multi-scale approach explored individual roles of cytokines,

particularly IL-10, in granuloma formation and overall immune

response.

[143]

STAT1, STAT3, NFkB, M1, M2 Macrophage polarization ratio,

signal activation ratios and

strengths

Multi-scale model identified different granuloma formation

scenarios and parameters most responsible for each

outcome.

[144]

Macrophage and T cell

subpopulations, bacterial nutrients

Bacterial maintenance metabolism,

oxygen reduction by bacteria

Multi-scale model linking cell-to-cell interactions with

metabolic network granuloma formation.

[145]

Boolean Immune cells and cytokines, bacterial

virulence factors

Bacterial threshold for active

disease, delay in phagocytosis

Model incorporating a complex network of interactions

provides insight into mechanisms without a significant

amount of available data.

[146]

CA Macrophages (activated, apoptotic),

neutrophils

Chemokine tolerance needed to

attract immune cells, T

cell-mediated bacterial killing

Ability of innate immune system to respond to chemokine

concentrations is vital in eradication of infection; high and low

tolerance to concentrations is explored.

[147]

MCMC Macrophage and bacteria

subpopulations

Bacterial killing rates, apoptosis

rate, cell recruitment rate

Early immune system dynamics between macrophages and

bacteria reveals oscillations in dominance between host and

pathogen.

[148]

ODE Macrophages, cytokines Macrophage activation, T cell killing

of infected macrophages

Virtual deletions and depletions show that a balance between

Th1- and Th2-type responses, mediated by cytokines, is vital

in eradication of bacteria.

[149]

Pathogen, early & late

pro-inflammatory mediators (PIM)

Activation of pro-inflammatory

feedback, ratio of late PIM

production to clearance

Simple three-dimensional model reveals several outcomes

that could occur from improper PIM response.

[125]

Macrophage subpopulations,

cytokines

Killing of bacteria by macrophages,

infection of macrophages by

bacteria

Extension of previous model to two compartments (lung and

lymph node) captures important dynamics of cell trafficking

and predicts key mechanisms.

[150]

MHC class II molecules, IFN-gamma

and receptor

Antigen processing, transcription,

protein maturation

Molecular-scale model of antigen presentation in

macrophages suggests groups of mechanisms that perform

on two different time scales.

[151]

Macrophage subpopulations, T cells,

chemokines

Bacterial growth rate, macrophage

& T cell recruitment and movement

ODEs provide information for coarse-grid spatio-temporal

model; delay due to compartments reveals pseudoclearance

trajectory.

[152]

Bacteria sensitive or resistant to drugs Per capita net growth rates of

bacteria, mutation frequency

Prevalence of drug-resistant bacteria strains is dependent

upon factors including growth rate of sensitive and resistant

bacteria and immune response.

[153]

Macrophage subpopulations, T cells,

TNF, IL-10

TNF-dependent lymphocyte

recruitment, macrophage

recruitment

Virtual clinical trials show that available TNF-α in granuloma

during anti-TNF-α treatments is the primary reason for

reactivation of latent infections.

[154]

CD4+ and CD8+ T cells, infected

macrophages, cytokines

Macrophage infection rate,

virus-infected macrophage death

rate

Latent TB infection will become active following co-infection

with HIV due to a different cytokine environment; decreased

recruitment of macrophages and T cells contribute to

compromised immune response.

[155]

Macrophages, NO, iron Regulation of NFkB, STAT1, killing

of bacteria by NO

Negative feedback from nitric oxide can actually reduce

effective macrophage response to pathogen; cytokine

signaling should coincide with infection, not precede it.

[156]

CAM & AAM TNF-α production by AAM, rate of

AAM activation

Switching time correlates with lower bacterial loads. [49]

CD4+ and CD8+ T cells, TNF, IL-10,

macrophage subpopulations

Switching time, macrophage

infection rates

Virtual depletions in large two-compartmental model supports

distinct roles of TNF-α and IL-10.

[66]

Amount of drug absorbed,

macrophage subpopulations, IL-12

Maximum killing effect,

intercompartmental diffusion

Immune response to rifampin dosage revealed numerous

outcomes based on parameter variations and that standard

dosage may be insufficient.

[157]

NO, oxygen, latent and dividing

bacteria

Latency stimulator, bacterial growth

rate

A simple model provides a picture of the complex dynamics of

TB and how/when bacteria enter into latent or active states.

