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CARMA(p,q) processes are compactly defined through a stochastic differential equation

(SDE) involving q+ 1 derivatives of the Lévy process driving the noise, despite this latter

having in general no differentiable paths. We replace the Lévy noise with a continuously

differentiable process obtained via stochastic convolution. The solution of the new SDE is

then a stochastic process that converges to the original CARMA in an L2 sense. CARMA

processes are largely applied in finance, and this article mathematically justifies their

representation via SDE. Consequently, the use of numerical schemes in simulation and

estimation by approximating derivatives with discrete increments is also justified for every

time step. This provides a link between discrete-time ARMAmodels and CARMAmodels

in continuous-time. We then analyze an Euler method and find a rate of convergence

proportional to the square of the time step for discretization and to the inverse of the

convolution parameter. These must then be adjusted to get accurate approximations.

Keywords: CARMA processes, stochastic differential equations, Lévy processes, Euler approximation, stochastic

convolution, normal inverse Gaussian process

1. INTRODUCTION

Continuous-time autoregressive moving-average processes, CARMA in short, represent the
continuous-time version of the well-known ARMA models. Because of their linear structure,
they are convenient for modeling empirical data, hence they find application in several fields,
particularly in finance. Indeed, with a Lévy process as a driver for the noise, one obtains a
rich class of possibly heavy-tailed continuous-time stationary processes, and such heavy tails are
frequently observed in finance [1]. In Barndorff-Nielsen and Shepard [2], for example, a Lévy-
driven Ornstein-Uhlenbeck process (corresponding to a CAR(1)) is employed in a stochastic
volatility model, and [3] extend the idea to a wider class of Lévy-driven CARMA processes with
non-negative kernel, allowing for non-negative, heavy-tailed processes with a larger range of
autocovariance functions.

In view of financial applications, Brockwell et al. [4] derive efficient estimates for the parameters
of a non-negative Lévy-driven CAR(1) process, and Brockwell et al. [5] generalize the technique
to higher-order CARMA processes with a non-negative kernel. In Benth et al. [6] and Benth
and Benth [7], the authors exploit the link between discrete-time ARMA and continuous-time
ARMA to model the observed processes in a continuous manner, starting from discrete-time
observations-based estimates, in the context of energy markets and weather derivatives. It is also
worth mentioning that CARMA processes allow us to construct a wide range of long-memory
processes, as shown, e.g., in Marquardt [8] and Marquardt and James [9].

Among the several financial applications, in Paschke and Prokopczuk [10, 11] a CARMA
process is employed for the long-term equilibrium component in the two-factors spot price model
introduced by Schwartz and Smith [12] (which uses an Ornstein-Uhlenbeck process), while Benth
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and Koekebakker [13] use a CARMA process for the short-
term factor instead. In Benth et al. [14] and García et al. [15], a
CARMA process models the spot price in the electricity market,
while in Benth et al. [6] and Benth and Benth [7] it models
weather variables, such as temperature and wind speed. Finally,
Andresen et al. [16] apply CARMA processes to interest rates
modeling and [17] to the dynamics of regional ocean freight rates.

Formally, CARMA(p, q) processes are compactly defined
through a stochastic differential equation (SDE) involving q +
1 derivatives of the Lévy process driving the noise, despite
the latter having in general no differentiable paths. Numerical
schemes, such as the Euler scheme, are also applied both for
simulations and estimation of CARMA processes. These schemes
approximate derivatives with discrete increments with respect to
a time step 1, and their convergence for 1 approaching zero
is indeed a well-studied topic. However, this opens up for a
discrepancy since it is not mathematically clear what happens
when the time step approaches zero, as, in general, the derivatives
of a Lévy process are not well-defined.

We give a mathematical justification for the representation
via SDE of a CARMA process, and, consequently, for the
discrete approximations used for simulating and estimating the
continuous-time dynamics of CARMA processes. This is done
by replacing the Lèvy process L driving the noise with a process
smooth enough so that the SDE makes mathematical sense. For
ε > 0 we construct a continuously differentiable function Lε ,
which converges in the L2 sense to the original Lévy process in
the space [0,T] × �, for T < +∞. More precisely, the process
Lε is constructed via stochastic convolution of L with a smooth
sequence of functions {φε}ε>0 depending on the convolution
parameter ε > 0 and with first derivative converging to the
delta-Dirac function when ε approaches zero. We show a rate of
convergence of order 1.

For the Lε continuous differentiable, the framework developed
solves the differentiability issue for CAR(p) processes in which
no more than the first derivative of the driving noise process is
required. We can, however, make use of the result in Brockwell
et al. [5, Proposition 2]. This states that, under some conditions
on the coefficients of the SDE, a CARMA(p, q) process can be
decomposed into a sum of p dependent CAR(1) processes. The
approach can then be extended to CARMA(p, q) processes of
every order q ≥ 0 by considering p different approximations
based on the continuous differentiable Lε and taking their sum.
This justifies an Lε-only continuous differentiable, as the general
case q ≥ 0 is still covered.

We thus replace the Lèvy process Lwith Lε in the SDE defining
the CARMAprocessX. This gives a different SDE, which depends
on ε, whose solution is the new process Xε . We show that Xε
converges to X in L2 ([0,T]×�) and that the convergence is of
order 2.

The ε-approximation of the Lévy process justifies the use of
an Euler scheme for every time step 1. We present a possible
approach for simulating Lε starting from a simulated path of
the Lèvy process L and then Xε starting from Lε . This, for a
fixed time interval 1, gives a new noise process L1ε and a third
process X1ε . We show a rate of convergence for both L1ε and X1ε
proportional to12 and inversely so to ε. This highlights that the

two parameters 1 and ε must be chosen in a way to get accurate
simulations and prevent them from exploding.

We finally consider a possible Euler scheme approach for
estimating the CARMA dynamics starting from the simulated
time series. It is worth mentioning that the process Lε is not
a Lèvy process. Due to the convolution operator, it indeed fails
on the crucial property of independent increments. We show in
particular that the increments depend on the ratio 1

ε
, and, as this

ratio becomes smaller, the increments become more dependent
on each other. This has a negative drawback when it comes to
estimation. We find indeed that the Euler scheme recovers the
true dynamics of the CARMA process only if ε is smaller than1.