[158]

(Continued)
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TABLE 4 | Continued

Type Key variables Key parameters Summary References

CAM & AAM, lymphocytes, cytokines Rate of bacterial uptake by dendritic

cells, macrophage differentiation

rate

Integration of model and experimental data shows that a

change in inoculum size results in higher immune cell levels

but had little effect on T cell priming.

[159]

Exposed and infected granulomas,

healthy tissue

Adaptive immunity sensitivity to

antigen stimulation, bacteria

dissemination

Population-level study of granulomas predict mechanistic

differences between latent and active infection.

[160]

Iron, lipid content, NO Iron overload inhibitory effect,

bactericidal effect of nitric oxide

Early host response depends on ability of pathogen to

interact with iron and lipid pathways as well as oscillatory

progression of disease.

[161]

PDE Macrophage subpopulations,

chemoattractant, granuloma radius

Bacterial killing and growth rates,

phagocytosis rate

Spatio-temporal model of innate immune response provides

mechanistic conditions for different infection outcomes.

[68]

M0 (naive macrophages), M1, M2,

various immune cell byproducts

Entrance of T cells and

macrophages into granuloma

Switching time correlates with strength of immune response

and granuloma size, which could present a risk due to

excessive T cell response.

[162]

Boolean Transcription factors DosS, DosR,

Rv0081, CRP

Network centrality Combination of protein-protein interactions with gene

expression data reveals mechanisms responsible for switch

between latent and active infection.

[163]

ABM, ODE Infected individuals, cytokines Individual’s susceptibility, cell

trafficking

Review: a systems biology approach is able to reveal how

molecular-scale changes affect larger-scale dynamics.

[164]

Macropahges, T cells, TNF, TNF-α

receptors

STAT1 activation of macrophages,

bacterial growth rate, T cell

recruitment

TNF-α receptor 1 plays a critical role in control of infection

through granuloma function.

[165]

T cell and macrophage

subpopulations

APC delay during migration,

trafficking of T cells in lymph node

Multi-organ model couples diffusion of cells between

compartments with spatial dynamics of granuloma;

underscores importance of APC movement.

[166]

Macrophage and T cell

subpopulations, NFkB signaling

pathway components

NFkB-macrophage ratio, IKKK

activation, A20 and IkBa mRNA

synthesis

Infection dynamics across molecular, cellular, and tissue

scales is heavily mediated by TNF-induced NFkB signaling in

macrophages; NFkB processes are recommended as

treatment strategies.

[167]

TNF, macrophages, T cells TNF-mediated macrophage

activation and cytokine secretion

Explored dynamics of granuloma formation and effects of

inhibitor treatments.

[168]

Macrophage and T cell

subpopulations

TNF-α receptor internalization,

antibiotic regimen

Review: models provide the ability to perform virtual

experiments and clinial trials, reducing cost and risk.

[169]

Macrophage and T cell

subpopulations, TNF, IL-10

Host cell recruitment, TNF-induced

apoptosis, immune cell activation

Granuloma formation model with antibiotic

pharmacodynamics revealed that pre-treatment host factors

greatly impact treatment outcomes.

[170]

CD4+ and CD8+ T cells, antigen

presenting cells

Basal influx & efflux, differentiation

rates

Emphasized pairing of mathematical and experimental

methods to best discover TB biomarkers.

[171]

Oxygen levels, macrophage

subpopulations, metabolic pathway

components

Dissemination, oxygen &

chemokine diffusion

Correlations between immune response, physiological

response to hypoxia, and metabolic networks revealed

specific mechanisms that classified different outcomes.

[172]

T cells, DCs, peptide-MHC

complexes

Binding probabilities, DC-T cell

binding time

Recommendations for vaccine formulations can be

determined through modeling of T cell events and

interactions.

[173]

ABM, PDE Macrophages, chemokines, TNF,

IL-10

Synthesis rates of TNF-α and IL-10,

granuloma size

Specific processes describing cytokine synthesis, signaling,

and spatial distribution control TNF-α & IL-10 levels and

determine outcomes.

[174]

ABM,

ODE, PDE

Macrophages, T cells Recruitment of macrophages and

T-cells by chemokines, spatial

movement of immune cells

Comparison of four different model types reveals importance

of spatial dynamics and macrophage activation.

[175]

APCs, T cells, cytokines (TNF, IL-10) Switching time, cytokine

production, receptor binding

Review of computation models of host-pathogen interactions;

importance of multi-scale approaches.

[176]

TNF-neutralizing drugs,

macrophages, T cells

Drug-induced cell death, drug

binding to membrane-bound TNF-α

Analysis of TNF/TNF-α receptor roles predicts mechanisms to

improve host response during anti-TNF-α therapy, especially

since drug binding to TNF-α can impair granuloma function.