All the results are deeply investigated and are also confirmed
by numerical experiments. In particular, we consider two
different Lèvy processes, a Brownian motion and a normal
inverse Gaussian (NIG) process, and CARMA processes of
two different orders, a Gaussian CAR(1) and a Gaussian
CARMA(3, 2). Crucial to all the numerical simulations is the
convolution property of both the Gaussian and the NIG
distribution function, which allows us to compare path-wise
different time grids by simulating only one path of the Lèvy
process.

Since CARMA processes have significant application within
finance, from the modeling of the electricity spot price to the
modeling of wind speed and temperature, with the present study,
we justify its mathematical formulation and application in a
rigorous way. Moreover, this may open for further applications
in the context of sensitivity analysis with respect to paths of the
driving noise process. Indeed, since the new process Lε admits
derivatives, one could potentially analyze the sensitivity of the
CARMA process, and hence of the variable of interest (e.g., the
spot price), with respect to the Lévy noise in a path-wise sense.
It might also be that when observing a signal, the driving-noise
process is more regular than, e.g., a Brownianmotion. This might
then be modeled by the regular process here introduced and
studied.

The rest of the paper is organized as follows. In section
2 we construct the approximating process Lε by stochastic
convolution, and we study the rate of convergence. In
section 3 we introduce CARMA processes and their spectral
representation.We then show the convergence of the new process
Xε to the original CARMA process, and we briefly recover
the general case q > 0. In section 4 we study an Euler
scheme to simulate the process Xε starting from the simulations
of Lε , and then to calibrate the parameters of the CARMA
dynamics starting from the discrete time series. Appendix A in
Supplementary Material contains the proofs of the main results.

2. CONSTRUCTION AND CONVERGENCE
RESULTS

Let (�, F , P) be a probability space. We consider a one-
dimensional Lèvy process L, which we assume to be a square-
integrable martingale with characteristic triplet (κ ,6, ν), ν being
the Lévy measure. From Cont and Tankov [18, Proposition 3.13],
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for every t > 0 the variance of L(t) is of the form

Var
(

L(t)
)

= tσ 2 with σ 2
: = 6+

∫ ∞

−∞
x2ν(dx). (2.1)

Moreover, from Cont and Tankov [18, Proposition 3.18], we also
know that L is a martingale if, and only if,

∫

|x|≥1
|x|ν(dx) <∞ and κ +

∫

|x|≥1
xν(dx) = 0. (2.2)

We now consider a sequence of measurable functions
{φε}ε>0 :[0,T] −→ R such that, for every ε > 0, φε is
twice continuously differentiable on the interval [0,T] and
φε(0) = 0. We then construct the process {Lε(t), t ≥ 0} by
stochastic convolution of the Lévy process L with φε :

Lε(t) : =
∫ t

0
φε(t − s)dL(s). (2.3)

Lε is well-defined in [0,T] for every T ∈ ]0,+∞[, and, in
particular, the condition φε(0) = 0 is used to prove the following
result, where the symbol ∗ denotes the convolution operator.

Lemma 2.1. The process {Lε(t), t ≥ 0} in Equation (2.3) can be
expressed by

Lε(t) =
(

φ′ε ∗ L
)

(t)
∣

∣

[0,t]
=
∫ t

0
φ′ε(t − s)L(s)ds. (2.4)

Proof: See Appendix A.1 in Supplementary Material.

For ψε(x) : = φ′ε(x), since φε(0) = 0, we write that φε(t) =
∫ t
0 ψε(u)du so that φε is twice continuously differentiable for
any continuously differentiable ψε . We introduce the function
ψ(x) : = 2√

2π
exp

{

− 1
2x

2
}

, and for every ε > 0 we define

ψε(x) : =
1

ε
ψ

(x

ε

)

= 2√
2πε

exp

{

− x2

2ε2

}

. (2.5)

Let us notice that
∫

R
ψ(x)dx =

∫

R
ψε(x)dx = 2, while the

total area of the mollifier function usually equals 1. However, we
construct the process {Lε(t), t ≥ 0} by stochastic convolution
restricted to the interval [0, t], and, denoting by 8 the standard
Gaussian cumulative distribution function, the area of ψε
restricted to [0, t] is

(

φε(t) =
)

∫ t

0
ψε(x)dx = 2

(

8

(

t

ε

)

− 1

2

)

ε↓0−−→ 1, (2.6)

so that the unitary total integral property for ψε is preserved in
the limit.

By differentiating Equation (2.4) with respect to t, according
to the Leibniz rule, we get

L′ε(t) = φ′ε(0)L(t)+
∫ t

0
φ′′ε (t − s)L(s)ds. (2.7)

This shows that Lε ∈ C1 ([0,T]), though Lε /∈ Cn ([0,T]) for any
n > 1, because of the term L(t) which is not differentiable, unless
φ′ε(0) = ψε(0) = 0, which is not our case. Hence, we start with
the Lévy process L, which is not differentiable, and we end up
with Lε , which is continuously differentiable. For a CARMA(p, q)
process, we need Lε ∈ Cq+1 ([0,T]). From Equation (2.7), this

means to have φ
(m)
ε (0) = 0 for every 0 ≤ m ≤ q + 1, φ

(m)
ε being

the m-th derivative of φε . However, for our particular choice of
the convolution function ψε , these conditions of null derivatives
in zero are not satisfied. Another possible choice would have
been, for example, to take a sequence of gamma densities with
scale parameter θε converging to 0 as ε converges to 0 and shape

parameter k > 0, such as dε(t) = 1
Ŵ(k)θkε

tk−1e−
t
θε . For k ≥ q+ 1,

the first q derivatives of dε are indeed null in t = 0.
With Lε constructed above, we thus address the

differentiability issue in the stochastic differential equation
defining the CARMA process only for q = 0, namely when the
process is a CAR(p). However, Brockwell et al. [5, Proposition
2] shows that, under some conditions, we can express a
CARMA(p, q) process as the sum of p dependent and possibly
complex-valued CAR(1) processes. The idea is then to construct
the ε-approximation with Lε in Equation (2.3) for each of the
p processes of CAR(1)-type and obtain the ε-CARMA(p, q)
process by summing them up. We can thus deal with q > 0, but
it must be done separately. With the gamma densities mentioned
above, for example, the special treatment for q > 0 would not
be necessary. However, we started this analysis from CAR(p)
processes, and in this setting the scaled Gaussian densities ψε
make the job. We shall analyze the case q > 0 in section 3.2.