[177]

Macrophages, T cells, TNF, IL-10 Rates in NFkB pathway, ratio of

TNF-α to IL-10, memory cell initial

conditions

Emphasized importance in considering multiple scales when

designing a treatment.

[178]

(Continued)
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TABLE 4 | Continued

Type Key variables Key parameters Summary References

DCs, macrophages, T cells, TNF,

IL-10

Time of DC migration to LN, T cell

proliferation, bacterial growth rate

Incorporation of DCs into hybrid multi-scale model reveals

importance of early events in immune response such as DCs

recruitment and T cell proliferation.

[179]

Bacteria nutrients, cytokines,

chemokines, antibacterial drug

Antibiotic properties, ratios of

immune cells

Review of models of within-host response to TB highlighted

integration of different types of data and testing of antibiotic

regimens.

[76]

ABM, ODE Microbe, metabolites TNF-α & macrophage activation Review of systems biology approaches, including

high-throughput methods, to understanding TB.

[180]

Boolean,

ODE, ABM

TNF-α, macrophages Immune system mechanisms,

vaccine effects

Compared various types of models, enumerating advantages

and disadvantages for active and latent infections.

[181]

ABM, agent-based model; AAM, alternatively-activated macrophages; APC, antigen-presenting cells; CA, cellular automata; CAM, classically-activated macrophages; DCs, dendritic
cells; HIV, human immunodeficiency virus; LN, lymph node; MHC, major histocompatibility complex; MCMC, Markov Chain Monte Carlo; NO, nitrous oxide; ODE, ordinary differential
equation; PDE, partial differential equation; STAT, signal transducers and activators of transcription; Th, T-helper; TB, tuberculosis.

helpful when little data is available. Increases in computational
power have allowed for added complexity in models. This can be
seen in TB modeling, in which models have built on one another
over the years, increasing in detail and scale. Furthermore, TB
has been widely studied and extensive data has been collected.
Thus, larger models can be developed and calibrated based on
this information. In this section, we highlight one such model.

A hallmark of the immune response to TB is the development
of granulomas, spherical concentrations of immune cells
designed to isolate and kill the bacteria. The authors had
previously developed an ABM, GranSim (http://malthus.micro.
med.umich.edu/GranSim/), to model the immune response to
TB, including the formation of granulomas and traffic to and
from the lungs, bloodstream, and lymph nodes (LN). In this work
they further expand themodel to explicitly include dendritic cells,
then calibrate the model to data and investigate the mechanisms
driving behavior in granulomas [179].

The version of GranSim used in this illustrative example
is a hybrid multi-compartmental model, shown in Figure 3A.
The ABM models the formation of a single granuloma in
the lung, including interactions between immune cells such as
macrophages, CD4+ and CD8+ T cells, signaling molecules,
and Mtb, the bacteria that causes TB. In previous versions
of GranSim, DCs were represented by a more general APC
agent; in this one, DCs have a role unique from other APCs
in that DCs are immediately stimulated upon coming into
direct or indirect contact with Mtb. Additionally, macrophages
do not leave the grid whereas DCs migrate to the LN for
T cell priming.

The authors then linked the single granuloma model to the
host scale; this connection is important to understanding how
cellular-scale dynamics can affect the overall outcome of the
host. The number of granulomas in a host range from 13 to 97
at 4 weeks. A scaling factor, scalingMDC, is introduced which
multiplies the number of DCsmigrating from a single granuloma
by the total number of granulomas in the host. The total number
of DCs is then passed to the bloodstream and LN compartments,
modeled by a set of non-linear ODEs. This number directs the
priming of T cells and their recruitment back to the lungs. The

model can also control the time it takes for the DCs to reach
the LN.

The model was calibrated using data primarily from humans
and non-human primates (NHPs). Data was collected in the
blood for T cell dynamics and in the lung for bacteria levels.
The use of detailed spatial and temporal data in multiple
locations is critical for a more complex model such as this, and
allows for greater confidence in model results. Figure 3B shows
model simulations compared to data for colony-forming units
(CFU), i.e., number of bacteria, per granuloma. The stochasticity
of the ABM allows the model to cover the ranges observed
experimentally over time. Figure 3C shows individual snapshots
of two such granulomas simulated by the model.