A first important fact about Lε in Equation (2.3) is that the
convolution operation does not preserve the properties of the
Lévy process L.

Proposition 2.2. The process {Lε(t), t ≥ 0} is not a Lévy process.

Proof: See Appendix A.2 in Supplementary Material.

By Proposition 2.2, for L = B, a Brownian motion, the
approximated process Bε is no longer a Brownian motion. We
can, however, show that the distribution of B is preserved.

Lemma 2.3. For every ε > 0, the process {Bε(t), t ≥ 0} has
Gaussian distribution with zero mean and variance

Var(Bε(t)) =
∫ t

0
φ2ε (s)ds

= t + 4t8

(

t

ε

)(

8

(

t

ε

)

− 1

)

+

+ 4ε

(

2ϕ

(

t

ε

)

8

(

t

ε

)

− 1√
2π

(

8

(√
2t

ε

)

− 1

2

)

− ϕ
(

t

ε

)

)

.

Proof: Bε is defined in Equation (2.3) as the stochastic integral of
φε with respect to the Brownian motion B. Then Bε has Gaussian
distribution with zero mean and variance

∫ t
0 φ

2
ε (s)ds, which can

be explicitly calculated.
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Let us point out that Lemma 2.3 is valid for every choice of
the functions {φε}ε>0, with the obvious modification for the
variance formula

∫ t
0 φ

2
ε (s)ds. Moreover, from Lemma 2.3, we get

that limε↓0 Var(Bε(t)) = t, as one would expect. Figure 1 shows
indeed the typical bell-shape for a Gaussian distribution. We
sampled the process Bε at time t = 1 for 5, 000 times and different
values of ε. The empirical (black line) and the theoretical (red
line) distributions (according to Lemma 2.3) are also shown. For
ε = 1, there is a certain discrepancy between empirical and
theoretical distributions, which may be due to the fact that for big
values of ε the increments of Bε are more dependent from each
other than for smaller values of ε. The same phenomena will be
encountered in section 4.3.

2.1. Convergence of the Lévy
Approximation
We prove now the convergence of the process Lε to the Lévy
process L.

Theorem 2.4. The process {Lε(t), t ≥ 0} converges to {L(t), t ≥
0} in L2 ([0,T]×�).

Proof: See Appendix A.3 in Supplementary Material. The proof
is based on some results from Benth et al. [19, Appendix A].

Figure 2 shows graphically the convergence stated in Theorem
2.4 for a Brownian motion and for a normal inverse Gaussian
process with parameters (α,β , δ,µ) = (1, 0,1true, 0),1true being
the time step used in the Euler discretization (see section 4). As ε
decreases, the error between Lε and L decreases. Even with a large
ε (ε = 1), the process Lε is able to capture the shape of L. It seems
however to be slightly shifted to the right.

We compute explicitly the squared error between Lε and L at
the terminal point t = T.

Lemma 2.5. For every ε > 0 and T < +∞, the squared error
between Lε and L is given by

E

[

(

Lε(T)− L(T)
)2
]

= 4σ 2T

(

8

(

T

ε

)

− 1

)2

+

+ 4σ 2ε

(

1√
2π

+ 2ϕ

(

T

ε

)(

8

(

T

ε

)

− 1

)

+

− 1√
π

(

8

(√
2T

ε

)

− 1

2

))

,

for σ 2 in Equation (2.1) and ϕ and 8 respectively the density
and the cumulative distribution functions of a standard Gaussian
random variable.

Proof: The proof applies the integration by parts formula several
times.

The following lemma concerning the cumulative Gaussian
distribution function8 is useful.

Lemma 2.6. The function 8 can be expanded by integration by
parts into the series

8(x) = 1

2
+ e−x2/2

√
2π

(

x+
∞
∑

n=1

x2n+1

(2n+ 1)!!

)

, (2.8)

!! denoting the double factorial. Moreover, for large x, the
asymptotic expansion is also valid

8(x) = 1− e−x2/2

x
√
2π

(

1+
∞
∑

n=1

(−1)n
(2n− 1)!!

x2n

)

. (2.9)

We now use the expansion (2.8) to calculate the rate of
convergence of Lε to the Lévy process L, starting from Lemma
2.5. The expansion (2.9) will be used further in the paper.

Proposition 2.7. For every ε > 0 and T < +∞, there exists a
constant K1 > 0 such that

E

[

(

Lε(T)− L(T)
)2
]

≤ K1 ε + O
(

ε4
)

.

Proof: See Appendix A.4 in Supplementary Material.

Similarly to Lemma 2.3, the rate of convergence found in
Proposition 2.7 can be calculated explicitly for every choice of
the functions {φε}ε>0, possibly obtaining a different order. The
L2 norm of the approximation error studied in Proposition 2.7 as
a function of ε is in Figure 3A for the Brownian motion and in
Figure 3B for the NIG Lévy process. In the next section we shall
introduce CARMA processes in a more rigorous way and study
their ε-approximation.

3. CARMA REPRESENTATION AND
CONVERGENCE RESULTS

For p > q and t ≥ 0, a second-order Lévy-driven continuous-
time ARMA process of order (p, q) is formally defined by the
stochastic differential equation

P

(

d

dt

)

X(t) = Q

(

d

dt

)

d

dt
L(t), (3.1)

where P and Q are the characteristic polynomials of the CARMA
process of the form

P(z) = zp + a1z
p−1 + ...+ ap

Q(z) = b0 + b1z + ...+ bp−1z
p−1

(3.2)

with aj ≥ 0, j = 1, . . . , p, and ap > 0, bq = 1 and bj = 0 for
q < j < p. Equation (3.1) is, however, usually interpreted by
means of its state-space representation

{

dY(t) = AY(t)dt + epdL(t)

X(t) = b⊤Y(t)
, (3.3)
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FIGURE 1 | Histograms of Bε (t) for t = 1 after 5, 000 simulations with 1true = 2−10 (n = 1, 024 points) and different ε’s. Together, we have empirical (black line) and

theoretical distribution (red line).

where⊤ denotes the transpose operator, and

A =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1















, ep =















0
0
...
0
1















, b =















b0
b1
...

bp−2

bp−1















.