For uncertainty and sensitivity analysis, the authors used Latin
Hypercube Sampling (LHS) to uniformly and randomly sample
the parameter space and Partial Rank Correlation Coefficient
(PRCC) to calculate the association between parameters and
model output. PRCCs can be calculated over time to examine
whether some mechanisms are more important than others at
specific times.

Analysis shows that T cell priming and proliferation and
the timing of DC movement to the LN are critical functions.
The parameter k13, representing CD8+ T cell proliferation,
generates high PRCC values for all inflammation outcomes
tested, including intra- and extracellular Mtb burden and total
activated macrophages. The authors also found that a delay in
DC movement to the LN had a negative impact on memory T
cell roles and that higher levels of DCs pre-infection resulted in
better outcomes.

The authors concluded that timing is key when it comes
to both the innate and adaptive immune responses to
Mtb. Early protection against the bacteria results in better
outcomes, and specific recommendations for intervention were
strengthening DC migration and CD8+ and CD4+ T cell
trafficking. The inclusion of DCs into the model allowed for
new conclusions to be drawn about mounting a timely and
effective immune response. Future work mentioned included
an ABM formulation of LN to replicate vaccine trials and test
immunotherapy strategies.
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FIGURE 3 | (A) Schematic of the three compartments in the hybrid ABM developed by Marino and Kirschner. A single granuloma is modeled by an ABM, and scaled

to reflect the total number of granulomas in a host 4 weeks after infection. The total number of DCs migrating from the lungs to the LN is integrated into a set of

multi-compartmental ODEs representing the LN and blood. (B) CFU per granuloma over time. Red solid and dotted lines are the median and min/max of the data,

respectively. Black circles are the CFU/granuloma generated by the model for 3000 granulomas, and the black line is the median trajectory. (C) Snapshots of two

different ABM simulations of a granuloma, taken at the times indicated. Figure from Marino and Kirschner [179].

By using amulti-scalemodel, the authors were able to examine
specific details of the immune response mechanisms driving
changes in model output, connecting cell behavior to overall
host response. Sufficient data over multiple scales, such as that
obtained by Marino and Kirschner, is needed to make effective
conclusions; this should be considered when one is choosing a
modeling technique.

3.3. General Results and Conclusions From
Modeling Tuberculosis and Anthrax
Although simpler models have been developed [125], in the past
decade the complexity of the models of these infections has
grown as more key processes, cells and mediators are included.
In particular, hallmarks of TB studies focus on the granuloma
[76, 141, 142, 145, 148, 152, 156, 157, 160, 165–168, 170, 171,
174, 176, 177, 179, 180], TNF-α, and other cytokine signaling
[66, 142–144, 146, 149, 154, 156, 159, 163, 165, 167, 174, 177,
178, 180, 185], and the underlying mechanisms of latent infection
[149, 150, 153–155, 158, 163, 181, 185, 186]. Particularly for
anthrax models, the germination period, the period of time in
which spores become vegetative bacteria, and incubation period,
the time between initial exposure and onset of symptoms, are of
great interest [48, 130–132, 136, 137, 187] and were predicted to
be able to tell the difference between survival and death. In the
following paragraphs we elucidate these results and find common
threads throughout models.

Granuloma formation has been widely studied in the context
of TB as one of the main methods used by the immune
system to eliminate bacteria. Through the use of multi-scale
modeling, not only granulomas as a whole but also individuals

macrophages and their functions have been studied at length
[66, 68, 129, 135, 137, 138, 146, 149–151, 155, 175, 188,
189]. Because granulomas are localized clusters of cells, spatial
distribution was found to be a significant factor in infection
outcome [156, 174]. To examine molecular interactions in
granuloma, Fallahi-Sichani et al. explored the dynamics of the
NFκB signaling pathway across molecular, cellular, and tissue
scales in their ABM [167]. Results highlight the need for a
balance between activated and infectedmacrophages, responding
to and regulated by NFκB signaling. Several roles of TNF-
α within the granuloma were also found to be critical to
outcome, including interaction with its receptor [165] and
polarization of macrophages via TNF-α [66, 141, 142, 144,
156].