By Itô’s rule, the solution of the first equation in (3.3) at time t ≥ s
is given by

Y(t) = eA(t−s)Y(s)+
∫ t

s
eA(t−u)epdL(u).

Moreover, from Brockwell et al. [5, Proposition 1], if the
eigenvalues λ1, . . . , λp of A satisfy the condition

Re(λj) < 0 for j = 1, . . . , p, (3.4)

then the process {Y(t), t ≥ 0} is strictly stationary and the
CARMA(p, q) process is given by

X(t) =
∫ t

0
g(t − s)dL(s), (3.5)

g(x) : = b⊤eAx ep, x ≥ 0. (3.6)

The function g is referred to as the kernel function associated
to the CARMA process. We also notice that the process X is
a causal function of L, in the sense that X(t) is independent of
{L(s) − L(t), s ≥ t} for all t ≥ 0. We shall assume that condition
(3.4) is satisfied, referring to it as the causality condition or
stationarity condition.

In a similar way, we introduce the state-space representation
for Xε . This is the process obtained by replacing the Lévy process
L with the smoother Lε , namely

{

dYε(t) = AYε(t)dt + epdLε(t)

Xε(t) = b⊤Yε(t)
. (3.7)

The solution to Equation (3.7) can be expressed in terms of the
kernel function g by

Xε(t) =
∫ t

0
g(t − s)dLε(s). (3.8)

We point out that the kernel function g in Equation (3.6) is
continuously differentiable. Its value at x = 0 is given in the
following lemma, where δ denotes the Kronecker delta.

Lemma 3.1. For p > q, the value of the kernel function at x = 0 is
equal to g(0) = δp,q+1.

Proof: The proof follows by direct verification.

From the basic algebra analysis, if A has distinct eigenvalues,
then the matrix exponential eAx can be decomposed into the
matrix product

eAx = Ve3xV−1, (3.9)

3 and V being the eigenvalues and eigenvectors matrices. From
Brockwell et al. [5, Remark 2], the eigenvalues λ1, ..., λp of
the matrix A coincide with the roots of the polynomial P in
Equation (3.2), and the i-th eigenvector is of the form vi =
[1, λi, λ

2
i , . . . , λ

p−1
i ]⊤. From Brockwell et al. [5, Proposition 2],

we also get that V−1ep =
[

γ1, γ2, ..., γp
]⊤

, where

γi : =
1

P′ (λi)
= 1
∏

1≤m≤p
m 6=i

(λi − λm)
for i = 1, ..., p, (3.10)

P′ being the derivative of the polynomial P. We then find the
following spectral representations for the kernel function g and
its first derivative h(x) : = g′(x).
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FIGURE 2 | {L(t), 0 ≤ t ≤ 5} (black line) against {Lε (t), 0 ≤ t ≤ 5} (red line) for different ε’s generated from a single path with 1true = 2−10 (n = 5, 120 points) for a

Brownian motion and a NIG process with parameters (α,β, δ,µ) = (1, 0,1true, 0). The black bar lines in the four rightmost images represent the difference between L

and Lε .

Lemma 3.2. The functions g and h can be expressed in terms of the
spectral representations:

g(x) =
p
∑

i,j=1

bjλ
j
iγie

λix and h(x) =
p
∑

i,j=1

b̃jλ
j
iγie

λix,

for γi in Equation (3.10), and b̃j =
[

b⊤A
]

j
, j = 1, ..., p.

Proof: The proof comes from Equations (3.6) and (3.9) by
writing explicitly the matrix product g(x) = b⊤Ve3xV−1ep and

h(x) = g′(x) = b⊤AVe3xV−1ep.

These representations will be used for proving the convergence
results in the next section.

3.1. Convergence of the CARMA
Approximation
We prove the convergence of Xε to X. We first start with the
following preliminary result.

Lemma 3.3. The processes {X(t), t ≥ 0} and {Xε(t), t ≥ 0} can be
rewritten by

X(t) =
∫ t

0
h(t−s)L(s)ds and Xε(t) =

∫ t

0
hε(t−s)L(s)ds.

Here h(x) = g′(x) and hε(x) : = g(0)ψε(x)+
∫ x
0 h(x− v)ψε(v)dv,

for g(0) given in Lemma 3.1.

Proof: See Appendix A.5 in Supplementary Material.
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FIGURE 3 | Log-log plots for the squared approximation error after 1, 000 simulations. Above, the error is a function of ε with fixed 1 = 2−3. Below, the error is a

function of 1 with fixed ε = 0.01.

From Lemma 3.2, we also derive the spectral representation

hε(x) = g(0)ψε(x)+
p
∑

i,j=1

b̃jλ
j
iγi

∫ x

0
eλi(x−v)ψε(v)dv, (3.11)

and prove the first convergence result.

Proposition 3.4. For every x > 0, the function hε(x) converges
pointwise to h(x).

Proof: See Appendix A.6 in Supplementary Material.

In Proposition 3.4, we do not require the limit to hold in x = 0.
However, this does not affect the convergence in L2 since X and
Xε are both integral functions, and {x = 0} is a set of measure 0.
Indeed, we can prove the required convergence for Xε .

Theorem 3.5. The process {Xε(t), t ≥ 0} converges to {X(t), t ≥
0} in L2 ([0,T]×�).

Proof: See Appendix A.7 in Supplementary Material.

Figure 4 shows the convergence proven in Theorem 3.5 for a
Gaussian CAR(1) process with parameter a = 0.6. We notice
that Xε captures the shape of X even with ε large, and we observe
a right-shifting of Xε with respect to X, as noticed already for the
Lévy process approximation.

We now study explicitly the rate of convergence of Xε to the
CARMA process X.

Proposition 3.6. For every ε > 0 and T < +∞, there exists a
constant K2 > 0 such that

E

[

(

Xε(T)− X(T)
)2
]

≤ K2 ε
2 + O(ε3).
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FIGURE 4 | The Gaussian CAR(1) process {X (t), 0 ≤ t ≤ 10} (black line) with parameter a = 0.6 against {Xε (t), 0 ≤ t ≤ 10} (red line) for different ε’s generated from a

single path with 1true = 2−10 (n = 10, 240 points). The black bar lines in the two rightmost images represent the difference between X and Xε .

FIGURE 5 | The Gaussian CARMA(3, 2) process {X (t), 0 ≤ t ≤ 10} (black line) with parameters (a1, a2, a3,b0,b1,b2) = (2.043, 1.339, 0.177, 2.0, 0.8, 1.0) against

{Xε (t), 0 ≤ t ≤ 10} (red line) for different ε’s generated from a single path with 1true = 2−10 (n = 10, 240 points). The black bar lines in the two rightmost images

represent the difference between X and Xε .

Proof: See Appendix A.8 in Supplementary Material.

The rate of convergence obtained in Proposition 3.6 is shown in
Figure 3C for a CAR(1).

We point out that the results in this section have been stated
and proved for a general CARMA(p, q) process. The convergence
results are indeed valid for every q ≥ 0, even when Lε is not
smooth enough to make the SDE having mathematical sense. We
then present them for the general case. Since the same ideas apply
to other families of convolution functions, such as the Gamma
densities previously mentioned, this is useful for possible further
applications.

We end this section with a distribution property holding for
Xε when the original noise is driven by a Brownian motion. If
the CARMA process X is driven by a Brownian motion B, then X

has Gaussian distribution. We show that the same holds for Xε .
This is indeed not a straightforward result since the process Bε
is no longer a Brownian motion by means of Proposition 2.2. A
rigorous proof is thus necessary.

Proposition 3.7. For every ε > 0, the process {Xε(t), t ≥ 0} has
Gaussian distribution.

Proof: See Appendix A.9 in Supplementary Material.
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FIGURE 6 | {Lε (t), 0 ≤ t ≤ 5} (black line) against {L1ε (t), 0 ≤ t ≤ 5} (red line) for different 1’s generated from a single path with ε = 0.01, for a Brownian motion and an

NIG process with parameters (α,β, δ,µ) = (1, 0,1true, 0). The black bar lines in the four rightmost images represent the difference between Lε and L1ε .

3.2. When q > 0
The process Lε is continuously differentiable but is not twice
continuously differentiable. However, at the right-hand side
of the stochastic differential equation (3.1), we require q + 1
derivatives of the driving noise process. For the general case
q > 0 we need the following result.

Proposition 3.8. Under the causality condition (3.4) and if the
matrix A has distinct eigenvalues, the CARMA(p, q) process X can
be expressed by the sum

X(t) =
p
∑

r=1

X(r)(t) with

X(r)(t) : =
∫ t

0
αre

λr(t−u)dL(u), r = 1, . . . , p.

Here, the X(r) are dependent and possibly complex-valued CAR(1)

processes with αr : = Q(λr)
P′(λr)

.

Proof: See [5, Proposition 2].

By means of Proposition 3.8, starting from Lε in Equation (2.3),
the idea is to construct p-approximating processes and obtain Xε
as the sum of them, namely,

Xε(t) =
p
∑

r=1

X(r)
ε (t) with

X(r)
ε (t) =

∫ t

0
αre

λr(t−u)dLε(u), r = 1, . . . , p.

In particular, from Itô’s calculus, we can prove that, for any r =
1, . . . , p and t ≥ 0, the process X(r), respectively X

(r)
ε , satisfies the
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FIGURE 7 | {Xε (t), 0 ≤ t ≤ 10} (black line) against {X1ε (t), 0 ≤ t ≤ 10} (red line) for different 1’s generated from a single path and ε = 0.01, for X a Gaussian CAR(1)

with parameter a = 0.6 and a Gaussian CARMA(3, 2) with parameters (a1, a2, a3,b0,b1,b2) = (2.043, 1.339, 0.177, 2, 0.8, 1). The black bar lines in the four rightmost

images represent the difference between Xε and X1ε .

stochastic differential equation

dX
(r)
(ε)
(t) = λrX

(r)
(ε)
(t)dt + αrdL(ε)(t), (3.12)

that will be used for numerical purposes in section 4. In Equation
(3.12), we write ε in parentheses since it applies to both X(r) and

X
(r)
ε .
In Figure 5 we consider a Gaussian CARMA(3, 2) process

with parameters (a1, a2, a3) = (2.043, 1.339, 0.177) taken from
[6] where a CAR(3) is used to model the daily average
temperature dynamics in Stockholm (Sweden) and (b0, b1, b2) =
(2.0, 0.8, 1.0). In Figure 3D, we observe the rate of convergence
as a function of ε.

4. NUMERICAL SCHEMES AND RESULTS

We consider a possible approach to simulate X and Xε for some
CARMA parameters, and we then estimate these parameters
starting from the simulated time series. In particular, we need first
to simulate L, then Lε , and only afterwards can we simulate Xε .

For n > 0, we shall consider the partition 5(n) : = {0 = s
(n)
0 <

s
(n)
1 < · · · < s

(n)
n = T} such that1s

(n)
j : = s

(n)
j − s

(n)
j−1 is constant,

that is 1s
(n)
j = T/n = 1(n) = :1, and s

(n)
j = j1 for each

j = 0, . . . , n.

4.1. The Lévy Simulations
By definition, for a fixed time interval 1, the increments of

the Lèvy process 1L(s
(n)
j ) : = L(s

(n)
j ) − L(s

(n)
j−1), j = 1, . . . , n,

are independent and identically distributed random variables
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following a certain distribution, which depends only on the time

increment 1. For example, for L = B, the increments 1B(s
(n)
j )

have all Gaussian distribution with zero mean and variance1. A
possible approach to simulate Lε in an exact way is to find the
distribution of Lε(t), starting from the distribution of L(t). For
example, for L = B, by means of Lemma 2.3, we can simulate Bε
sampling directly from a Gaussian distribution with zero mean
and variance in Lemma 2.3. However, with this approach, L and
Lε are from two different ω’s in �, and comparing the two paths
we would not get the error measure required. We then need
an alternative approach that simulates Lε and L from the same
ω ∈ �.