Additionally, activation of and phagocytosis by macrophages
are among the most important mechanisms of host defense [49,
68, 138, 146, 149, 150]. The spectrum of macrophage phenotypes
from pro-inflammatory to anti-inflammatory has been studied
more recently, including in TB research. Specifically, the
“switching time,” the time point at which M1 (classically
activated) macrophages becomes more dominant than M2
(alternatively activated) macrophages was a useful way to
measure the M1-M2 balance. Day et al. found that an increase
in the parameter k16, which controls the ability of infected
AAM to inhibit bacterial growth, decreased bacterial loads
but increased the switching time [49, 157, 162, 176]. Marino
et al. adapted a similar approach, in which AAM immediately
become infected when they engulf a bacterium and CAM
kill the bacterium [66]. Models also predicted results of
antibiotics and other treatments’ interaction with granuloma
structures [170, 177].
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Coupling multiple scales can elucidate how signals and
changes on a molecular scale can influence the immune response
on a cellular or tissue scale [76, 143, 145, 164, 165, 167,
168, 175, 176, 178, 179, 190]. Another widely-accepted practice
is the consideration of several locations in the body affected
by TB through a multi-compartmental model [48, 134, 160,
171, 178, 180, 189]. This is helpful in understanding the
interaction between tissues and recruitment of immune cells.
Results from bringing together various scales, organs, and tissues
have elucidated the processes that regulate TNF-α and IL-10
concentration [143, 165, 167, 174, 178, 180], the importance
of infection rate in outcome [145, 175, 189], and the role of
cell-to-cell interactions [176, 179].

Since latent infection is a significant issue and can develop
into active infection at any time, many models investigated
this disease scenario. Results suggest the important role of T
cells [155, 186], the phagocytic capability of immune cells [149,
150], the presence of TNF-α [154], and the identification of
specific proteins as drug targets [163, 181]. Other models provide
suggestions for the treatment of latent infections such as TNF-α
inhibitors or antimicrobial drugs [153, 154]. For example, Agliari
et al. found an exact solution to their differential equations model
which allowed them to predict the number of latent infections
that would become active for patients undergoing anti-TNF
therapy [185].

Signaling via cytokines, especially the pro-inflammatory
cytokine TNF-α, has been studied extensively in the context of
tuberculosis and to some extent in anthrax [133, 135]. With TNF
inhibitors as a current treatment, models recommend adjusted
dosage and timing for better results for both active and latent
infections [154, 170, 177, 178]. The balance between TNF-α
and IL-10, an anti-inflammatory cytokine, was also predicted
to be a significant regulator of Mtb [66, 143, 146, 149, 159,
174, 178]. TNF-α has been the subject of a host of other TB
models [49, 66, 142, 143, 165, 168–170, 174, 176–181] because
of experimental evidence surrounding its important role. Virtual
depletions, deletions, and clinical trials have also been studied in
several models as a cost-effective path toward more personalized
treatment and unique intervention strategies [66, 149, 169].

Sensitivity analysis revealed that common important values
were bacterial replication and decay rates for both TB [68, 141,
145, 172] and anthrax models [135–138, 189]. These rates could
often determine in the model whether bacteria persisted or were
eliminated by the immune response [68]. For example, the model
by Segovia-Juarez et al. showed that a slower bacterial growth
rate within infected cells is worse for the host [141]. Bacterial
replication and decay rates as well as other model components
identified distinct pathological states including early clearance,
granuloma formation, and persistent infection [68, 140, 150, 152,
160, 165, 166, 172, 179, 188].

Future directions in TB modeling include further in silico
testing of antibiotics and other treatment strategies, study
of antibiotic resistance, simultaneous modeling of multiple
granulomas, and continuation of multi-scale modeling for a
more complete and integrated understanding of TB [76, 181].
In the less-developed field of anthrax models, future work
revolves around adding complexity such as more detail in

host immune function [134] and heterogeneity and stochasticity
[137, 191]. Recommendations for treatment as informed by
the models include a faster initial response by the immune
system, potentially achieved through vaccination. Response
from classically activated macrophages and T cells, which
reduce bacterial loads earlier in the infection, are especially
significant. These conclusions were achieved through using
different types ofmodels, highlighting the importance of diversity
in modeling techniques.

4. MODELS OF NON-INFECTIOUS INJURY

From smoking to COPD and in asthma, the complex interplay
from molecular to tissue scales in non-infectious injuries is
unclear. Many models for these types of injuries have been
developed but primarily focus on biomechanics and general
inflammation [54, 192–197]. However, there have been some
models for non-infectious injury that have explicitly studied the
immune response.

4.1. Overview and Models From the
Literature
The wide variety of injuries covered in this section necessitates
a number of modeling methods. Reviews of mathematical and
computational models of immune system mechanisms involved
in fibrosis, autoimmunity, COPD, and asthma highlight the need
for multi-scale approaches and greater computational power
[198–200]. ABMs and CA models lend themselves well to this
end as many non-infectious diseases and disorders are associated
with inhalation and diffusion of particles. Furthermore, they can
be integrated with other types of mathematical models such as
ODEs and PDEs [54, 55, 201, 202].