From Equation (2.3), Lε is the stochastic integral of φε with
respect to the Lévy process L. From the definition of the stochastic
integral as a limit of approximating Riemann-Stieltjes sums [20],

for t ∈ 5(n) such that t = s
(n)
m = m1, for m = m(t) and

1 ≤ m ≤ n, we approximate Lε(t) by approximating the integral
with a sum, namely

Lε(t) =
∫ t

0
φε(t − s)dL(s)

≈
m
∑

j=1

φε(t − s
(n)
j−1)1L(s

(n)
j ) = : L1ε (t), (4.1)

where t − s
(n)
j−1 = (m + 1 − j)1 = s

(n)
m+1−j. The approximation

scheme (4.1) adds an error to the simulation. It, however,
constructs Lε starting from the simulations of L, allowing to
compare the two paths for different 1’s. In the next proposition,
we study the approximation error.

Proposition 4.1. For every 1 > 0, ε > 0 and T < +∞, there
exists a constant K3 > 0 such that the simulation error is bounded
by

E

[

(

L1ε (T)− Lε(T)
)2
]

≤ K3
12

ε
.

Proof: See Appendix A.10 in Supplementary Material.

With Proposition 4.1, we estimated an upper bound for the error
added by the Euler scheme for simulating the process Lε by
means of the process L1ε . In particular, it shows that, for a fixed
ε > 0, the simulation error decreases at the decreasing of the time
step 1, as we would expect. In Kloeden et al. [21, section 9.3],
the authors study the rate of convergence for the Euler scheme
when applied to an Itô process, with respect to the absolute error
criterion, finding a strong rate of convergence equal to 1/2. Here,
in line with the rest of the paper, we consider the squared error
in Proposition 4.1 instead. This gives a rate of convergence equal
to 2, corresponding to a strong order 1. From Proposition 4.1, we
also notice that the bound depends on the inverse of ε, meaning
that, for ε going to zero, the simulation error might explode.

Figure 5 shows the convergence of the Euler scheme (4.1)
for a Brownian motion and for the normal inverse Gaussian
process introduced in section 2.1. Since an exact simulation is
not possible, to generate Bε , we consider the scheme (4.1) with
a small time step 1true = 2−10. Moreover, since we want to

compare Bε and B1ε path-wise for different values of 1, Bε and
B1ε must be related to the same ω ∈ �, that is, to the same
realization of the Brownian motion B. To get this, we exploit
the following well-known property: given Xi ∼ N (0, σ 2

i ), for
i = 1, ..., k, independent Gaussian random variables, their sum

follows the distribution
∑k

i=1 Xi ∼ N (0,
∑k

i=1 σ
2
i ). Thus, we

start by simulating the true process Bε for a certain time step

1true << 1. For this, we sample the increments 1B(s
(n)
j ) from

a Gaussian distribution with zero mean and variance 1true and
obtain Bε as in Equation (4.1). Then, we choose a time step 1
multiple of 1true, namely, 1 = k1true for a certain k ∈ N. The
Brownianmotion path to be used in Equation (4.1) for simulating
B1ε is then obtained by summing up the increments of B (above
simulated) at groups of k elements. These increments have indeed

Gaussian distribution with zeromean and variance
∑k

i=11
true =

k1true = 1, as required. In Figure 6, we considered1true = 2−10

and 1 ∈ {2−7, 2−5, 2−3, 2−1}. We see that, for a fixed ε, as 1
decreases, the error between B1ε and Bε decreases. Even with a
large 1 (1 = 2−1), the process B1ε captures the shape of Bε . In
Figure 3E we show the rate of convergence of the Euler scheme
proven in Proposition 4.1 as function of time step 1 and for a
fixed ε (ε = 0.01).

Similarly, for the NIG Lévy process, to simulate and compare
Lε with L1ε path-wise, we use the same idea as in the Brownian
motion case. We can indeed exploit the convolution property of
the NIG distribution (see [22]): given Xi ∼ NIG(α,β , δi,µi),
for i = 1, ..., k, independent normal inverse Gaussian random
variables with common parameters α and β , but individual scale-

location parameters δi and µi, their sum follows
∑k

i=1 Xi ∼
NIG(α,β ,

∑k
i=1 δi,

∑k
i=1 µi). In section 2.1, we introduced NIG

distribution with parameters (1, 0,1true, 0), for 1true being the
time step used in the Euler discretization. As above, we thus
simulate the true process Lε from Equation (4.1) by sampling
the increments of L from a NIG distribution with parameters
(1, 0,1true, 0) for a certain 1true << 1. Then, we obtain L1ε by
choosing1 so that1 = k1true for a certain k ∈ N, and summing
up the increments of L (simulated above) at groups of k elements.
These increments have indeed NIG distribution with parameters

(1, 0,
∑k

i=11
true,

∑k
i=1 0) = (1, 0,1, 0) as required. We consider

the same 1’s as for the Brownian motion. We notice that, for
a fixed ε, L1ε captures the shape of Lε even with a large 1. In
Figure 3F we show the rate of convergence for the Euler scheme
proved in Proposition 4.1 as function of the time step 1 and for
a fixed ε (ε = 0.01).

From Proposition 2.7 and 4.1, we calculate the squared error
for L1ε with respect to L.

Proposition 4.2. For every1 > 0 and ε > 0 small enough, we get
the following bound

E

[

(

L1ε (T)− L(T)
)2
]

≤ 2K1ε + 2K3
12

ε
.

Proof: This is a direct consequence of Proposition 2.7 and 4.1 by
the inequality (a+ b)2 ≤ 2(a2 + b2) for a = L1ε (T)− Lε(T) and
b = Lε(T)− L(T).
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Proposition 4.2 shows that the squared error between L1ε and
L decreases when 1 decreases. However, because of the term
proportional to the inverse of ε, it might also explode for small
values of ε. We then need to tune the parameters1 and ε to find
a combination that minimizes the error preventing it from taking
large values.

4.2. The CARMA Simulations
It is possible to construct X and Xε starting from Equations
(3.5) and (3.8) and considering the same kind of numerical
approximation as done for Lε , that is, by replacing the integral
with a suitable sum. However, to not add a second simulation
error to the one already due to Lε , which is approximated by L1ε ,
we start from the state-space representations instead, Equations
(3.3) and (3.7), respectively. By using the Euler scheme, according
to [21, Chapter 9], we get (here we write ε in parenthesis since the
equation holds both for X and Xε):

Y1(ε)(s
(n)
j ) = Y1(ε)(s

(n)
j−1)+ AY1(ε)(s

(n)
j−1)1+ ep1L(ε)(s

(n)
j ),

X1(ε)(s
(n)
j ) = b⊤Y1(ε)(s

(n)
j ),

(4.2)

where 1L(ε)(s
(n)
j ) = L(ε)(s

(n)
j ) − L(ε)(s

(n)
j−1), for j = 1, . . . , n.

For the reasons already discussed, we apply the scheme (4.2)
only for q = 0, that is, when b = e1. For q > 0, by
means of Proposition 3.8, we instead apply the Euler scheme
to the stochastic differential equation (3.12) for each of the p

components X
(r)
(ε)

of X(ε), and we get X(ε) as the sum of them,

namely,

X
1(r)
(ε)

(s
(n)
j ) = X

1(r)
(ε)

(s
(n)
j−1)+ λrX

1(r)
(ε)

(s
(n)
j−1)1+ αr1L(ε)(s

(n)
j ),

X1(ε)(s
(n)
j ) =

p
∑

r=1

X
1(r)
(ε)

(s
(n)
j ).

When simulating X1ε , we use the approximation L1ε in Equation
(4.1), and this adds an error.We study the rate of convergence for
X1ε to the true process Xε in the following proposition.

Proposition 4.3. For every ε > 0 and 1 < maxj=1,...,p
−2Re(λj)

|λj|2 ,

there exist two constants K4,K5 > 0 such that the simulation error
for the Euler scheme (4.2) is bounded by

E

[

(

X1ε (T)− Xε(T)
)2
]

≤ K4
12

ε
+ K5

14

ε4
.

Proof: See Appendix A.11 in Supplementary Material.

Let us notice that the bound on 1 in Proposition 4.3
has been introduced to obtain the estimate for the
squared error. The scheme (4.2) works however for
every1 > 0.

In Figure 7 we show the convergence for the simulations
of a Gaussian CAR(1) and a Gaussian CARMA(3, 2). In
both cases we notice that for 1 decreasing, the Euler
approximation X1ε converges to Xε , and, even with a large
value of 1 (1 = 2−1), X1ε captures the shape of Xε .

TABLE 1 | Parameters estimated and standard deviation (in parenthesis) for

different ε’s and 1’s after 1, 000 simulations for a Gaussian CAR(1) with a = 0.6.

Gaussian CAR(1) parameters estimated

1 = 20

ε â âε

20 0.6010288 (0.02889827) 0.3530898 (0.01973318)

∗2−1 0.6017733 (0.02791626) 0.5633918 (0.02691802)

∗2−2 0.6005038 (0.02813515) 0.6004506 (0.02813376)

∗2−3 0.6008589 (0.0300782) 0.6008589 (0.0300782)

∗2−4 0.6013792 (0.02890727) 0.6013792 (0.02890727)

1 = 2−1

ε â âε

20 0.6041548 (0.03362481) 0.1694637 (0.01097814)

2−1 0.6011999 (0.0325313) 0.3378004 (0.01978348)

∗2−2 0.6036319 (0.03193889) 0.558025 (0.02990832)

∗2−3 0.6002732 (0.03133392) 0.6002087 (0.03133112)

∗2−4 0.6025603 (0.03244405) 0.6025603 (0.03244405)

1 = 2−2

ε â âε

20 0.6037737 (0.03312141) 0.0809573 (0.005357486)

2−1 0.6016175 (0.03297326) 0.1679081 (0.01021751)

2−2 0.6026758 (0.03342669) 0.3321287 (0.01916501)

∗2−3 0.6032027 (0.03258187) 0.5541501 (0.03015163)

∗2−4 0.6041056 (0.03402852) 0.6040349 (0.03402487)

The underlined digits are the common digits in â and âε . The symbol ∗ marks when

condition ε < 1 is satisfied.

In Figures 3G,H, we show the rate of convergence for the
two processes as function of 12 and for a fixed value
of ε (ε = 0.01).

From Proposition 3.6 and 4.3, we estimate the squared error
for X1ε with respect to X.

Proposition 4.4. For every 1 > 0 and ε > 0 small enough, the
following bound applies:

E

[

(

X1ε (T)− X(T)
)2
]

≤ 2K2 ε
2 + 2K4

12

ε
+ 2K5

14

ε4
.

Proof: This is a direct consequence of Proposition 3.6 and 4.3 by
the inequality (a+ b)2 ≤ 2(a2 + b2) for a = X1ε (T)− Xε(T) and
b = Xε(T)− X(T).

4.3. CARMA Estimation
We introduce an approach to estimate the parameters
(a1, . . . , ap, b0, . . . , bq) starting from the time series for
{X(t), 0 ≤ t ≤ T} and {Xε(t), 0 ≤ t ≤ T} by applying
the Euler scheme. Following Benth et al. [7, section 4.3], we focus
on CAR models only, that is, on the process X(t) = Y1(t), for
Y1(t) being the first coordinate of the vector Y(t) in Equation
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TABLE 2 | Parameters estimated and standard deviation (every second row) for different ε’s and 1’s after 1, 000 simulations for a Gaussian CAR(3) with

a = (2.043, 1.339, 0.177).