Simplermodels still hold significant explanatory power. ABMs
have been used in particular to track particle inhalation [50,
53, 56] and CA models have incorporated strain and its effect
on the immune response [54, 203]. ODEs [52, 204, 205], and
PDEs [69, 206, 207] track populations of immune cells and
concentrations of molecules such as CAM, AAM, IFN-γ , and
TNF-α. Summaries of models for the immune response to non-
infectious lung injury are found in Table 5.

4.2. Illustrative Example: Brown et al.
The level of detail described and approaches used by the model
in this section is both representative of the types of models
utilized for non-infectious insults and also provides an alternative
approach to the two models described in the previous sections.
Many models for non-infectious injuries are ABMs or CA
models and examine different interactions between immune cells
and signaling molecules. Whereas, Manchanda et al. considered
inflammation as a single variable and Marino and Kirschner
described multiple subpopulations of immune cells, Brown et al.
finds a level of complexity between these two to identify three
distinct pathologies for particle inhalation, highlighting the need
for personalized treatments.

The ABM by Brown et al. [50] is a system with abstracted
populations of cells to develop a higher-level view of events
instead of an exhaustive description of every interaction. The
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TABLE 5 | Summary of models of host response to non-infectious injury.

Type Key variables Key parameters Summary References

ABM Macrophages, fibroblasts, collagen,

TNF-α

Amount and duration of particle

exposure, cytokine production per

cell

Model of immune response to repeated particulate inhalation

reveals three distinct states and suggests that degree and

duration of exposure to particles is especially relevant to

outcome.

[50]

T cells, cytokines, mast cells Tissue life, granule release, T cell

activation

The “inflammatory twitch” hypothesis for allergic inflammation

was tested and corroborated by a model of the inflammatory

response in the lungs.

[56]

T cells, cytokines, mast cells Tissue life, apoptosis, cell lifetime Analysis of previous model from Pothen et al. [56] suggests

effective strategies for therapy, including Th cell knockouts

and reducing pro-inflammatory cell lifetime.

[53]

CA Epithelial cells, macrophages, TNF-α Tidal volume, macrophage

activation, collagen time

Combination of models of alveolar sacs, fluid-structure

interaction, and inflammation reveals that strain distribution

affects immune cell population dynamics during mechanical

ventilation.

[54]

Fibroblasts, epithelium, TGF, TNF-α Probability of macrophage

activation, TNF-α & TGF release

Predicted threshold of respiratory disease-induced strain

below which the immune response is sufficient to heal

damaged area.

[203]

ODE Macrophages, MMP-12 elastase, EF Macrophage influx rate, EF potency,

average MMP-12 per macrophage

Simple model provides macrophage, neutrophil, and

apoptosis positive feedback loops as explanation for

irreversible degeneration of lung tissue.

[52]

Eosinophils, IL-13, IL-5, T cells IL-13 production, ratio of

non-eosinophils cells to eosinophils

Model of anti-IL therapy to treat asthma suggests

explanations for clinically-reported changes in blood

eosinophils and cytokine levels.

[204]

CAM, AAM, cytokines, enzymes, virus Inoculum size, IFN-β production Highlights role of macrophage activation in viral infections and

suggests mechanisms for more severe symptoms in

asthmatic patients.

[205]

PDE T cells, macrophages, IL-4, TNF-α LPS levels Variations in types of experimental asthma explained by

cytokine response to T cells.

[206]

Th1, Th2, Th17 cells, IFN-γ , TNF-α LPS level, phenotype changes,

diffusion of TGF-β

Signaling of cytokines and other regulatory molecules

illustrates differentiation of T cells into phenotypes which drive

different types of asthma.

[69]

Th1, Th2, Th17 cells, IFN-γ , TNF-α LPS level, phenotype changes,

diffusion of TGF-β

Analysis of model from Lee et al. [69] reveals a Hopf

bifurcation through time delays in inhibition pathways of

IL-4/Th2 and TGF-β.

[207]

ABM, PDE Macrophages, cytokines, collagen,

elastase

Cytokine production, macrophage

activation

Multi-scale model of lung damage from smoking confirms

major role of particle inhalation in emphysema pathogenesis.

[201]

Strain, macrophages, fibroblast, TNF,

TGF

Probability of epithelial state

transition, TNF-α & TGF release

Integration of cellular, tissue, and organ scales suggests

connections between immune response, tissue structure

changes, and strain rate in mechanical ventilation.