Gaussian CAR(3) parameters estimated

1 = 20

ε â âε

20 (2.0465438, 1.3448458, 0.1795313) (1.6656158, 1.0061226, 0.1163607)

(0.03182854, 0.04668409, 0.02019277) (0.03093857, 0.03861325, 0.01357942)

∗2−1 (2.0448233, 1.3424365, 0.1793535) (1.9980868, 1.2946571, 0.1702482)

(0.03255849, 0.04568522, 0.01961278) (0.03248752, 0.04472464, 0.01870831)

∗2−2 (2.0444178, 1.3425449, 0.1799632) (2.0443555, 1.3424787, 0.1799505)

(0.03155042, 0.04637146, 0.01957948) (0.03155036, 0.04637017, 0.01957821)

∗2−3 (2.0441555, 1.3413174, 0.1784795) (2.0441555, 1.3413174, 0.1784795)

(0.03174612, 0.04494131, 0.02049703) (0.03174612, 0.04494131, 0.02049703)

∗2−4 (2.0455070, 1.3438790, 0.1805164) (2.0455070, 1.3438790, 0.1805164)

(0.03113649, 0.04640021, 0.02003383) (0.03113649, 0.04640021, 0.02003383)

1 = 2−1

ε â âε

20 (2.047198, 1.344582, 0.1179701) (0.93101668, 0.74900497, 0.054728)

(0.04400026, 0.05788283, 0.02091601) (0.024569478, 0.036776509, 0.006575435)

2−1 (2.0468192, 1.3450024, 0.1795957) (1.4472312, 1.0800373, 0.1083792)

(0.04272407, 0.05713749, 0.02003501) (0.03343550, 0.04763322, 0.01227647)

∗2−2 (2.0451238, 1.3438020, 0.1798912) (1.9600235, 1.3032478, 0.1692412)

(0.04093678, 0.05699320, 0.02153571) (0.04002300, 0.0557660, 0.02030978)

∗2−3 (2.0466145, 1.3420588, 0.1787042 (2.0464984, 1.3420004, 0.1786897)

(0.04360794, 0.05849717, 0.02093359) (0.04360660, 0.05849502, 0.02093195)

∗2−4 (2.0475337, 1.3460992, 0.1809728) (2.0475337, 1.3460992, 0.1809728)

(0.04374334, 0.05753167, 0.02091458) (0.04374334, 0.05753167, 0.02091458)

1 = 2−2

ε â âε

20 (2.0488046, 1.3472925, 0.1797796) (0.44880714, 0.64200476, 0.02334978)

(0.05145854, 0.06480728, 0.02143492) (0.013049683, 0.034215080, 0.002944983)

2−1 (2.0464197, 1.3458156, 0.1800446) (0.76315132, 0.93934128, 0.05071483)

(0.04978053, 0.06403133, 0.02119095) (0.020194320, 0.046465195, 0.006227828)

2−2 (2.0496128, 1.3512352, 0.1802224) (1.2995395, 1.1838183, 0.1029504)

(0.05054903, 0.06626747, 0.02097240) (0.03354603, 0.05883910, 0.01220843)

∗2−3 (2.0499813, 1.3469554, 0.1801088) (1.9279250, 1.3210808, 0.1673256)

(0.05507782, 0.06371013, 0.02150337 (0.05230973, 0.06260054, 0.02005562

∗2−4 (2.0486265, 1.3471175, 0.1793858) (2.0484564, 1.3470775, 0.1793683)

(0.05069210, 0.06491714, 0.02095847) (0.05068899, 0.06491685, 0.02095691)

The common digits in â and âε are underlined. The symbol ∗ marks when condition ε < 1 is satisfied.

(3.3). Then, for a uniform time step1, we get the relation

1

1p−1

p
∑

j=0

(−1)j z
p
j Y1(t + (p− j)1) =

= −
p
∑

i=1

ap−i+1
1

1i−2

i−1
∑

j=0

(−1)j zi−1
j Y1(t+ (i−1− j)1)+ǫ(t),

(4.3)

ǫ(t) being the Lévy noise. The coefficients zij are defined as

zi0 = zii = 1 for i = 1, . . . , p, and, through the recursion

zij = zi−1
j−1+ zi−1

j , for j = 1, . . . , p−1 and i ≥ 2. We refer to Benth

et al. [7, section 4.3] for more details. In particular, Equation
(4.3) is a linear combination of Y1(t + p1), . . . ,Y1(t) and the
error term ǫ(t). Thus, we have an AR(p) representation model for
Y1(t), and the parameters a1, . . . , ap can be estimated by means
of relation (4.3) starting from the AR estimated parameters. We
consider as examples p = 1 and p = 3. For p = 1, X(t) = Y1(t) is
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an Ornstein-Uhlenbeck process and Equation (4.3) becomes

Y1(t +1) = {1− a11}Y1(t)+ ǫ(t),

which coincides with the Euler scheme (4.2) when p = 1. For
p = 3, from Equation (4.3) we get

1

12

{

z30Y1(t + 31)− z31Y1(t + 21)+

+z32Y1(t +1)− z33Y1(t)
}

= −a31z00Y1(t)− a2
{

z10Y1(t +1)− z11Y1(t)
}

+

− a1

1

{

z20Y1(t + 21)− z21Y1(t +1)+ z22Y1(t)
}

+ ǫ(t).

From the definition for zij , rearranging the terms, the last

equation can be rewritten as

Y1(t + 31) = θ1Y1(t + 21)+ θ2Y1(t +1)+ θ3Y1(t)+12 ǫ(t),

with θ1 : = 3− a11, θ2 : = 2a11− a21
2 − 3,

θ3 : = 1− a11+ a21
2 − a31

3.

Then, one first estimates the AR coefficients θ1, θ2, θ3 and
afterwards recover the CAR coefficients a1, a2, a3 by

a1 =
3− θ1
1

, a2 =
3− 2θ1 − θ2

12
, a3 =

1− θ1 − θ2 − θ3
13

.

This scheme holds for every Lévy process. To recover the case
q > 0 different approaches have to be considered, see, e.g., [23]
and [24].

In Tables 1, 2 we report the parameters estimated for a
Gaussian CAR(1) and a Gaussian CAR(3) for different ε’s and
different1’s. In particular, â is the vector of parameters estimated
starting from the time series for X, and âε is the vector of
parameters estimated starting from the time series for Xε . The
underlined digits are the common digits between â and âε , with
respect to the same ε and the same 1. The estimates get more

accurate for a small ε, but they are not accurate if ε is bigger
than 1. We marked the cases corresponding to ε < 1 with the
symbol ∗, and we notice that as soon as ε gets smaller than 1,
the accuracy improves and gets better for smaller values of ε. We
summarize this empirical result with a proposition.

Proposition 4.5. The Euler scheme (4.3) converges to the true
CARMA parameters if ε < 1.

Proof: See Appendix A.12 in Supplementary Material.

A more rigorous study should be performed regarding the
condition in Proposition 4.5, analysing in details the estimation
technique for ARMA processes, which is the starting point to
estimate the CARMA parameters. This is, however, beyond the
purposes of the current article.
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