[55]

ABM, ODE TGF-β1, fibroblasts, epithelial cells,

PGE2

TGF-β1 and PGE2 synthesis,

TGF-β1 proliferation threshold

Pulmonary fibrosis model integrates cellular and molecular

scales to identify mechanisms of fibroblast/myofibroblast

dysregulation.

[202]

ODE, PDE,

ABM, CA

Macrophages, fibroblasts, cytokines Diffusion, wound geometry Review of mathematical models of fibrosis highlights need for

integration of molecular, cellular, and tissue scales.

[200]

Cytokines, allergens, macrophages Interaction between neutrophils &

epithelial cells, oxidative stress

Review of inflammatory mechanisms of airway diseases

including COPD, asthma, and cystic fibrosis highlights

findings from mathematical and computational models.

[199]

ABM, agent-based model; AAM, alternatively-activated macrophages; CA, cellular automata; COPD, chronic obstructive pulmonary disease; CAM, classically-activated macrophages;
EF, elastic fragments; LPS, lipopolysaccharides; ODE, ordinary differential equation; PDE, partial differential equation; Th, T-helper.

authors noted that in reality, multiple types of cells could fall
under the category of one variable. For example, TNF-α and
TGF-β1 represent all pro- and anti-inflammatory cytokines,
respectively. The schematic is shown in Figure 4A.

A simulation begins when particles are “released” into the
system, initiating the immune response. Some examples of rules
in the model include:

• Macrophages on the same patch as a particle become activated
for 50 time steps.

• Activated macrophages release pro-inflammatory cytokines
and for the last 5 time steps of activation, they release anti-
inflammatory cytokines.

• Fibroblasts move toward and heal damaged tissue by
depositing collagens and increasing the “Tissue Life” value.
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FIGURE 4 | (A) Schematic for model of immune response to inhalation of particles of different sizes and concentrations. Upon inhalation, activated macrophages

produce TNF-α, which attracts more macrophages. The pro-inflammatory role of TNF-α also causes additional damage. As a part of the later anti-inflammatory stage,

macrophages produce TGF-β1 which inhibits TNF-α production and recruits fibroblasts. Fibroblasts deposit collagen and repair lung damage. An overabundance of

collagen can recruit additional macrophages. (B–D) ABM simulations from Brown et al. in a section of lung tissue. Each section represents a different state: (B)

self-resolving inflammation, (C) localized tissue damage and fibrosis, and (D) persistent tissue damage and fibrosis. Darker areas represent damage. Figure reprinted

from Brown et al. [50] with permission from Elsevier.

A trademark of mathematical modeling is quantifying events that
are difficult or even impossible to measure experimentally. The
model in this example, as well as several described in previous
sections, assess tissue damage as overall health. Here, damage
is based on a value, “tissue life,” which measures health on a
scale from 0 to 100, where 100 is perfect health with no damage.
Each patch has a health value, decreased by the presence of pro-
inflammatory cells on that patch, and increased by the presence
of anti-inflammatory cells. The average over all patches is the
overall tissue life. Because ABMs focus more on qualitative
representations of a system, tissue life is an important variable
to quantify results.

On a 50-by-50 grid, Brown et al. performed simulations with
exposures of 5, 10, 15, or 20 particles occurring at intervals
of 50, 100, or 200 time steps. To model different frequencies,
particles were added into the model 50, 100, or 200 times. These
conditions were meant to test theories that both frequency and
quantity of particle inhalation, such as how often an individual
smokes cigarettes vs. the number of cigarettes smoked, play a
role in the development of chronic lung disease. Risk factors
may include smoking, air pollutants, and occupations such as

coal mining; studies have examined the differences between these
insults and how the lungs and immune system respond [208–
210]. Based on the degree and duration of particle exposure, the
model elicited three distinct states, shown in Figures 4B–D. The
model suggested the most damage is due to increased particulate
exposure at higher frequencies, even with short duration.

Categorization of outcomes is common in mathematical
modeling and allows for quantification of states through specific
parameter ranges or combinations. Brown et al. showed that
this can be achieved using lumped variables, another frequently-
used technique. In addition, they remarked that a well-mixed
model such as a system of ODEs may not have identified these
states, pointing to the need for spatial effects to be considered in
modeling. A limitation of this model is that it is not calibrated
to data. Also, the inclusion of more detailed mechanisms and
interactions may further shed light on inflammatory activity.

4.3. General Results and Conclusions From
Models of Non-infectious Injury
Although many of the key players in the immune response, such
as macrophages, T-cells, and neutrophils, appear regardless of
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injury type, the progression of damage and the mechanisms by
which the immune system brings about healing is very different
depending on the type of damage.

Chronic obstructive pulmonary disease (COPD) is a
disabling, irreversible disease often brought on by smoking and
characterized by excessive inflammation and limited airflow
[211]. A focus on macrophages, including the M1-M2 spectrum
of activation, is a common denominator among COPD models
[52, 57, 201]. Models by Cox [52] and Ceresa et al. [201] both
identified positive macrophage feedback loops that contributed
to inflammation.

In asthma, memory T cells are developed in response to
allergens and are the focus of many mathematical models of
asthma [204, 206, 207, 212]. Models also identified important
regulators of the immune response to asthmatic episodes
including the cytokines IL-13 [204] and IL-4 [207].

Pulmonary fibrosis is a lung disease caused by an over-
remodeling of lung tissue after damage. Ben Amar et al. and
Warsinske et al. are in agreement that a multi-scale approach,
including cellular and molecular scales, is an important step
toward a more complete understanding of fibrosis, both in the
lung and other tissues [200, 202].

Mechanical ventilation provides support to patients with
difficulty breathing but can cause stress and strain resulting in an
immune response. To this end, models were developed to better
understand how strain levels and distributions interact with
the immune system. Results from the models show that strain
distribution plays an important role in immune cell populations
[54, 203] but that strain rate was not as important as parameters
related to the immune response [55].

Future research in modeling these types of injury includes
multi-scale modeling for better treatments involving multiple
targets [55, 199, 213] and combining data-driven and
mechanistic models [214].

5. CONCLUSION AND THE FUTURE OF
MODELING

Mathematical modeling is a method for obtaining a deeper
understanding of the immune response to lung injuries,
complementing and informing experimental and clinical
strategies. By summarizing methods and providing specific
examples in the literature, we show how unique additions to
well-documented modeling practices and novel, computationally
intensive methods revealed new information about the
pathogenesis of infections, recovery from damage, and the
multi-scale complexity of lung dynamics.

Research on bacterial and viral dynamics has progressed
greatly due to mathematical and computational modeling efforts,
elucidating immune system mechanisms for pathogen clearance
and quantifying important parameters in the viral life cycle.
Mathematical research of the effects of aging on the immune
system, coinfections, and use of vaccinations could improve the
treatment of influenza. Complex mechanisms such as activation
of different phenotypes of immune cells like macrophages should

be studied further, as well as the positive and negative feedback
loops that, when dysregulated, can exacerbate inflammation
or contribute to the reappearance of infection [62]. ABMs,
“omics” data, systems-based approaches, and high-performance
computing have been suggested for future modeling efficacy
[98, 109, 112].

With the introduction of COVID-19 onto the global stage, the
need for mechanistic modeling has never been greater. Small-
scale models such as that by Du and Yuan [121] borrowed
from influenza models, making use of limited data. Though
computational tools such as machine learning algorithms have
become useful in detecting patterns and important predictors,
they require large amounts of data that are not yet available for
COVID-19. Therefore, mathematical modeling of the immune
response to SARS-COV2 to better understand the unique
mechanisms involved will be vital in the accelerated path toward
developing vaccines and treatments.

The complex, non-linear interplay between cells, cytokines,
proteins, and other host factors in the immune response to an
insult has led to significant development of multi-scale models
over multiple biological and time scales [164, 180, 200]. Many
successful complex models were built upon previous models
and then calibrated with experimental data. However, many
modeling efforts begin withmodels that have few variables and/or
group similar cell types and/or mediators. This approach is
often used when there is limited data available. The resulting
models are typically small-scale models that have the advantage
of being mathematically analyzable in order to gain insight in
the biological problem using stability analysis and by finding
bifurcations [117, 186]. These models have been used as the
foundations for building more complex models. Mathematical
modelers are more and more pairing classic mathematical
methods with computational approaches to develop models
which are calibrated and validated with data. These efforts from
various fields have led to open-source platforms [129, 215–217].

Mathematical modeling will provide frameworks to test
new hypotheses, analyze phenomena, perform virtual clinical
trials, inform experimental strategies, and recommend general
and personalized therapies. Mathematical and computational
modeling is playing an increasingly important role in science
as a whole, and, as shown in this review, can contribute
greatly to cutting-edge treatment of a wide variety of
lung injuries.
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